Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 BCA(DATA ANALYTICS) - II SEMESTER
 SEMESTER EXAMINATION: APRIL 2022
 (EXAMINATION CONDUCTED IN JULY - AUGUST 2022)

 BCADA 2321 - DISCRETE MATHEMATICS II

 BCADA 2321 - DISCRETE MATHEMATICS II}

This question paper contains THREE printed pages and THREE parts

PART A

Answer ALL questions from the following

$10 \times 1=10$

1. If A and B are two matrices of the order 5×5 and $n \times 3$, respectively, and $n=5$, then the order of matrix (AXB) is
a. 5×3
b. 3×3
c. $m \times n$
d. $3 \times n$
2. The Matrix $\left[\begin{array}{lll}4 & 3 & 5 \\ 3 & 5 & 6 \\ 5 & 6 & 3\end{array}\right]$ is a
a. identity matrix
b. symmetric matrix
c. skew symmetric matrix
d. none of the these
3. The rank of the matrix $\left[\begin{array}{lll}\mathbf{3} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{8} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0}\end{array}\right]$ is
a. 1
b. 2
c. 3
d. None of the above
4. For the solutions of system of equations of the form $A X=B$, then there exists the solution of the system of equations if
a. Rank of $A=$ Rank of $[A: B]$
b. Rank of $A>\operatorname{Rank}$ of $[A: B]$
c. Rank of $A<$ Rank of $[A: B]$
d. Rank of $A \neq$ Rank of $[A: B]$
5. The transpose of matrix of the given equation The Matrix $\left[\begin{array}{lll}5 & 4 & 9 \\ 2 & 1 & 3 \\ 4 & 2 & 8\end{array}\right]$ is
a. $\left[\begin{array}{lll}5 & 4 & 9 \\ 2 & 1 & 3 \\ 4 & 2 & 8\end{array}\right]$
b. $\left[\begin{array}{lll}4 & 2 & 8 \\ 5 & 2 & 3 \\ 2 & 1 & 9\end{array}\right]$
c. $\left[\begin{array}{lll}5 & 2 & 4 \\ 4 & 1 & 2 \\ 9 & 3 & 8\end{array}\right]$
d. None of the above
6. A vector space $V_{3}(R)$ is a set that is closed under
a. finite vector addition and scalar multiplication
b. scalar addition and scalar multiplication
c. finite vector addition and finite vector multiplication
7. A set $\left\{a_{1}, a_{2}, \ldots . . a_{n}\right\}$ of vectors of a Vector Space V[F\} is said to be linearly independent if $\mathrm{C}_{1} \mathrm{a}_{1}+\mathrm{C}_{2} \mathrm{a}_{2}+, \ldots \ldots+\mathrm{C}_{n} \mathrm{a}_{\mathrm{n}}=0$ implies
a. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3} \ldots \ldots \ldots . . \mathrm{C}_{\mathrm{n}}$ not all zero
b. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3} \ldots \ldots . . . \mathrm{C}_{\mathrm{n}}$ all zero
8. The solution for $\int\left(\frac{1}{\cos \theta}\right)^{2} d \theta$
a. $\tan \theta+C$
b. $\operatorname{Sec} \theta+C$
c. $\operatorname{Cot} \theta+C$
9. The solution of $\int 6 x\left(x^{2}+6\right) d x$. Is
a. $\frac{3}{2} x^{4}+18 x^{2}+C$
b. $\frac{3}{2} x^{4}-18 x+C$
c. $\frac{3}{2} x^{4}-18+C$
d. None of the above
10. Integrals in maths are used to find many useful quantities such as areas, volumes, displacement, etc.
a. True
b. False

PART B

Answer any SIX questions from the following

$6 \times 5=30$
11. Find the value of $\left(A^{2}-5 A+7 I\right)$ if $A=\left[\begin{array}{cc}3 & \mathbf{1} \\ -1 & 2\end{array}\right]$
12. Find the rank of the matrix A where A is $\left[\begin{array}{cccc}1 & 2 & -1 & 4 \\ 2 & \mathbf{4} & \mathbf{3} & \mathbf{5} \\ \mathbf{3} & \mathbf{2} & \mathbf{6} & \mathbf{7}\end{array}\right]$
13. Find whether the following system possess a non-trivial solution

$$
\begin{aligned}
& x-3 y+2 z=0 \\
& 7 x-21 y+14 z=0 \\
& -3 x+9 y-6 z=0
\end{aligned}
$$

14. Test the following system for consistency and solve if it consistent

$$
\begin{aligned}
& x+2 y-z=3 \\
& 3 x-y+2 z=1 \\
& 2 x-2 y+3 z=2
\end{aligned}
$$

15. Express the vector (1,-2,5) as the linear combination of the vectors (1,1,1),(1,2,3),(2,-1,1)
16. Find the linear transformation $f: R^{2} \rightarrow R^{2}$ such that $f(1,1)=(0,1)$ and $f(-1,1)=(3,2)$
17. Find the value of $\int\left(4 x^{3}+5 x^{2}-3\right) d x$
18. Find the value of $\int x \sin x d x$

PART C

Answer any TWO questions from the following

19. Find the eigen values and corresponding eigen vectors of the matrix $A=\left[\begin{array}{cc}\mathbf{5} & -\mathbf{1} \\ \mathbf{4} & \mathbf{9}\end{array}\right]$
20. Show that the vectors $(1,1,2,4),(2,-1,-5,2),(1,-1,-4,0)$ and $(2,1,1,6)$ are linearly dependent in R^{4} And extract a linearly independent subset. Also find the dimension and a basis of the subspace spanned by them.
21. Find the value of $\int_{-2}^{4}\left(x^{2}+5 x+3\right) d x$
