

Register Number: ______ Date: _____

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 BCA(DATA ANALYTICS) —II SEMESTER SEMESTER EXAMINATION —APRIL 2022 (EXAM CONDUCTED IN JULY —AUGUST 2022) BCADA 2221:ADVANCED STATISTICAL COMPUTING USING R

TIME: 2 hrs

MAXIMUM MARKS: 60

This paper has 2 printed pages and 2 parts.

Part A

Answer ALL questions. More than one options may be correct.

 $(1 \times 10 = 10)$

- 1. Correlation ratio lies between 1 and -1. A. True B. False
- 2. If $R_{1.23} = 1$, the multiple linear regression of X_1 on X_2 and X_3 is consodered as perfect for prediction. A. True B. False
- 3. In the usual notations, $R_{1.23}^2$ ca be expressed as A. $1 - (1 - r_{12}^2)(1 - r_{13.2}^2)$ B. $1 - (1 - r_{12}^2)(1 - r_{13.2}^2)$ C. $(1 - r_{12}^2)(1 - r_{13.2}^2)$ D. $(1 - r_{12})(1 - r_{13.2})$
- 4. Let $E(T_1) = 0 = E(T_2)$, where T_1 and T_2 are the linear functions of the sample observations. If $V(T_1) \leq V(T_2)$ then: A. T_1 is an unbiased linear estimator. B. T_1 is the best linear unbiased estimator.
 - C. T_1 is a consistent linear unbiased estimator. D. T_1 is a consistent best linear unbiased estimator.
- 5. χ^2 test can be used for A. Testing independence B. Goodness of fit C. Comparing means D. Comparing Variances.
- 6. Multiple Linear regressionA. Can predict multiple values B. Has many predictor variables C. Neither D. Both
- 7. A large p-valueA. Let's you reject the alternate hypothesB. Let's you accept the null hypothesC. Let's you accept the alternate hypothesD. Let's you reject the null hypothes
- 8. Power of a test is the

A. Lower bound of probability of type I error B. 1 - probability of type two error C. Upper bound of probability of type one error D. None of the options are correct

- 9. Confidence interval for μ if σ^2 is unkown is A. $\left[\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$ B. $\left[\bar{X}_n - z_{\alpha/2} \frac{\hat{S}}{\sqrt{n}}, \bar{X}_n + z_{\alpha/2} \frac{\hat{S}}{\sqrt{n}}\right]$ C. $\left[\bar{X}_n - t_{n,\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + t_{n,\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$ D. $\left[\bar{X}_n - t_{n-1,\alpha/2} \frac{\hat{S}}{\sqrt{n}}, \bar{X}_n + t_{n-1,\alpha/2} \frac{\hat{S}}{\sqrt{n}}\right]$
- 10. \overline{X} (sample mean) is A. unbiased B. Sufficient for μ for normal distribution C. consistent D. None of the choices

Part B

Answer ANY SIX questions.

- 11. Explain different kinds of sampling you know. What are the different sampling distributions you know?
- 12. Define and explain with example Consistency and Unbiasedness.
- 13. Explain two different kinds of errors with examples, with regards to hypothesis testing.
- 14. Define the multiple regression model. Explain all the notations. Give how the expressions for coefficients of partial regression.
- 15. Construct the confidence interval for population mean, when population variance is known.
- 16. Explain regression for categorical variables.
- 17. Explain Null and Alternate hypothesis. Explain how to accept or reject the null hypothesis.
- 18. Explain one application of the Chi-square test.

Part C

Answer ANY TWO questions.

- 19. What is a statistical hypothesis? Define significance level and power of a test with reference to hypothesis testing. Can the two types of errors be minimized simultaneously? Why or why not? Exlpain how the critical region is determined.
- 20. Given a random sample of X_1, \ldots, X_n from a normal $N(\mu, \sigma^2)$ distribution, examine unbiasedness of
 - (a) \overline{X} for μ
 - (b) $\frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})$ for σ^2

Explain how we can find the estimators for μ and σ^2 using method of moments.

- 21. (a) When the correlation ratio coefficient is equal to unity, show that the two correlation ratios are equal to unity. Is the converse true?
 - (b) Define correlation ratio η_{XY} and prove that $1 \ge \eta_{XY}^2 \ge r^2$, where r is the coefficient of correlation between X and Y.
 - (c) Interpret the following statements: A. r = 0 B. $r^2 = 1$ C. $\eta^2 = 1$ D. $\eta^2 = r^2$ E. $\eta = 0$

 $(6 \times 5 = 30)$

 $(2 \times 10 = 20)$