ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 B.Sc. MATHEMATICS - VI SEMESTER SEMESTER EXAMINATION: APRIL 2022
 (Examination conducted in JULY 2022)
 MT 6118 - MATHEMATICS VII

Time: $2 \frac{1}{2}$ hrs
Max Marks: 70
This paper contains TWO printed pages and THREE parts.

I Answer any FIVE of the following.
 $5 \times 2=10$

1. Given $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}-b_{2}\right)$ and $c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right), \forall\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in \mathbb{R}^{2}, \forall c \in \mathbb{R}$.

Is \mathbb{R}^{2} a vector space over \mathbb{R} under these operations? Justify your answer.
2. (i) Define the subspace of a vector space.
(ii) State the necessary and sufficient conditions for a subset to be a subspace.
3. Find the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given that $T(1,0,0)=(-1,0), T(0,1,0)=(1,1)$ and $T(0,0,1)=(0,-1)$.
4. Find the null space and nullity of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y, z)=(x-y, 2 z)$.
5. Solve: $\frac{d x}{y^{2} z}=\frac{d y}{x^{2} z}=\frac{d z}{y^{2} x}$.
6. Form the partial differential equation by eliminating the arbitrary constants a and b from $z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$.
7. Solve the differential equation $\sqrt{p}+\sqrt{q}=1$.
8. Find the particular integral of the partial differential equation $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}\right) z=e^{x+2 y}$.

II Answer any SEVEN of the following.

7 X $6=42$
9. (i) In a vector space $V(F)$ prove the following properties:
(a) $0 \cdot x=0, \forall x \in V, 0 \in F, o \in V$
(b) $(-a) x=-(a x), \forall x \in V, \forall a \in F$
(c) $a \cdot o=0, \forall a \in F, o \in V$
(ii) Show that the set W of all solutions of the linear homogeneous differential equation $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+3 y=0$ is a subspace of the vector space $C(\mathbb{R})$ of all continuous real valued functions.
10. (i) Define the span of a subset S of a vector space $V(F)$.
(ii) Prove that the span of S is a subspace of V and it is contained in every subspace W of V that contains S .
11. Prove that a finite set $S=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ of vectors in a vector space $\mathrm{V}(\mathrm{F})$ is linearly dependent if and only if $u_{1}=o$ or $u_{k+1} \in \operatorname{span}\left(\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}\right)$ for some $k(1 \leq k<n)$.
12. (i) Define a basis for a vector space. Write the standard basis for the vector space $P_{n}(\mathbb{R})$ of all real polynomials of degree utmost n.
(ii) Find a basis and the dimension of the subspace spanned by the subset $S=\left\{\left(\begin{array}{rr}1 & -5 \\ -4 & 2\end{array}\right),\left(\begin{array}{rr}1 & 1 \\ -1 & 5\end{array}\right),\left(\begin{array}{rr}2 & -4 \\ -5 & 7\end{array}\right),\left(\begin{array}{rr}1 & -7 \\ -5 & 1\end{array}\right)\right\}$ of the vector space $M_{2}(\mathbb{R})$ of all real square matrices of order 2.
13. State and prove the Dimension Theorem (Rank-Nullity Theorem).
14. Find the range space, null space, rank, and nullity of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T\left(a_{1}, a_{2}\right)=\left(a_{1}+a_{2}, 0,2 a_{1}-a_{2}\right)$. Also verify the Rank-Nullity theorem.
15. Prove that a linear transformation $T: V(F) \rightarrow W(F)$ is one to one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W .
16. Find the matrix $[T]_{\alpha}^{\beta}$ of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y)=(x+y, x, 3 x-y)$ relative to bases $\alpha=\{(1,1),(3,1)\}$ and $\beta=\{(1,1,1),(1,1,0),(1,0,0)\}$.
17. Let $T: P_{1}(\mathbb{R}) \rightarrow P_{1}(\mathbb{R})$ be a linear operator defined by $T(p(x))=p^{\prime}(x)$, where $p^{\prime}(x)$ is the derivative of $p(x)$. Let $B_{1}=\{1, x\}$ and $B_{2}=\{1+x, 1-x\}$ be the ordered bases for $P_{1}(\mathbb{R})$.
(i) Find the change of coordinate matrix Q that changes B_{2} coordinates into B_{1} coordinates and find Q^{-1}.
(ii) Compute $[T]_{B_{1}}$.
(iii) Find $[T]_{B_{2}}$ using $[T]_{B_{1}}, Q$ and Q^{-1}.

III Answer any THREE of the following.
18. Verify the condition for integrability and solve: $\left(y^{2}+z^{2}-x^{2}\right) d x-2 x y d y-2 x z d z=0$.
19. Solve: $(y-z) p+(z-x) q=x-y$.
20. Form the partial differential equation by eliminating the arbitrary functions f and g in $z=\frac{1}{y}[f(x+a y)+g(x-a y)]$.
21. Solve by Charpit's method: $z^{2}\left(p^{2}+q^{2}+1\right)=1$.
22. Solve: $\frac{\partial^{2} z}{\partial x^{2}}-5 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}=\sin (4 x+y)$.

