

Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.SC MATHEMATICS - II SEMESTER SEMESTER EXAMINATION: APRIL, 2022 (Examination conducted in July 2022) <u>MT 8118: ALGEBRA II</u>

D	Duration: 2.5 Hours Ma				x. Marks: 70	
1. 2. 3. aw	T A A var	he paper contains two printed pages and on nswer any SEVEN FULL questions. Il multiple choice questions may have one ded only for writing all correct options	one part. or more correct options. Full marks will be in your answer script.)		
l .	a) Show that any simple abelian group is isomorphic to \mathbb{Z}_p , where p is a prime number. b) An abelian group G of order 45 always has an element of order				[6 marks] [4 marks]	
		(I) 15 (II) 3	(III) 9 (IV)	45		
	a) b)	Define derived series of a group G . Prove Which of the following is/are true?	e that G is solvable if and only if $G^{(n)} = 1$ f	or some	$n \ge 0.$ [6 marks] [4 marks]	
		(I) Every simple group is solvable.(II) Every nilpotent group is solvable.	(III) Every cyclic group is solva(IV) Every solvable group is sin	ble. 1ple.		
	a)	Prove (without using Feit-Thompson The1. Every group of odd order is solvable.2. The only simple groups of odd order	eorem) that the following are equivalent:		[6 marks]	
	b)	Let G be a group and N be a normal sub solvable.	ogroup of G. Show that if N and G/N is so	lvable tl	hen G is also [4 marks]	
:•	a) b)	Compute the number of cyclic subgroups of order 10 in $\mathbb{Z}_{100} \oplus \mathbb{Z}_{25}$. Let G be the group ({1, 7, 17, 23, 49, 55, 65, 71}, \otimes_{96}). Find an explicit description of G as call uct of cyclic groups.			[5 marks] rtesian prod- [5 marks]	
. L	et (I)	P be an R -module. Show that the following P is a projective R -module.	ng are equivalent:		[10 marks]	
[) [])	II) II)	If P is the quotient of an R -module M the P is a direct summand of a free R -module M the R -module	hen, P is isomorphic to a direct summand c le.	of M .		

- a) Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence of A-modules. Prove that if M' and M'' are 6. finitely generated then M is also finitely generated. 6 marks
 - b) Which of the following is/are true?
 - (I) $M_n(\mathbb{R})$ is a finitely generated \mathbb{R} -module but not (III) $M_n(\mathbb{R})$ is an infinitely generated \mathbb{Q} -module but free. not free.

ule.

- (II) $M_n(\mathbb{R})$ is a free and finitely generated \mathbb{R} module. (IV) $M_n(\mathbb{R})$ is a free and infinitely generated- \mathbb{Q} mod-
- 7. Find the splitting field of $x^p 2$ over \mathbb{Q} . Also, find the basis and the dimension of splitting field over \mathbb{Q} ?

[10 marks]

[4 marks]

- a) Show that given a prime number p and natural number n, there exists a finite field with p^n elements. 8. Further show that any finite field with p^n elements is unique up to isomorphism. 6 marks
 - b) Pick out the correct statement(s) from the following:
 - I. Every finite extension is separable.
 - II. Every finite extension of a positive characteristic field is separable.
 - III. Every finite extension of \mathbb{Q} is separable.
 - IV. Let char(F) = 5. Then any degree 3 extension K/F is separable.

a) State the Fundamental Theorem of Galois Theory. 9.

- b) Draw the complete lattice diagram of all the intermediate subfields of $\mathbb{F}_{212}/\mathbb{F}_2$. Also, mention the degrees of the extensions at each stage. [3 marks]
- c) Determine which of the following field extension K/F is/are Galois.
 - I. Let, $K = \mathbb{Q}(\zeta_n)$ and $F = \mathbb{Q}$, where ζ_n is a primitive n^{th} root of unity.
 - II. Let α be a real 10th root of 3, $K = F(\alpha)$ and $F = \mathbb{Q}$.
 - III. Let $K = \mathbb{R}(\zeta_n)$ and $F = \mathbb{R}$, where ζ_n is a primitive n^{th} root of unity.
 - IV. Let $F = \mathbb{F}_3(t)$ and K be the splitting field of $x^3 t$ over F.
- a) Let ζ_7 be a primitive 7th root of unity. Give an explicit description of the Galois group Gal($\mathbb{Q}(\zeta_7)/\mathbb{Q}$). 10. Find an intermediate subfield F of $\mathbb{Q}(\zeta_7)/\mathbb{Q}$ such that $[F:\mathbb{Q}]=3$. [7 marks]
 - b) Let ζ_8 denote a primitive 8th root of unity. Pick out the correct statement(s) from the following:

[3 marks]

- I. The dimension of $\mathbb{Q}(\zeta_8)/\mathbb{Q}$ is 4.
- II. The Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta_8)/\mathbb{Q})$ is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- III. The minimal polynomial of ζ_{12} over \mathbb{Q} is $x^4 + 1$.
- IV. The number of intermediate sub-fields of $\mathbb{Q}(\zeta_{12})/\mathbb{Q}$ (including $\mathbb{Q}(\zeta_{12})$ and \mathbb{Q}) is 3.

[3 marks]

[4 marks]

[4 marks]