

Register Number:
Date:

St. Joseph's College (Autonomous), Bangalore-27
 M.Sc Mathematics - IV Semester
 Semester Examination: April 2022
 (Examination conducted in July 2022)
 MTDE0818 - Numerical Analysis

Time: 2.5 Hours
Max. Marks: 70

1. The paper contains only TWO pages.
2. Attempt any SEVEN FULL questions.
3. (a) Define absolute and relative error.
(b) Find absolute and percentage accuracy, given $X=0.51$ is correct to 2 decimal places.
(c) Determine if the system is well conditioned or ill conditioned using the maximum absolute row

$$
\begin{aligned}
& \text { sum norm. } \\
& A=\left[\begin{array}{ccc}
1 & 4 & 9 \\
4 & 9 & 16 \\
9 & 16 & 25
\end{array}\right]
\end{aligned}
$$

2. Derive the operational count for Standard Gaussian Elimination.
3. Solve the system using Thomas algorithm.

$$
\begin{gathered}
2 x_{1}-x_{2}=1 \\
-x_{1}+2 x_{2}-x_{3} \quad=0 \\
-x_{2}+2 x_{3}-x_{4}=0 \\
-x_{3}+2 x_{4}=1
\end{gathered}
$$

4. Solve using Cholesky decomposition

$$
\begin{gathered}
x_{1}+2 x_{2}+3 x_{3}=5 \\
2 x_{1}+8 x_{2}+22 x_{3}=6 \\
3 x_{1}+22 x_{2}+82 x_{3}=-10
\end{gathered}
$$

5. Solve the given system using $S O R$ method upto 4 iterations by taking the relaxation parameter as 1.25

$$
\begin{gathered}
27 x+6 y-z=85 \\
6 x+15 y-2 z=72 \\
x+y+54 z=110
\end{gathered}
$$

6. (a) Determine the normal equations if the function $z=a_{o}+a_{1} x+a_{2} y$ is fitted to the data $\left(x_{i}, y_{i}, z_{i}\right)$, where $i=1,2,3, \ldots . m$
[5m]
(b) Find the best values of a_{0} and a_{1} if the straight line $y=a_{0}+a_{1} x$ fitted to the data $\left(x_{i}, y_{i}\right):(1,0.6),(2,2.4),(3,3.5),(4,4.8),(5,5.7)$
7. Determine the Hermite polynomial of degree 5 , which fits the following data and hence find the approximate value of the Hermite polynomial at $x=2.7$

x	$\mathrm{y}=\ln \mathrm{x}$	$\mathrm{y}{ }^{\prime}=1 / \mathrm{x}$
2.0	0.69315	0.5
2.5	0.91629	0.4
3.0	1.09861	0.333

8. Obtain the cubic spline interpolation for the function $f(x)=x^{4}$ on $-1 \leq x \leq 1$, with clamped condition $h=1, n=2$.

x	-1	0	1
$\mathrm{f}(\mathrm{x})$	1	0	1

[10m]
9. Deduce Simpson's $\frac{1}{3}{ }^{r d}$ rule using Newton's forward difference formula. And, hence estimate the error.
[10m]
10. Solve the boundary value problem $y^{\prime \prime}-64 y+10=0, y(0)=y(1)=0$ using shooting method with the initial guess $m_{1}=0.5$ and $m_{2}=0.6$. Use the Taylor series method with $h=0.5$ to find the value of y at $x=0.5$.

