ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27.
 M.SC., CHEMISTRY - II SEMESTER
 SEMESTER EXAMINATION - APRIL 2022
 (Examination conducted in July 2022)

CH 8418: SPECTROSCOPY - II

Time: $\mathbf{2} \mathbf{h r} 30 \mathrm{~min}$.
Max marks: 70
This question paper contains three printed pages and three parts.

Part A

Answer any SIX of the following.

1. What is COSY technique in NMR?
2. In an organic compound, three kinds of protons appear at 60,100 and 180 Hz when the spectrum is recorded at 60 MHz NMR spectrometer. What will be their relative positions (in Hz) when 90 MHz spectrometer is used?
3. Mention two advantages of using ${ }^{13} \mathrm{C}$ NMR under broad band decoupled conditions?
4. A compound of molecular formula $\mathrm{C}_{6} \mathrm{H}_{10}$ gives three signals in its ${ }^{1} \mathrm{H}$ NMR spectrum with the following integration units: $13,33,73$ units. How many protons are responsible for each signal?
5. What are molecular ion and isotope peaks in mass spectrometry?
6. How would the following compound differ in the IR spectra?
$\mathrm{CH}_{3} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{COOH}$
7. List the electronic transitions of formaldehyde and arrange them in the increasing order of energy.
8. What is zero field splitting in EPR? Give an example.

Part B

Answer any FOUR of the following.

9. a) Propose a structure for a hydrocarbon with molecular formula, $\mathrm{C}_{11} \mathrm{H}_{16}$, that has the following ${ }^{13} \mathrm{C}$ NMR spectral data:
Broadband decoupled: 29.5, 31.8, 50.2, 125.5, 127.5, 130.3, 139.8 ppm
DEPT-90: 125.5, 127.5, 130.3 ppm
DEPT-135: positive peaks at $29.5,125.5,127.5,130.3 \mathrm{ppm}$; negative peak at 50.2 ppm .
b) In an attached proton test (APT) experiment, explain why a methine carbon gives an inverted peak while a methylene carbon gives a normal peak?
10. a) The ${ }^{1} \mathrm{H}$ NMR spectrum of N, N-dimethyl formamide recorded at room temperature is different from that recorded at $140^{\circ} \mathrm{C}$. Explain.
b) The ${ }^{1} \mathrm{H}$ NMR spectrum of phenol $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right)$ shows three absorptions in the aromatic region: 6.70 (2 ortho H's), 7.14 (2 meta H's), and 6.80 (1 para H) ppm. Explain why the ortho and para absorptions occur at lower chemical shift than the meta absorption.
c) Propose a suitable structure for C : molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3}$; strong IR absorption at $1718 \mathrm{~cm}^{-1}$

$(4+4+4)$
11. a) What is diamagnetic anisotropy? Why does the following molecule show two signals in the ${ }^{1} \mathrm{H}$ NMR spectrum, one at 8.8 ppm and the other at -1.9 ppm ?

b) What is Karplus equation? Using this equation, predict ${ }^{3} J$ coupling values for $\mathrm{H}_{x}-\mathrm{H}_{e}$ and $\mathrm{H}_{x}-\mathrm{H}_{a}$ in the cyclohexane molecule represented below.

c) What is nuclear overhauser effect? How is it useful in ${ }^{13} \mathrm{C}$-NMR spectroscopy?.
12. a) Explain ion production in mass spectral analysis by the following methods: i) field desorption and ii) fast atom bombardment.
b) What is hyperfine splitting? How many hyperfine lines are seen in the case of quinone and biphenyl radicals?
13. a) In Mossbauer spectra a source emitting at $3.48 \times 10^{18} \mathrm{~Hz}$ had to be moved towards absorber at $2.2 \mathrm{~mm} / \mathrm{sec}$ for resonance. Find the shift of frequency between source and the absorber?
b) Using Woodward rules, predict the UV maximum for each of the following.

c) Explain Recoil and Doppler effect in EPR spectroscopy and how these factors affect the resonance.
14. a) Explain with suitable example the effect of i) conjugation ii) inductive and iii) hydrogen bonding effects on the position of vibrational frequency of carbonyl bond.
b) A given alkyl halide shows $M+, M+2$ and $M+4$ peaks in the intensity of 9:6:1. Answer the following with proper justification.
i) Identify the halogen; ii) how many halogens are present in the molecule

Part C

Answer any TWO of the following.

15. Deduce the structures of compounds \mathbf{A} and \mathbf{B}, two of the major components of jasmine oil, from the given data.
Compound A: $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$; IR absorptions at 3091-2895 and $1743 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR signals at 2.06 (singlet, 3 H), 5.08 (singlet, 2 H), and 7.33 (broad singlet, 5 H) ppm.
Compound B: $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$; IR absorptions at 3091-2953 and $1718 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR signals at 5.35 (singlet, 2 H) and 7.26-8.15 (multiplets, 10 H) ppm.
16. The absorption peak of $\mathrm{Co}-\mathrm{H}$ bond in $\mathrm{Co}(\mathrm{CO})_{4} \mathrm{H}$ is seen at $1934 \mathrm{~cm}^{-1}$. Then what is the absorption frequency of $\mathrm{Co}-\mathrm{D}$ bond in $\mathrm{Co}(\mathrm{CO})_{4} \mathrm{D}$?
17. a) Which of the following technique can distinguish between cis and trans 1,2 dichloro ethene. Explain your choice.
UV-Visible spectroscopy ii) Infrared spectroscopy iii) Mass spectrometry iv) EPR
b) A sample of 2,5- dimethyl, 2,4 hexadiene in methanol in a 1.00 cm cell shows an absorbance of 0.65 at 242.5 nm . What is the concentration of the diene? The molar absorptivity at this wavelength is 13,100 .

