Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
B.Sc. MATHEMATICS - II SEMESTER

SEMESTER EXAMINATION: APRIL 2022
(Examination conducted in July 2022)
MT218 - MATHEMATICS II

Time- $21 / 2 \mathrm{hrs}$
Max Marks-70

This question paper contains TWO printed pages and FOUR parts.
I. Answer any FIVE of the following questions.

1. If a is an element of a group ($G, *$), then prove that a has a unique inverse.
2. Find the inverse of each element in $\left(\mathbb{Z}_{4}, \oplus_{4}\right)$ using Cayley's table.
3. Define a subgroup. Find the subgroup generated by 2 in the group $(\mathbb{Z},+)$.
4. Symbolise and negate: Some students are lazy or all students are hard working.
5. Show that $p^{2}=\frac{r^{3}}{2 a}$ is concave everywhere.
6. Find the double points of the curve $x^{3}-y^{2}-7 x^{2}+4 y+15 x-13=0$.
7. Find the area bounded by the parabolas $x^{2}=y$ and $y^{2}=x$.
8. Solve the differential equation $\frac{d y}{d x}-y=0$.
II. Answer any TWO of the following questions.
9. Define a group. Check if $U(10)$ under multiplication modulo 10 is an abelian group or not.
10. Prove that $(G, *)$ is abelian if and only if $(a * b)^{-1}=a^{-1} * b^{-1} \quad \forall a, b \in G$.
11. Prove the following logical equivalences.
(i) $T[\sim p(x)]=(T[p(x)])^{c}$
(ii) $T[p(x) \wedge q(x)]=T[p(x)] \cap T[q(x)]$
III. Answer any FIVE of the following questions.
12. Find the angle between the radius vector and the tangent for the curve $r=a(1+\cos \theta)$. Also find the slope of the curve at $\theta=\frac{\pi}{6}$.
13. Find the pedal equation of the cardioid $r=a(1-\cos \theta)$.
14. Find the radius of curvature at any point on the curve $x y=c^{2}$.
15. Find the envelope of the family of curves, $y=m x+\sqrt{a^{2} m^{2}+b^{2}}$ where m is the parameter.
16. Find the entire length of the astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$.
17. Find the area of the surface generated by revolving the curve $x=y^{3}$ about y axis from $y=0$ to $y=2$.
18. Find the volume of the solid generated by revolving an arc of the cycloid $x=a(t+\sin t)$, $y=a(1+\cos t)$ about x axis.

IV. Answer any THREE of the following questions.

19. Solve the differential equation $\left(y \cos x+2 x e^{y}\right) d x+\left(\sin x+x^{2} e^{y}-1\right) d y=0$.
20. Solve the differential equation $x \frac{d y}{d x}+y=x^{3} y^{6}$.
21. Solve the differential equation $p^{2}+\left(x-e^{x}\right) p-x e^{x}=0$, where $p=\frac{d y}{d x}$.
22. Find the orthogonal trajectories of the family of curves, $y^{2}=4 a x$.
