ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 M.SC MATHEMATICS - II SEMESTER
 SEMESTER EXAMINATION: APRIL, 2022

(Examination conducted in July 2022)
MT 8221: MEASURE AND INTEGRATION
Duration: 2.5 Hours
Max. Marks: 70

1. The paper contains two printed pages and one part.
2. Answer any SEVEN FULL questions.
3. All multiple choice questions have 1 or more than one correct option. Full marks will be awarded only for writing all correct options in your answer script.
4. a) Prove that any open subset of \mathbb{R} is Lebesgue measurable.
b) Which of the following measures is/are σ-finite on $(\mathbb{R}, \mathcal{P}(\mathbb{R})$)?
i. $\mu(A)=\left|A \cap \mathbb{Q}^{c}\right|$
ii. $\mu(A)=|A \cap \mathbb{Q}|$
iii. $\mu(A)=\left|A \cap \mathbb{N}^{c}\right|$
iv. $\mu(A)=|A \cap \mathbb{Q}|$
5. a) Let E_{1} and $E_{2} \in \mathcal{L}\left(\mathbb{R}^{n}\right)$. Then show that $E_{1} \cup E_{2} \in \mathcal{L}\left(\mathbb{R}^{n}\right)$. Further, if $E_{1} \cup E_{2}=\emptyset$ then show that $\mu_{*}\left(E_{1} \cup E_{2}\right)=\mu_{*}\left(E_{1}\right)+\mu_{*}\left(E_{2}\right)$.
b) Which of the following sets has measure zero in $\left(\mathbb{R}^{2}, \mathcal{P}\left(\mathbb{R}^{2}\right), \delta_{(0,0)}\right)$?
i. $\bigcup_{n=1}^{\infty}\left\{(x, y) \in \mathbb{R}^{2}: y=n x\right\}$
iii. $\bigcup_{n=1}^{\infty}\left\{(x, y) \in \mathbb{R}^{2}: y=n(x+1)\right\}$
ii. $\bigcup_{n=1}^{\infty}\left\{(x, y) \in \mathbb{R}^{2}: y=n x+1\right\}$
iv. $\bigcup_{n=1}^{\infty}\left\{(x, y) \in \mathbb{R}^{2}: y=(n+1) x\right\}$
6. a) Let (X, \mathcal{S}, μ) be a measure space. Show that if $\left\{E_{i}\right\}$ is a countable collection of subsets of X in \mathcal{S} such that $E_{1} \subseteq E_{2} \subseteq E_{3} \cdots$ then, $\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)$.
b) Let (X, \mathcal{S}, μ) be a measure space. Show that a function $f: X \rightarrow \mathbb{R}$ is measurable if and only if $f^{-1}(-\infty, a] \in \mathcal{S}$ for all $a \in \mathbb{R}$.
c) Let $A, B \subseteq \mathbb{R}$.. Which of the following is/are true?
i. $\chi_{A \cap B}=\min \left\{\chi_{A}, \chi_{B}\right\}$
iii. $\chi_{A B}=\chi_{A} \chi_{B}$
ii. $\chi_{A \cup B}=\max \left\{\chi_{A}, \chi_{B}\right\}$
iv. $\chi_{A \backslash B}=\chi_{A}-\chi_{B}$
where $A B:=\{a \cdot b: a \in A$ and $b \in B\}$.
7. a) Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on a measure space (X, \mathcal{S}, μ). Prove that $\sup f_{n}$, $\inf f_{n}$, $\limsup f_{n}$ and $\liminf f_{n}$ are also measurable.
b) Let (X, \mathcal{S}, μ) be a measure space and f, g be strictly positive functions on X. Which of the following is/are true?
i. $f g$ measurable $\Longrightarrow f$ and g measurable
ii. f and g measurable $\Longrightarrow f g$ measurable
iii. f / g measurable $\Longrightarrow f$ and g are measurable
iv. f and g measurable $\Longrightarrow f / g$ measurable.
8. State and Prove Egorov's Theorem.
9. a) Prove the Bounded Convergence Theorem: "Suppose $\left\{f_{n}\right\}$ is a sequence of measurable functions that are all bounded by M and supported on a set E of finite measure and $f_{n} \rightarrow f$ a.e. Then, f is a.e bounded, a.e supported on E and $\lim _{n \rightarrow \infty} \int f_{n}=\int f$."
b) Which of the following are integrable?
i. $1 / x$ on $\left(\mathbb{R}, \mathcal{P}(\mathbb{R}), \delta_{0}\right)$
iii. $\chi_{\mathbb{Q}}$ on $(\mathbb{R}, \mathcal{L}(\mathbb{R}), m)$
ii. $1 / x$ on $\left(\mathbb{R}, \mathcal{P}(\mathbb{R}), \delta_{1}\right)$
iv. $\chi_{\mathbb{Q}^{c}}$ on $(\mathbb{R}, \mathcal{L}(\mathbb{R}), m)$
10. a) Let f, g be non-negative integrable functions defined on a measure space X. Show that

