

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 MSc. MATHEMATICS - IV SEMESTER END-SEMESTER EXAMINATION: APRIL 2022 (Examination conducted in July-2022) MTDE0918-BASIC OPERATOR THEORY

Time- 2.30 hrs

Max Marks-70

 $7 \times 10 = 70$

[10]

This question paper contains **ONE** printed page and **ONE** part.

Answer any 7 questions

- 1. Show that *T* is a surjective linear isometry if the map $T: l^p(n)' \to l^q(n)$ is defined by $T(F) = (f(e_1), f(e_2), \dots, f(e_n))$, where $f \in (l^p)', e_j \in \mathbb{K}$ such that $e_j(i) = \delta_{ij}$ for $i, j = 1, 2, \dots, n$. [10]
- 2. State and Prove Schur's lemma.
- 3. Let *X* be a normed linear space and $A: X \to X$ be a compact operator. Then show that $\sigma_{eig}(A)$ is a countable subset of \mathbb{K} and zero is the only possible limit point of $\sigma_{eig}(A)$.
- [10] 4. State and Prove spectral mapping theorem. [10] 5. a) Let X and Y be normed linear spaces and $T: X \rightarrow Y$ be a surjective linear isometry then show that $T': Y' \rightarrow X'$ is a surjective linear isometry. [5] b) Let *X* and *Y* be Hilbert spaces and $\Psi: X \times Y \to \mathbb{K}$ be a bounded sesquilinear functional. Prove that there exists a unique bounded linear operator $A: X \to Y$ such that $\Psi(x, y) = \langle Ax, y \rangle$ for all $(x, y) \in X \times Y$. [5] 6. Let X be a Hilbert space over \mathbb{C} and $A \in \mathfrak{B}(X)$ such that $\langle Ax, x \rangle \in R$ for all $x \in \mathbb{C}$ X. Then, prove that A is self adjoint operator. [10] 7. Let *X* be a Hilbert space over \mathbb{C} and $A \in \mathfrak{B}(X)$. Then, show that A is normal iff $||Ax|| = ||A^*x||$ for every $x \in X$ i) [5] ii) A is unitary iff A is surjective and ||Ax|| = ||x|| for every $x \in X$ [5] 8. If $A \in \mathfrak{B}(X)$ is a self-adjoint operator, then show the following results [5] i) $\{\alpha_A, \beta_A\} \subseteq \sigma(A) \subseteq [\alpha_A, \beta_A]$ $r_{\sigma}(A) = ||A|| = r_{w}(A) = max\{|\alpha_{A}|, |\beta_{A}|\}$ ii) [5] 9. Let A be a compact self adjoint operator on X and $\{\lambda_i : i \in \Delta\}$ be the set of all non-zero eigen values of A. For each $i \in \Delta$ let $\{u_1^{(i)}, u_2^{(i)}, \dots, u_{m\,i}^{(i)}\}$ be an orthonormal basis of $N(A - \lambda_i I)$. Then $Ax = \sum_{i \in \Delta} \sum_{j=1}^{m_i} \lambda_i < x, u_j^i > u_j^i$, $\forall x \in X$ and $\cup i \in \Delta\{u_1^{(i)}, u_2^{(i)}, \dots, u_{mi}^{(i)}\}$ is an orthonormal basis of $N(A)^{\perp}$ when A is of infinite rank then show that $||A - \sum_{i=1}^{n} \lambda_i P_i|| \le \max_{i=1} |\lambda_i| \to 0 \text{ as } n \to \infty$. [10] i>n 10. a) Let X be a separable Hilbert space, show that every Hilbert-Schmidt operator on X is a compact operator. [5]
 - b) Let *X*, *Y* be Hilbert spaces and $T: X \to Y$ be a compact operator.
 - Let $\{(\sigma_n, u_n, v_n): n \in \Delta\}$ be a singular system of *T*. Then, show that
 - i) $\{u_n : n \in \Delta\}$ is an orthonormal basis for $N(T)^{\perp}$
 - ii) $\{v_n : n \in \Delta\}$ is an orthonormal basis for $\overline{R(T)}$. [5]
