RegisterNumber:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE - 27

M.Sc MATHEMATICS - IV SEMESTER

SEMESTER EXAMINATION: APRIL 2022
(Examination conducted in July 2022)
MTDE 01018: DIFFERENTIAL GEOMETRY
Duration: 2.5 Hours
Max. Marks: 70

1. The paper contains two printed pages.
2. Attempt any SEVEN FULL questions.
3. In objective type questions, one or more options could be correct. Full marks will be awarded only if all the options are correctly marked.
4. a) Let f and g be differentiable real-valued functions on $\mathbb{E}^{3}, \mathbf{v}_{\mathbf{p}}$ a tangent vector and \mathbf{V} a vector field. Then prove that

$$
\mathbf{v}_{\mathbf{p}}[f g]=\mathbf{v}_{\mathbf{p}}[f] \cdot g(\mathbf{p})+f(\mathbf{p}) \cdot \mathbf{v}_{\mathbf{p}}[g] .
$$

Further, deduce that

$$
\mathbf{V}[f g]=\mathbf{V}[f] g+f \mathbf{V}[g] .
$$

b) Let ϕ be a 1 -form on \mathbb{E}^{3}, V a vector field and f a differentiable real-valued function. Then pick the correct statement(s) from the options given below.
(i) $f \phi(V)$ is a real-valued function on \mathbb{E}^{3}.
(iii) $\phi(f)$ is a real-valued function on \mathbb{E}^{3}.
(ii) $\phi(V)$ is a real-valued function on \mathbb{E}^{3}.
(iv) $V[f]=d f(V)$ as functions on \mathbb{E}^{3}.
2. a) Let $\alpha(t)=\left(2 t, t^{2}, \log t\right)$ be a curve in \mathbb{E}^{3} defined on $(0, \infty)$. Find the arc length of $\alpha(t)$ between the points $(2,1,0)$ and $(4,4, \log 2)$.
b) Let β be a unit-speed curve in \mathbb{E}^{3} with curvature $\kappa>0$. Then prove that β is a plane curve if and only if its torsion $\tau=0$.
3. Let β be a unit-speed curve with $\kappa>0$ and $\tau \neq 0$. If β lies on a sphere with center \mathbf{c} and radius r, prove that $\beta-\mathbf{c}=-\rho N-\rho^{\prime} \sigma B$, where $\rho=\frac{1}{\kappa}$ and $\sigma=\frac{1}{\tau}$. Further, deduce the expression for the radius of the sphere in terms of κ and τ.
4. Let $\alpha(t)=(\cosh t, \sinh t, t)$, where $t \in \mathbb{R}$. Show that $\alpha(t)$ is a cylindrical helix.
5. Given the frame $\mathbf{e}_{\mathbf{1}}=\frac{1}{3}(2,2,1), \mathbf{e}_{\mathbf{2}}=\frac{1}{3}(-2,1,2), \mathbf{e}_{\mathbf{3}}=\frac{1}{3}(1,-2,2)$ at $\mathbf{p}=(0,1,0)$ and the frame $\mathbf{f}_{\mathbf{1}}=$ $\frac{1}{\sqrt{2}}(1,0,1), \mathbf{f}_{\mathbf{2}}=(0,1,0), \mathbf{f}_{\mathbf{3}}=\frac{1}{\sqrt{2}}(1,0,-1)$ at $\mathbf{q}=(3,-1,1)$, find the isometry $F=T C$ which carries frame \mathbf{e} to the frame \mathbf{f}.
6. a) Show that the surface of revolution $M:\left(\sqrt{x^{2}+y^{2}}-4\right)^{2}+z^{2}=4$ is a torus. Also, write a parametrization for this surface.
b) Let $\mathbf{x}: \mathbf{D} \rightarrow \mathbb{E}^{3}$ be a proper patch on an open subset \mathbf{D} of \mathbb{E}^{2}. Pick the correct statement(s) from the options given below.
(i) \mathbf{x} is a homeomorphism from \mathbf{D} to $\mathbf{x}(\mathbf{D})$.
(iii) $\mathbf{x}(\mathbf{D})$ is an example of a simple surface.
(ii) The Jacobian of \mathbf{x} need not have rank 2 always. (iv) The Jacobian of \mathbf{x} always has rank 2.
7. In which of the following cases is the morphism $\mathbf{x}: \mathbb{E}^{2} \rightarrow \mathbb{E}^{3}$ a patch? Justify your answers in each case.
(i) $\mathbf{x}(u, v)=(u, u v, v)$.
(iii) $\mathbf{x}(u, v)=(\cos 2 \pi u, \sin 2 \pi u, v)$.
(ii) $\mathbf{x}(u, v)=\left(u^{2}, u^{3}, v\right)$.
(iv) $\mathbf{x}(u, v)=\left(u, u^{2}, v+v^{3}\right)$.
[10m]
8. a) Let M be a surface in \mathbb{E}^{3}. Prove that the shape operator at each point $\mathbf{p} \in M$ is a linear operator on the tangent space $T_{\mathbf{p}}(M)$.
[6m]
b) Pick the correct statement(s) from the options given below.
(i) If M is a sphere of radius r centered at the origin in \mathbb{E}^{3}, then the shape operator at each point $\mathbf{p} \in M$ is an invertible linear operator on $T_{\mathbf{p}}(M)$.
(ii) If M is a plane in \mathbb{E}^{3}, then the shape operator at each point $\mathbf{p} \in M$ is an invertible linear operator on $T_{\mathbf{p}}(M)$.
(iii) If M is the cylinder $x^{2}+y^{2}=1$, then the shape operator at each point $\mathbf{p} \in M$ is an invertible linear operator on $T_{\mathbf{p}}(M)$.
(iv) If M is the saddle surface $z=x y$ and $\mathbf{p}=(0,0,0)$, then the shape operator at the point $\mathbf{p} \in M$ is an invertible linear operator on $T_{\mathbf{p}}(M)$.
9. Let $M \subset \mathbb{E}^{3}$ be a surface and $\mathbf{p} \in M$. Define the principal curvatures and principal directions of M at \mathbf{p}. If S is the shape operator of M, prove that the principal curvatures of M are precisely the eigenvalues of S and the principal directions are the corresponding eigenvectors.
10. a) Define mean curvature H of a surface $M \subset \mathbb{E}^{3}$. When do we say a surface is minimal?
b) Show that the helicoid $\mathbf{x}(u, v)=(u \cos v, u \sin v, b v)$ is a minimal surface, where $b \neq 0$.

