

Register Number: Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 B.Sc. MATHEMATICS - II SEMESTER SEMESTER EXAMINATION: APRIL 2022 (Examination conducted in July 2022) MT 221: MATHEMATICS II

Time: 2 Hours

Max Marks: 60

This question paper contains TWO printed pages and FIVE parts.

I. ANSWER ANY <u>SIX</u> OF THE FOLLOWING.

 $(6 \times 2 = 12)$

- 1. Find the identity element of the group $(\mathbb{Z}, *)$ with a * b = a + b + 1.
- 2. Without computing the order explicitly, show that 2 and 28 have same order in $(Z_{30}, +_{30})$.
- 3. Evaluate $\int_{0}^{1} x^{2}(1-x)^{\frac{3}{2}} dx$
- 4. Find the area enclosed by the parabola $y^2 = 4ax$ and its latus rectum.
- 5. Find the angle between the radius vector and the tangent to the curve $r = a \sin\theta$.

6. Find
$$\frac{ds}{dx}$$
 for the curve $x = a(t + sint)$ and $y = a(1 - cost)$.

7. Find the integrating factor of $(1 + x^2)\frac{dy}{dx} + y = e^{tan^{-1}x}$

8. Test for exactness and hence solve $(e^y + 1) \cos x dx + e^y \sin x dy = 0$

II. ANSWER ANY <u>TWO</u> OF THE FOLLOWING. $(2 \times 6 = 12)$

- 9. Show that U(10) is a group under multiplication modulo 10 using cayley table.
- 10. State and prove two step subgroup test.
- 11. a) Define Order of an element of a group. Define order of a group and what is the order of the group $(\mathbf{R}, +)$?
 - b) Write the order of each element of the group $(\mathbb{Z}_{10}, +_{10})$ (2+4)

III. ANSWER ANY <u>TWO</u> OF THE FOLLOWING. $(2 \times 6 = 12)$

- 12. a) Evaluate $\int_{0}^{\pi} x \sin^{4} x \cos^{6} x dx.$ b) Evaluate $\int_{0}^{1} \frac{x^{6}}{\sqrt{1-x^{2}}} dx.$ (4+2)
- 13. Obtain the entire length of the cardioid $r = a(1 + \cos\theta)$.
- 14. Find the area bounded by the cycloid $x = a(\theta \sin \theta), y = a(1 \cos \theta), 0 \le \theta \le 2\pi$ and its base.

IV. ANSWER ANY <u>TWO</u> OF THE FOLLOWING.

- 15. Find the angle of intersection for the following curve $r = sin\theta + cos\theta$, $r = 2sin\theta$
- 16. Find the pedal equation of the curve $y^2 = 4a(x+a)$

17. Show that for the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, the radius of curvature is $\rho = \frac{a^2b^2}{p^3}$

V. ANSWER ANY <u>TWO</u> OF THE FOLLOWING.

18. Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$

19. Solve $\frac{dy}{dx} - 2y \ tanx = y^2 \ tan^2x$.

20. Find the suitable integrating factor and solve the equation $xydx - (x^2 + 2y^2) dy = 0$

$(2 \times 6 = 12)$