$\qquad$
Date: $\qquad$
ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 BCA(DATA ANALYTICS) - IV SEMESTER
SEMESTER EXAMINATION- APRIL 2022
(EXAMINATION CONDUCTED IN JULY 2022)
BCADA 4321: ABSTRACT ALGEBRA AND ORDINARY DIFFERENTIAL WITH HIGHER ORDER

TIME: 2.5 Hrs
MAXIMUM MARKS: 70

This paper has 2 printed pages and 3 parts.

Part A
Answer all questions. More than one options may be correct.

1. What is the order of the differential equation $y^{\prime \prime}+2 y^{\prime}=0$
A. 0
B. 1
C. 2
D. 3
2. What is the degree of the differential equation $\left(y^{\prime \prime \prime}\right)^{3}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0$
A. 2
B. 3
C. 4
D. 5
3. Solution of the differential equation $x \mathrm{dy}-y \mathrm{dx}=0$ represents
A. A rectangular hyperbola B. Parabola with vertex at origin C. Straight line passing through
origin
D. A circle whose centre is at the origin
4. Solution of the differential equations dy $=\left(1+y^{2}\right) \mathrm{dx}$
A. $y=\tan (x)+c$
B. $y=\tan (x+c)$
C. $y=\tan ^{-1}(x)+c$
D. $\tan ^{-1}(y+c)=x$
5. Solution of the differential equation $y \mathrm{dy}=(x+1) \mathrm{dx}$ is
A. $y^{2}-x^{2}+2 x-c=0$
B. $y^{2}+x^{2}-2 x-c=0$
C. $y^{2}-x^{2}-2 x-c=0$
D. None of the above
6. The value of $\frac{d y}{d x}$ where $x^{2}-y^{2}=a^{2}$ is
A. $\frac{d y}{d x}=\frac{x}{y}$
B. $\frac{d y}{d x}=\frac{2 x}{y}$
C. $\frac{d y}{d x}=\frac{x}{2 y}$
D. $\frac{d y}{d x}=\frac{x}{y}-a$
7. The solution for $y^{\prime \prime}-3 y=0$ is
A. $y=c e^{3 x}$
B. $y=3 c$
C. $y=3 y$
D. None of the above
8. Let $\{0,2,4,6,8\}$ be a ring under addition and multiplication modulo 10 . Then, a unit element is
A. 2
B. 4
C. 6
D. 8
9. $\mathbb{C}$ be a ring of complex numbers. Then, which of the following is a subring of C
A. $\mathbb{Z}$
B. $n \mathbb{Z}$
C. $\mathbb{Z}[i]$
D. $\mathbb{Z}[x]$
10. $\{0,2,4\}$ is a subring of $\mathbb{Z}_{6}$ with a unit element.
A. True
B. False
11. $\mathbb{Z}$ is isomorphic to
A. Cyclic group of order $n<\infty$
B. Cyclic group of infinite order
C. Direct product of finite cyclic groups D. None of the above
12. The cycle (12345) can be written as
A. $(15)(14)(13)(12)$
B. $(12)(23)(2345)$
C. $(123)(345)(12)$
D. $(12)(41)(32)(31)$
13. Let $\{1,-1, i,-i\}$ be a group. The generator of this group is:
A. 1
B. choice -1
C.
D. $-i$
14. Order of the permutation (1 426 ) is
A. 5
B. 8
C. 2
D. 4
15. Choose the even permutations from the following
A. (135)
B. $(12)(134)(152)$
C. (1356)
D. (13567)
16. Choose the odd permutations from the following
A. (135)
B. $(12)(134)(152)$
C. (1356)
D. (13567)
17. There is only one cyclic group of order 4 (upto isomorphism)
A. True
B. False
18. How many groups of order 4 are there (upto isomorphism):
A. 5
B. 4
C. 3
D. 2
19. Symmetric groups are abelian.
A. True
B. False
20. Order of $A_{6}$ is
A. $6!/ 5$ !
B. $6!/ 6$
C. 6 !
D. $6!/ 2$

## PART B

Answer ANY SIX questions.
21. Find $\frac{d y}{d x}$ if $x^{3}+y^{3}-3 x y^{2}+2 x+3 y-5=0$
22. Solve $x \frac{d y}{d x}+y \tan (x)=\sin (2 x)$ using integrating factor(IF).
23. Find the solution of $y$ for $y^{\prime \prime}+y^{\prime}+5 y=0$
24. Find the solution of $y$ for $y^{\prime \prime \prime}-6 y^{\prime \prime}+2 y^{\prime}+36 y=0$
25. Define a group homomorphism and isomorphism. Explain with two examples of each. Show that your examples are homomorphism/isomorphisms.
26. Define a ring with an example.Prove your example is a ring.
27. Define a zero-divisor. Hence Define an Integral Domain. Give an example of each.
28. Show that disjoint cycles commute.

## PART C

Answer ANY TWO questions.
29. Find the solution for the given equation:

$$
y^{\prime \prime}-6 y^{\prime}+25 y=50 t^{3}-36 t^{2}-64 t+18
$$

30. Define a group isomorphism. Give an example of two groups that are isomorphic. State and prove Cayley's theorem.
31. Define a Ring. Hence define a field. Give an example of a ring that is not a field. Give an example of a field. For every prime $p$, show that $\mathbb{Z}_{p}$, the ring of integers modulo $p$, is a field.