$$
\int_{X}(a f+b g)=a \int_{X} f+b \int_{X} g \text { for any } a, b \geq 0
$$

b) Let $X=Y=[0,1]$. Give X the Lebesgue measure m and Y the counting measure μ. Let $f(x, y)=1$ if $x=y$ and 0 otherwise. Which of the following is/are true?
i. $\int_{X} f(x, y) d m=0$ for all $y \in Y$
iii. $\int_{X} \int_{Y} f(x, y) d \mu d m=\int_{Y} \int_{X} f(x, y) d m d \mu$
ii. $\int_{Y} f(x, y) d \mu=0$ for all $x \in X$
iv. $\int_{Y} \int_{X} f(x, y) d m=0$.
8. a) Let s_{1} and s_{2} be two simple functions defined on a measure space (X, \mathcal{S}, μ). Show that if $s_{1} \leq s_{2}$ then $\int_{X} s_{1} \leq \int_{X} s_{2}$
b) Let (X, \mathcal{S}, μ) be a measure space and $h \in \mathcal{L}^{1}(X)$ be a non-negative function. For each $E \in \mathcal{S}$ define $\nu(E)=\int_{E} h$. Show that ν is a measure.
c) Given two measures ν_{1} and ν_{2} on the same measure space we say that $\nu_{1} \ll \nu_{2}$ if $\nu_{2}(E)=0 \Longrightarrow$ $\nu_{1}(E)=0$. In which of the following cases is $\nu_{1} \ll \nu_{2}$ on $(\mathbb{R}, \mathcal{L}(\mathbb{R})) ?$
i. $\nu_{1}=$ Lebesgue measure and $\nu_{2}=\int_{E} h d \nu_{1}$ for some $h \in L^{1}$
ii. $\nu_{2}=$ Lebesgue measure and $\nu_{1}=\int_{E} h d \nu_{2}$ for some $h \in L^{1}$
iii. $\nu_{1}=$ Lebesgue measure and $\nu_{2}=$ counting measure.
iv. $\nu_{1}=$ counting measure and $\nu_{2}=$ Lebesgue measure.
9. a) State and prove Hölder's inequality.
b) Which of the following is(are) true?
i. $L^{1}([0,1]) \subseteq L^{2}([0,1])$ with Lebesgue measure iii. $L^{2}([0,1]) \subseteq L^{1}([0,1])$ with Dirac measure at 0 ii. $L^{2}([0,1]) \subseteq L^{1}([0,1])$ with Lebesgue measure
10. a) Define function of bounded variation. Show that a function $f:[a, b] \rightarrow \mathbb{R}$ is of bounded variation if and only if f is the difference of two monotonic functions.
b) Show that a Lipschitz continuous function is absolutely continuous.

