Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.Sc. Mathematics - IV SEMESTER SEMESTER EXAMINATION: APRIL 2022 (Examination conducted in July 2022) MT 0118 - MEASURE AND INTEGRATION

Time- 2 1/2 hrs

Max Marks-70

This question paper contains 2 printed pages and one part.

Answer any 7 questions

 (a) Let A be a σ-algebra. Prove that A is closed under countable intersection. (b) State and prove "Excision Property". (c) True or False: Any set of measure zero is countable. Justify. 	(3) (4) (3)
 2. (a) When do we say a set E is measurable? Give an example of measurable set finite measure. (b) If {A_k}[∞]_{k=1} is an ascending collection of measurable sets, then prove that m(U[∞]_{k=1}A_k) = lim_{k→∞} m(A_k) 	t of (2) (6)
(c) State countable monotonicity property of Lebesgue Measure.	(2)
 3. (a) Prove that f(x) = x on [2,3] is measurable. (b) Let f and g be measurable functions on E that are finite a.e. on E. Prove that any α and β, αf + βg is measurable on E. 	(2) at for (8)
4. (a) Define simple function. Consider the function $\psi(x) = \begin{cases} [x] & \text{if } x \in [0,3) \\ x & \text{if } x \in [3,5) \end{cases}$ defined on	
$E = [0,5)$. Give its canonical representation and also find $\int_{E} \psi$.	(6)
(b) State The Simple Function Approximation Lemma and Egoroff's Theorem.	(4)
5. (a) Let f be bounded measurable functions on a set of finite measure E. Then fo α , prove that $\int_E \alpha f = \alpha \int_E f$.	(4)
(b) Find two sets of bounded measurable functions f, g on a set of finite measure such that the identity $\int_E fg = \int_E f \cdot \int_E g$: i) is true ii) is disproved. Justify.	re E (6)
6. (a) State and prove Bounded Convergence Theorem.(b) State Integral Comparison Test.	(8) (2)
7. State and prove Fatou's Lemma and state Monotone Convergence Theorem.	(10)

- 8. (a) When do we say a covering of a set is in the sense of Vitali? Check if the covering of E = [1, 2] given by $\left\{ \left[1 \frac{1}{n}, 2 + \frac{1}{n} \right] \right\}_{n=1}^{\infty}$ and $\bigcup_{n=1}^{\infty} \left\{ \left(x \frac{1}{n}, x + \frac{1}{n} \right) | x \in E \right\}$ are covering in the sense of Vitali, with proper justification. (6)
 - (b) State Vitali Covering Lemma.
 - (c) Given that *f* is an increasing function on the closed, bounded interval [*a*, *b*].Which of the following is/are true?
 - i) For each $\alpha > 0, m^* \{x \in (a, b) | \overline{D}f(x) \ge \alpha\} \le \frac{1}{\alpha} [f(b) f(a)]$

ii) $m^*{x \in (a,b) | \overline{D}f(x) = \infty} > 0$

iii) There exists a unique $\alpha > 0$ where $m^* \{x \in (a, b) | \overline{D}f(x) \ge \alpha\} \le \frac{1}{\alpha} [f(b) - f(a)]$

iv)
$$m^* \{x \in (a, b) | \overline{D}f(x) = \infty\} = 0$$

9. (a) Define bounded variation and show that $f(x) = \begin{cases} x \cos\left(\frac{\pi}{2x}\right) & \text{if } 0 < x \le 1 \\ 0 & \text{if } x = 0 \end{cases}$ (5)

- (b) When do we say that a function is absolutely continuous? Show that the function sin *x* is absolutely continuous on [0,2π]
 (3)
- (c) Let the function *f* be absolutely continuous on the closed, bounded interval [a, b]. Then which of the following is/are true?(2)

ii) f' is integrable over [a, b]

iii)
$$\int_a^b f = f'(a) - f'(b)$$

iv)
$$\int_{a}^{b} f' = f(a) - f(b)$$

- 10. (a) Define conjugate of a number $p \in (0, \infty)$. What is the conjugate of 1? Also find the conjugate of 3. (4)
 - (b) State Hölder's Inequality for $L^{p}(E)$. State the special case of Hölder's Inequality when p = q = 2 in $L^{p}(E)$. What is the name of that inequality? (4)
 - (c) Let X be a normed linear space. Then which of the following statements is/are true?
 - i) Every Cauchy sequence is convergent.
 - ii) Every Convergent sequence is Cauchy.
 - iii) Every Cauchy sequence is rapidly Cauchy.
 - iv) Every Cauchy sequence has a rapidly Cauchy subsequence

(2)