ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
B.Sc. MATHEMATICS - VI SEMESTER
SEMESTER EXAMINATION: APRIL 2022
(Examination conducted in July 2022)
MT 6115 - Mathematics VII

Time- $2^{1 ⁄ 2}$ hrs
Max Marks-70

This question paper contains one printed page and three parts.

I. ANSWER ANY FIVE OF THE FOLLOWING:

1. Express $(3,5,2)$ as a linear combination of the vectors $(1,1,0),(2,3,0),(0,0,1)$ of $V_{3}(R)$.
2. Define subspace of a vector space.
3. Find the linear transformation $T: R^{2} \rightarrow R^{2}$ such that $T(1,0)=(1,1)$ and $T(0,1)=(-1,2)$
4. Find the scalar factors for cylindrical polar coordinates.
5. Solve $\frac{d x}{y^{2} z}=\frac{d y}{x^{2} z}=\frac{d z}{y^{2} x}$
6. Form the partial differential equation by eliminating the arbitrary function from $z=f\left(x^{2}-y^{2}\right)$
7. Solve $(p+q)(z-x p-y q)=1$
8. Solve $x^{2} p+y^{2} q=z^{2}$

II. ANSWER ANY THREE OF THE FOLLOWING:

9. Find the dimension and basis of the subspace spanned by the vectors $\mathrm{S}=\{(2,4,2),(1,-1,0),(1,2,1),(0,3,1)\}$ in $V_{3}(R)$.
10. Find the matrix of the linear transformation $T: V_{2}(R) \rightarrow V_{3}(R)$ defined by $T(x, y)=(2 y-x, y, 3 y-3 x)$ relative to bases $B_{1}=\{(1,1),(-1,1)\}$ and $B_{2}=\{(1,1,1),(1,-1,1),(0,0,1)\}$
11. For the matrix $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ find the corresponding linear transformation $T: R^{2} \rightarrow R^{2}$ with respect to the basis $\{(1,0),(1,1)\}$
12. State and prove Rank-Nullity theorem.

III. ANSWER ANY SEVEN OF THE FOLLOWING:

(7x6=42)
13. Show that the cylindrical coordinate system is an orthogonal curvilinear system.
14. Derive the expression for the unit vectors $\widehat{e_{\rho}}, \widehat{e_{\theta}}, \widehat{e_{\varphi}}$ in the spherical coordinate system.
15. Verify the condition for integrability and solve $3 x^{2} d x+3 y^{2} d y-\left(x^{3}+y^{3}+e^{2 z}\right) d z=0$
16. Form the partial differential equation for $z=y f(x)+x g(y)$, where f and g are arbitrary functions.
17. Solve $z x p+y z q=x y$
18. Find the complete integral of $p x+q y=p q$ by Charpit's method.
19. Solve $\left(D^{2}-3 D D^{\prime}+2{D^{\prime}}^{\prime 2}\right) z=e^{x+y}$
20. Solve $\left(D^{2}-2 D D^{\prime}+{D^{\prime}}^{2}\right) z=x y$
21. Derive the Fourier series solution of the one-dimensional heat equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$

