Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.SC MATHEMATICS - II SEMESTER SEMESTER EXAMINATION: APRIL, 2022 (Examination conducted in July 2022) <u>MT 8518: TOPOLOGY</u>

Duration: 2.5 Hours

Max. Marks: 70

- 1. The paper contains two printed pages.
- 2. Answer any **SEVEN FULL** questions.
- 3. All true or false questions must be justified.
- 1. a) Define co-finite topology on a topological space X. Prove that it is a topology. [7 m]

b)	True/False:	The set	of invertible	$n \times n$	matrices	is an	open	subset	of	the s	set o	of all	n	$\times n$
	matrices.												[3	m]

- 2. a) If \mathcal{B} is a basis for the topology of X and \mathcal{C} is a topology of Y then show that the collection $\mathcal{D} = \{B \times C : B \in \mathcal{B} \text{ and } C \in \mathcal{C}\}$ is a basis for the product topology of $X \times Y$. [4 m]
 - b) Let X be a Hausdorff space. Let $\Delta = \{(x, x) : x \in X\}$. Show that Δ is closed in $X \times X$. [4 m]
 - c) True/False: Let X be a topological space and $A, B \subseteq X$, then $(A B)^{\circ} = A^{\circ} B^{\circ}[\mathbf{2} \mathbf{m}]$
- 3. a) State and prove the pasting lemma. [7 m]
- b) True/False: A bijective continuous map is a homeomorphism. [3 m]
- 4. a) Let $f: X \to Y$ be a function. Show that the following are equivalent:
 - i. f is continuous.
 - ii. For every subset A of X, one has $f(\overline{A}) \subseteq \overline{f(A)}$.
 - iii. For every closed set B of Y, the set $f^{-1}(B)$ is closed in X. [8 m]
 - b) True/False: A continous bijection is a homeomorphism. [2 m]
- 5. a) Let $\{A_{\alpha}\}$ be a collection of connected subsets of X such that $\bigcap_{\alpha} A_{\alpha}$ is non-empty. Show that $\bigcup_{\alpha} A_{\alpha}$ is connected. [3 m]
 - b) Show that the continuous image of a connected set is connected. [5 m]
 - c) True/False: Let X be connected and $Y \subsetneq X$ be a non-empty connected subspace of X. Then X - Y is connected. [2 m]
- 6. a) Show that an open connected subset U of \mathbb{R}^n is path connected. [7 m]
 - b) True/False: The set of all $n \times n$ real diagonal matrices is connected. [3 m]

7. a)	Show that a compact subset of a Hausdorff space is closed.	[6 m]
b)	Show that any set with the co-finite topology is compact.	[4 m]
8. a)	State and prove the tube lemma.	[7 m]
b)	True/False: The set of orthogonal matrices (matrices satisfying $AA^T = I = I$ compact subset of $M_n(\mathbb{R})$, the set of $n \times n$ matrices with real entries.	$A^T A$) is a [3 m]
9. a)	Suppose X has a countable basis then show that every open covering of X countable subcollection covering X .	contains a [4 m]
b)	Prove that every compact Hausdorff space is normal.	[6 m]
10. a)	Show that the subspace of a Hausdorff space is Hausdorff.	[4 m]
b)	Let X be a topological space in which one-point sets are closed. Show that X is and only if given a point $x \in X$ and a neighbourhood U of x, there exists a neigh V of x such that $\overline{V} \subseteq U$.	s regular if 1bourhood [6 m]