ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 M.SC MATHEMATICS - II SEMESTER
 SEMESTER EXAMINATION: APRIL, 2022

(Examination conducted in July 2022)
MT 8118: ALGEBRA II
Duration: 2.5 Hours
Max. Marks: 70

1. The paper contains two printed pages and one part.
2. Answer any SEVEN FULL questions.
3. All multiple choice questions may have one or more correct options. Full marks will be awarded only for writing all correct options in your answer script.
4. a) Show that any simple abelian group is isomorphic to \mathbb{Z}_{p}, where p is a prime number.
b) An abelian group G of order 45 always has an element of order
(I) 15
(II) 3
(III) 9
(IV) 45
5. a) Define derived series of a group G. Prove that G is solvable if and only if $G^{(n)}=1$ for some $n \geq 0$.
b) Which of the following is/are true?
(I) Every simple group is solvable.
(III) Every cyclic group is solvable.
(II) Every nilpotent group is solvable.
(IV) Every solvable group is simple.
6. a) Prove (without using Feit-Thompson Theorem) that the following are equivalent:
7. Every group of odd order is solvable.
8. The only simple groups of odd order are those of prime order.
b) Let G be a group and N be a normal subgroup of G. Show that if N and G / N is solvable then G is also solvable.
9. a) Compute the number of cyclic subgroups of order 10 in $\mathbb{Z}_{100} \oplus \mathbb{Z}_{25}$.
b) Let G be the group $\left(\{1,7,17,23,49,55,65,71\}, \otimes_{96}\right)$. Find an explicit description of G as cartesian product of cyclic groups.
10. Let P be an R-module. Show that the following are equivalent:
[10 marks]
(I) P is a projective R-module.
(II) If P is the quotient of an R-module M then, P is isomorphic to a direct summand of M.
(III) P is a direct summand of a free R-module.
11. a) Let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be a short exact sequence of A-modules. Prove that if M^{\prime} and $M^{\prime \prime}$ are finitely generated then M is also finitely generated.
b) Which of the following is/are true?
(I) $M_{n}(\mathbb{R})$ is a finitely generated \mathbb{R}-module but not (III) $M_{n}(\mathbb{R})$ is an infinitely generated \mathbb{Q}-module but free. not free.
(II) $M_{n}(\mathbb{R})$ is a free and finitely generated \mathbb{R} module.
(IV) $M_{n}(\mathbb{R})$ is a free and infinitely generated- \mathbb{Q} module.
12. Find the splitting field of $x^{p}-2$ over \mathbb{Q}. Also, find the basis and the dimension of splitting field over \mathbb{Q} ?
[10 marks]
13. a) Show that given a prime number p and natural number n, there exists a finite field with p^{n} elements. Further show that any finite field with p^{n} elements is unique up to isomorphism.
b) Pick out the correct statement(s) from the following:
I. Every finite extension is separable.
II. Every finite extension of a positive characteristic field is separable.
III. Every finite extension of \mathbb{Q} is separable.
IV. Let $\operatorname{char}(F)=5$. Then any degree 3 extension K / F is separable.
14. a) State the Fundamental Theorem of Galois Theory.
b) Draw the complete lattice diagram of all the intermediate subfields of $\mathbb{F}_{2^{12}} / \mathbb{F}_{2}$. Also, mention the degrees of the extensions at each stage.
c) Determine which of the following field extension K / F is/are Galois.
I. Let, $K=\mathbb{Q}\left(\zeta_{n}\right)$ and $F=\mathbb{Q}$, where ζ_{n} is a primitive $n^{\text {th }}$ root of unity.
II. Let α be a real $10^{\text {th }}$ root of $3, K=F(\alpha)$ and $F=\mathbb{Q}$.
III. Let $K=\mathbb{R}\left(\zeta_{n}\right)$ and $F=\mathbb{R}$, where ζ_{n} is a primitive $n^{\text {th }}$ root of unity.
IV. Let $F=\mathbb{F}_{3}(t)$ and K be the splitting field of $x^{3}-t$ over F.
15. a) Let ζ_{7} be a primitive $7^{\text {th }}$ root of unity. Give an explicit description of the Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{7}\right) / \mathbb{Q}\right)$. Find an intermediate subfield F of $\mathbb{Q}\left(\zeta_{7}\right) / \mathbb{Q}$ such that $[F: \mathbb{Q}]=3$.
b) Let ζ_{8} denote a primitive $8^{\text {th }}$ root of unity. Pick out the correct statement(s) from the following:
[3 marks]
I. The dimension of $\mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}$ is 4 .
II. The Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}\right)$ is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
III. The minimal polynomial of ζ_{12} over \mathbb{Q} is $x^{4}+1$.
IV. The number of intermediate sub-fields of $\mathbb{Q}\left(\zeta_{12}\right) / \mathbb{Q}$ (including $\mathbb{Q}\left(\zeta_{12}\right)$ and $\left.\mathbb{Q}\right)$ is 3 .
