

Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.SC MATHEMATICS - II SEMESTER SEMESTER EXAMINATION: APRIL, 2022 (Examination conducted in July 2022) **MT 8221: MEASURE AND INTEGRATION**

Duration: 2.5 Hours

Max. Marks: 70

[3]

[2]

- 1. The paper contains two printed pages and one part.
- 2. Answer any **SEVEN FULL** questions.

3. All multiple choice questions have 1 or more than one correct option. Full marks will be awarded only for writing **all correct options** in your answer script.

- a) Prove that any open subset of \mathbb{R} is Lebesgue measurable. [7]1. [3]
 - b) Which of the following measures is/are σ -finite on $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$?

i.
$$\mu(A) = |A \cap \mathbb{Q}^c|$$
 ii. $\mu(A) = |A \cap \mathbb{Q}|$ iii. $\mu(A) = |A \cap \mathbb{N}^c|$ iv. $\mu(A) = |A \cap \mathbb{Q}|$

- a) Let E_1 and $E_2 \in \mathcal{L}(\mathbb{R}^n)$. Then show that $E_1 \cup E_2 \in \mathcal{L}(\mathbb{R}^n)$. Further, if $E_1 \cup E_2 = \emptyset$ then show that 2. $\mu_*(E_1 \cup E_2) = \mu_*(E_1) + \mu_*(E_2).$ [7]
 - b) Which of the following sets has measure zero in $(\mathbb{R}^2, \mathcal{P}(\mathbb{R}^2), \delta_{(0,0)})$?
 - i. $\bigcup_{n=1}^{\infty} \{(x,y) \in \mathbb{R}^2 : y = nx\}$
ii. $\bigcup_{n=1}^{\infty} \{(x,y) \in \mathbb{R}^2 : y = nx+1\}$ iii. $\bigcup_{n=1}^{\infty} \{(x,y) \in \mathbb{R}^2 : y = n(x+1)\}$ iv. $\bigcup_{n=1}^{\infty} \{(x,y) \in \mathbb{R}^2 : y = (n+1)x\}$
- a) Let (X, \mathcal{S}, μ) be a measure space. Show that if $\{E_i\}$ is a countable collection of subsets of X in \mathcal{S} such 3. that $E_1 \subseteq E_2 \subseteq E_3 \cdots$ then, $\mu \left(\bigcup_{i=1}^{\infty} E_i \right) = \lim_{n \to \infty} \mu(E_n).$ [4]
 - b) Let (X, \mathcal{S}, μ) be a measure space. Show that a function $f : X \to \mathbb{R}$ is measurable if and only if $f^{-1}(-\infty, a] \in \mathcal{S}$ for all $a \in \mathbb{R}$. [4]
 - c) Let $A, B \subseteq \mathbb{R}$.. Which of the following is/are true?
 - i. $\chi_{A \cap B} = \min\{\chi_A, \chi_B\}$ iii. $\chi_{AB} = \chi_A \chi_B$ iv. $\chi_{A \setminus B} = \chi_A - \chi_B$ ii. $\chi_{A\cup B} = \max\{\chi_A, \chi_B\}$

where $AB := \{a \cdot b : a \in A \text{ and } b \in B\}$.

- a) Let $\{f_n\}$ be a sequence of measurable functions on a measure space (X, \mathcal{S}, μ) . Prove that $\sup f_n$, $\inf f_n$, 4. $\limsup f_n$ and $\liminf f_n$ are also measurable. |7|
 - b) Let (X, \mathcal{S}, μ) be a measure space and f, g be strictly positive functions on X. Which of the following is/are true? [3]

- i. fg measurable $\implies f$ and g measurable
- ii. f and g measurable $\implies fg$ measurable

iii. f/g measurable $\implies f$ and g are measurable iv. f and g measurable $\implies f/g$ measurable.

- 5. State and Prove Egorov's Theorem.
- 6. a) Prove the Bounded Convergence Theorem: "Suppose $\{f_n\}$ is a sequence of measurable functions that are all bounded by M and supported on a set E of finite measure and $f_n \to f$ a.e. Then, f is a.e bounded, a.e supported on E and $\lim_{n\to\infty} \int f_n = \int f$." [7]
 - b) Which of the following are integrable?
 - i. 1/x on $(\mathbb{R}, \mathcal{P}(\mathbb{R}), \delta_0)$ iii. $\chi_{\mathbb{Q}}$ on $(\mathbb{R}, \mathcal{L}(\mathbb{R}), m)$ ii. 1/x on $(\mathbb{R}, \mathcal{P}(\mathbb{R}), \delta_1)$ iv. $\chi_{\mathbb{Q}^c}$ on $(\mathbb{R}, \mathcal{L}(\mathbb{R}), m)$

7. a) Let f, g be non-negative integrable functions defined on a measure space X. Show that

$$\int_X (af + bg) = a \int_X f + b \int_X g \text{ for any } a, b \ge 0$$

- b) Let X = Y = [0, 1]. Give X the Lebesgue measure m and Y the counting measure μ . Let f(x, y) = 1 if x = y and 0 otherwise. Which of the following is/are true? [3]
 - i. $\int_X f(x,y)dm = 0$ for all $y \in Y$ ii. $\int_X \int_Y f(x,y)d\mu dm = \int_Y \int_X f(x,y)dm d\mu$ ii. $\int_Y f(x,y)d\mu = 0$ for all $x \in X$ iv. $\int_Y \int_X f(x,y)dm = 0$.

8. a) Let s_1 and s_2 be two simple functions defined on a measure space (X, \mathcal{S}, μ) . Show that if $s_1 \leq s_2$ then $\int_X s_1 \leq \int_X s_2.$ [3]

- b) Let (X, \mathcal{S}, μ) be a measure space and $h \in \mathcal{L}^1(X)$ be a non-negative function. For each $E \in \mathcal{S}$ define $\nu(E) = \int_E h$. Show that ν is a measure. [4]
- c) Given two measures ν_1 and ν_2 on the same measure space we say that $\nu_1 << \nu_2$ if $\nu_2(E) = 0 \implies \nu_1(E) = 0$. In which of the following cases is $\nu_1 << \nu_2$ on $(\mathbb{R}, \mathcal{L}(\mathbb{R}))$? [3]
 - i. ν_1 = Lebesgue measure and $\nu_2 = \int_E h d\nu_1$ for iii. ν_1 = Lebesgue measure and ν_2 = counting measure.
 - ii. ν_2 = Lebesgue measure and $\nu_1 = \int_E h d\nu_2$ for iv. ν_1 = counting measure and ν_2 = Lebesgue measure some $h \in L^1$ sure.
- 9. a) State and prove Hölder's inequality.
 - b) Which of the following is(are) true?
 - i. $L^1([0,1]) \subseteq L^2([0,1])$ with Lebesgue measure ii. $L^2([0,1]) \subseteq L^1([0,1])$ with Dirac measure at 0 iv. $L^1([0,1]) \subseteq L^2([0,1])$ with Dirac measure at 0.
- 10. a) Define function of bounded variation. Show that a function $f : [a, b] \to \mathbb{R}$ is of bounded variation if and only if f is the difference of two monotonic functions. [2+5]
 - b) Show that a Lipschitz continuous function is absolutely continuous.

[10]

[3]

[7]

[7]

[3]

[3]