EMPIRICAL RULES FOR DIENES

	Homoannular (cisoid)	Heteroannular (transoid)
Parent	$\lambda=253 \mathrm{~nm}$	$\lambda=214 \mathrm{~nm}$
Increments for:	30	
Double-bond-extending conjugation	5	30
Alkyl substituent or ring residue	5	5
Exocyclic double bond	0	5
Polar groupings:	6	0
-OCOCH	6	
-OR	5	5
$-\mathrm{Cl},-\mathrm{Br}$	60	60
-NR		

EMPIRICAL RULES FOR ENONES

Base values:

Six-membered ring or acyclic parent enone	$=215 \mathrm{~nm}$
Five-membered ring parent enone	$=202 \mathrm{~nm}$
Acyclic dienone	$=245 \mathrm{~nm}$

Increments for:
Double-bond-extending conjugation 30
Alkyl group or ring residue $\quad \alpha \quad 10$

- 12
γ and higher 18
Polar groupings:

$-\mathrm{OH}$	$\alpha 35$
	$\beta 30$
	$\delta \quad 50$
$-\mathrm{OCOCH}_{3}$	$\alpha, \beta, \delta \quad 6$
$-\mathrm{OCH}_{3}$	$\alpha 35$
	$\beta 30$
	$\gamma \quad 17$
	$\delta 31$
$-\mathrm{Cl}$	$\alpha 15$
	$\beta \quad 12$
$-\mathrm{Br}$	$\alpha 25$
	$\beta 30$
$-\mathrm{NR}_{2}$	$\beta 95$
Exocyclic double bond	5
Homocyclic diene component	39
Solvent correction	Variable
	alc) $=$ Total

Table 1 Important IR Stretching Frequencies

Type of bond	Wavenumber $\left(\mathrm{cm}^{-\mathbf{1}}\right)$	Intensity
$\mathrm{C} \equiv \mathrm{N}$	$2260-2220$	medium
$\mathrm{C} \equiv \mathrm{C}$	$2260-2100$	medium to weak
$\mathrm{C}=\mathrm{C}$	$1680-1600$	medium
$\mathrm{C}=\mathrm{N}$	$1650-1550$	medium
\square	~ 1600 and $\sim 1500-1430$	strong to weak
$\mathrm{C}=\mathrm{O}$	$1780-1650$	strong
$\mathrm{C}-\mathrm{O}$	$1250-1050$	strong
$\mathrm{C}-\mathrm{N}$	$1230-1020$	medium
$\mathrm{O}-\mathrm{H}$		
(alcohol)	$3650-3200$	strong, broad
$\mathrm{O}-\mathrm{H}$ (carboxylic acid)	$3300-2500$	strong, very broad
$\mathrm{N}-\mathrm{H}$	$3500-3300$	medium, broad
$\mathrm{C}-\mathrm{H}$	$3300-2700$	medium

TABLE 9.1 APPROXIMATE PROTON CHEMICAL SHIFTS			
Type of Proton	Chemical Shift (δ, ppm)	Type of Proton	Chemical Shift (δ, ppm)
1° Alkyl, RCH_{3}	0.8-1.2	Alkyl bromide, $\mathrm{RCH}_{2} \mathrm{Br}$	3.4-3.6
2° Alkyl, $\mathrm{RCH}_{2} \mathrm{R}$	1.2-1.5	Alkyl chloride, $\mathrm{RCH}_{2} \mathrm{Cl}$	3.6-3.8
$3^{\circ} \mathrm{Alkyl}, \mathrm{R}_{3} \mathrm{CH}$	1.41 .8	Vinylic, $\mathrm{R}_{2} \mathrm{C}=\mathrm{CH}_{2}$	4.6-5.0
Allylic,	1.6-1.9	Vinylic,	5.2-5.7
	2.1-2.6	Aromatic, ArH	6.0-8.5
Benzylic, ArCH_{3}	2.2-2.5		9.5-10.5
Acetylenic, $\mathrm{RC} \equiv \mathrm{CH}$	2.5-3.1	Alcohol hydroxyl, ROH	$0.5-6.0^{\text {a }}$
Alkyl iodide, $\mathrm{RCH}_{2} \mathrm{I}$	3.1-3.3	Amino, $\mathrm{R}-\mathrm{NH}_{2}$	$1.0-5.0^{\text {a }}$
Ether, $\mathrm{ROCH}_{2} \mathrm{R}$	3.3-3.9	Phenolic, ArOH	$4.5-7.7^{\text {a }}$
Alcohol, $\mathrm{HOCH}_{2} \mathrm{R}$	3.3-4.0		10-13 ${ }^{\text {a }}$

