

Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE - 27 M.Sc MATHEMATICS - IV SEMESTER SEMESTER EXAMINATION: APRIL 2022 (Examination conducted in July 2022) <u>MTDE 01018: DIFFERENTIAL GEOMETRY</u>

Duration: 2.5 Hours

Max. Marks: 70

- 1. The paper contains two printed pages.
- 2. Attempt any **SEVEN FULL** questions.
- 3. In objective type questions, one or more options could be correct. Full marks will be awarded only if all the options are correctly marked.
- 1. a) Let f and g be differentiable real-valued functions on \mathbb{E}^3 , $\mathbf{v_p}$ a tangent vector and \mathbf{V} a vector field. Then prove that

$$\mathbf{v}_{\mathbf{p}}[fg] = \mathbf{v}_{\mathbf{p}}[f].g(\mathbf{p}) + f(\mathbf{p}).\mathbf{v}_{\mathbf{p}}[g].$$

Further, deduce that

$$\mathbf{V}[fg] = \mathbf{V}[f]g + f\mathbf{V}[g].$$

[7m]

- b) Let ϕ be a 1-form on \mathbb{E}^3 , V a vector field and f a differentiable real-valued function. Then pick the correct statement(s) from the options given below.
 - (i) $f\phi(V)$ is a real-valued function on \mathbb{E}^3 . (ii) $\phi(V)$ is a real-valued function on \mathbb{E}^3 . (iii) $\phi(f)$ is a real-valued function on \mathbb{E}^3 . (iv) V[f] = df(V) as functions on \mathbb{E}^3 . **[3m]**
- 2. a) Let $\alpha(t) = (2t, t^2, \log t)$ be a curve in \mathbb{E}^3 defined on $(0, \infty)$. Find the arc length of $\alpha(t)$ between the points (2, 1, 0) and $(4, 4, \log 2)$. [5m]
 - b) Let β be a unit-speed curve in \mathbb{E}^3 with curvature $\kappa > 0$. Then prove that β is a plane curve if and only if its torsion $\tau = 0$. [5m]
- 3. Let β be a unit-speed curve with $\kappa > 0$ and $\tau \neq 0$. If β lies on a sphere with center **c** and radius *r*, prove that $\beta \mathbf{c} = -\rho N \rho' \sigma B$, where $\rho = \frac{1}{\kappa}$ and $\sigma = \frac{1}{\tau}$. Further, deduce the expression for the radius of the sphere in terms of κ and τ . [10m]
- 4. Let $\alpha(t) = (\cosh t, \sinh t, t)$, where $t \in \mathbb{R}$. Show that $\alpha(t)$ is a cylindrical helix. [10m]
- 5. Given the frame $\mathbf{e_1} = \frac{1}{3}(2,2,1), \mathbf{e_2} = \frac{1}{3}(-2,1,2), \mathbf{e_3} = \frac{1}{3}(1,-2,2)$ at $\mathbf{p} = (0,1,0)$ and the frame $\mathbf{f_1} = \frac{1}{\sqrt{2}}(1,0,1), \mathbf{f_2} = (0,1,0), \mathbf{f_3} = \frac{1}{\sqrt{2}}(1,0,-1)$ at $\mathbf{q} = (3,-1,1)$, find the isometry F = TC which carries frame \mathbf{e} to the frame \mathbf{f} . [10m]

- 6. a) Show that the surface of revolution $M: (\sqrt{x^2 + y^2} 4)^2 + z^2 = 4$ is a torus. Also, write a parametrization for this surface. [6m]
 - b) Let $\mathbf{x}: \mathbf{D} \to \mathbb{E}^3$ be a proper patch on an open subset \mathbf{D} of \mathbb{E}^2 . Pick the correct statement(s) from the options given below.
 - (i) \mathbf{x} is a homeomorphism from \mathbf{D} to $\mathbf{x}(\mathbf{D})$. (iii) $\mathbf{x}(\mathbf{D})$ is an example of a simple surface.
 - (ii) The Jacobian of **x** need not have rank 2 always. (iv) The Jacobian of **x** always has rank 2. [4m]
- 7. In which of the following cases is the morphism $\mathbf{x} : \mathbb{E}^2 \to \mathbb{E}^3$ a patch? Justify your answers in each case.
 - (i) $\mathbf{x}(u, v) = (u, uv, v).$ (iii) $\mathbf{x}(u, v) = (\cos 2\pi u, \sin 2\pi u, v).$
 - (ii) $\mathbf{x}(u,v) = (u^2, u^3, v).$ (iv) $\mathbf{x}(u,v) = (u, u^2, v + v^3).$ [10m]
- 8. a) Let M be a surface in \mathbb{E}^3 . Prove that the shape operator at each point $\mathbf{p} \in M$ is a linear operator on the tangent space $T_{\mathbf{p}}(M)$. [6m]
 - b) Pick the correct statement(s) from the options given below.
 - (i) If M is a sphere of radius r centered at the origin in \mathbb{E}^3 , then the shape operator at each point $\mathbf{p} \in M$ is an invertible linear operator on $T_{\mathbf{p}}(M)$.
 - (ii) If M is a plane in \mathbb{E}^3 , then the shape operator at each point $\mathbf{p} \in M$ is an invertible linear operator on $T_{\mathbf{p}}(M)$.
 - (iii) If M is the cylinder $x^2 + y^2 = 1$, then the shape operator at each point $\mathbf{p} \in M$ is an invertible linear operator on $T_{\mathbf{p}}(M)$.
 - (iv) If M is the saddle surface z = xy and $\mathbf{p} = (0, 0, 0)$, then the shape operator at the point $\mathbf{p} \in M$ is an invertible linear operator on $T_{\mathbf{p}}(M)$. [4m]
- 9. Let $M \subset \mathbb{E}^3$ be a surface and $\mathbf{p} \in M$. Define the principal curvatures and principal directions of M at \mathbf{p} . If S is the shape operator of M, prove that the principal curvatures of M are precisely the eigenvalues of S and the principal directions are the corresponding eigenvectors. [10m]
- 10. a) Define mean curvature H of a surface $M \subset \mathbb{E}^3$. When do we say a surface is minimal? [2m]
 - b) Show that the helicoid $\mathbf{x}(u, v) = (u \cos v, u \sin v, bv)$ is a minimal surface, where $b \neq 0$. [8m]