

Register Number:

Date:

St. Joseph's College (Autonomous), Bangalore-560027
 M.Sc Mathematics - II Semester

Semester Examination: April 2022
(Examination conducted in July 2022)
MT 8421: Partial Differential Equations
Time: 2.5 Hours
Max. Marks: 70

1. This paper contains ONE printed page.
2. Attempt any SEVEN FULL questions.
3. a) Form a PDE by eliminating the arbitrary constants a and b from $z=(x-a)^{2}+(y-b)^{2}$
b) Find the integral surface of the PDE $2 y(z-3) p+(2 x-z) q=y(2 x-3)$ which pass through the circle $x^{2}+y^{2}=2 x$ and $z=0$.
4. Find the canonical form of the $\operatorname{PDE} y^{2} r-2 x y s+x^{2} t=\left(\frac{y^{2}}{x}\right) p+\left(\frac{x^{2}}{y}\right) q$,
where $x \neq 0, y \neq 0$ and hence find the general solution.
5. a) Classify the PDE $y r+(x+y) s+x t=0$ into hyperbolic/ parabolic/ elliptic type depending on the conditions given below:
i) when $x=y$ ii) when $x \neq y$
b) Solve $\left(D-D^{\prime 2}\right) z=\cos (x-3 y)$.
6. (a) Solve $x^{2} r-y^{2} t-y q+x p=0$.
(b) Solve $x s+q=4 x+2$.
7. Solve the given PDE $r=a^{2} t$ using Monge's method.
8. Obtain the general solution of one dimensional wave equation using the method of separation of variables.
9. Deduce the D'Alembert's solution for the given Cauchy problem: $z_{t t}-c^{2} z_{x x}=0$, where $-\infty<x<\infty, t>0$ subjected to the conditions $z(x, 0)=f(x)$ and $z_{t}(x, 0)=g(x)$.
10. Solve the Neumann problem $\nabla^{2} u=0$, where $0<x<\pi, 0<y<\pi$ subjected to the boundary conditions, $u_{y}(x, 0)=\cos (x), \quad u_{y}(x, \pi)=0, \quad u_{x}(0, y)=0, \quad u_{x}(\pi, y)=0$.
11. Derive the solution of three dimensional Laplace equation in cylindrical co-ordinates.
12. Solve using the method of eigen function expansion, $u_{t t}-u_{x x}=\pi^{2} \sin (\pi x)$, where $0<x<1, t>0$, subjected to the boundary conditions $u(0, t)=0, \quad u(1, t)=0$, $u(x, 0)=\pi$ and $u_{t}(x, 0)=2 \pi \sin (2 \pi x)$.
