Time: 2.5 Hours
Max. Marks: 70

1. The paper contains ONE printed page.
2. Attempt any SEVEN FULL questions.
3. Every question carries TEN marks.
4. a) Find the general integral of the partial differential equation $y^{2} p-x y q=x(z-2 y)$.
b) Find the surface which intersects the surfaces of the system $z(x+y)=c(3 z+1)$ orthogonally and which passes through the circle $x^{2}+y^{2}=1, z=1$.
5. Solve the Cauchy problem by the method of characteristics $(y+u) u_{x}+y u_{y}=x-y$ with $u=1+x$ on $y=1$.
6. Reduce the given PDE $3 u_{x x}+10 u_{x y}+3 u_{y y}=0$ to its canonical form and hence find the general solution.
7. a) Solve $\left(D^{2}+2 D D^{\prime}+D^{\prime 2}\right) z=e^{2 x+3 y}$.
b) Solve $D D^{\prime}\left(D-2 D^{\prime}-3\right) z=0$.
8. Solve $r+(a+b) s+a b t=x y$ using Monge's method.
9. Obtain the general solution three-dimensional wave equation in spherical polar co-ordinates.
10. Solve $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0<x<L$ and $t>0$, subjected to the conditions $u(x, 0)=f(x)$, $0<x<L, u(0, t)=u(L, t)=0, t>0$. where c^{2} is the thermal conductivity.
11. Find the solution of the non-homogenous wave equation $\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}$ and $z(x, 0)=f(x), z_{t}(x, 0)=g(x)$ using Reimann-Volterrra method.
12. Solve the Dirichlet problem $\nabla^{2} u=0,0<x<\pi, 0<y<\pi$ subjected to the boundary conditions $u(x, 0)=x, u(x, 1)=0, u(0, y)=0, u(1, y)=0$.
13. a) Define Green's function for the boundary value problem.
b) Find the Green's function of $u^{\prime \prime}+k^{2} u=0$ with the boundary condition $u(0)=u(1)=0, k \neq n \pi .(2+8)$
