

Register Number:

Date: 25-11-2020

## ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 B.Sc. MATHEMATICS- V SEMESTER SEMESTER EXAMINATION: NOVEMBER 2020 MT5218- MATHEMATICS VI

Time-  $2\frac{1}{2}$  Hrs.

Max Marks-70

This paper contains THREE parts and TWO pages.

I. Answer any FIVE of the following questions.

 $(5 \times 2 = 10)$ 

- 1. Show that  $|z-1|^2+|z+1|^2=4$  represents a unit circle.
- 2. Evaluate  $\lim_{z\to i} \left(\frac{z^3+i}{1-zi}\right)$
- 3. Evaluate  $\int_0^{3+i} z^2 dz$  along the line 3y = x.
- 4. Verify C-R equations for  $f(z) = z \bar{z}$ .
- 5. If  $\vec{F} = x^2y\hat{i} + 2xz\hat{j} + 2yz\hat{k}$ , find curl( $\vec{F}$ ) at (1,1,1)
- 6. Show that the vector field  $\vec{F} = 2x^2z\hat{i} 10xyz\hat{j} + 3xz^2\hat{k}$  is Solenoidal.
- 7. Check whether the function  $\phi = x^2 y^2 + 2xy$  is Harmonic.
- 8. If  $\vec{r}$  represents the position vector of a point P, then show that  $div(\vec{r}) = 3$  and  $curl(\vec{r}) = 0$ .

## II. Answer any SEVEN of the following questions.

 $(7 \times 6 = 42)$ 

- 9. Show that  $arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{3}$  represents a circle. Find its centre and radius.
- 10. Discuss the transformation  $w = \sin z$
- 11. Find the bilinear transformation which maps 1, -i, -1 in the z-plane onto  $0, i, \infty$  in the w-plane. Also find the invariant points under this bilinear transformation.

- 12. State and prove sufficient conditions for f(z) = u + iv to be analytic in a domain D.
- 13. Show that  $u = e^x \cos y + xy$  is harmonic and find its harmonic conjugate v.
- 14. Find the analytic function whose real part is  $\left(r + \frac{1}{r}\right) \cos \theta$ .
- 15. State and prove Cauchy's integral formula.
- 16. Evaluate  $\oint_c \frac{dz}{e^z(z-1)^3(z+3)}$  where c is the circle |z|=2.1.
- 17. a) Evaluate  $\oint_c \frac{dz}{(z^2+4)^2}$  where c is the circle |z+i|=2.

b) Evaluate 
$$\oint_C \frac{\sin \pi z}{(z-\pi)} dz$$
 where  $c$  is the circle  $|z|=4$ . (4+2)

III. Answer any THREE of the following questions.

(3×6=18)

18. a) Find the directional derivative of  $\phi = xy + yz + xz$  at the point (1, 2, 0) in the direction of  $\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ 

b) Evaluate 
$$grad(\frac{e^{xz}}{\sqrt{x^2+y^2}})$$
 (4+2)

- 19. Show that  $\vec{F} = (e^x cosy + yz)\hat{i} + (xz e^x siny)\hat{j} + (xy + z)\hat{k}$  is conservative and also find its scalar potential.
- 20. Find the equation of the tangent plane and normal to the surface xyz = 4 at the point (1,2,2).
- 21. If  $\vec{F}$  is a differentiable vector function and  $\phi$  is a differentiable scalar function, then prove that i)  $div(grad\phi) = \nabla^2 \phi$

ii) 
$$curl(\phi F) = \phi curl F + (grad \phi \times F)$$
 (2+4)

MT 5218-A-20