ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 B.Sc. MATHEMATICS - VI SEMESTER SEMESTER EXAMINATION: APRIL 2022

Time- $21 / 2 \mathrm{hrs}$

This question paper contains TWO printed pages and THREE parts.
I. Answer any FIVE of the following questions.

1. Show that $|z-1|^{2}+|z+1|^{2}=4$ represents a unit circle.
2. Evaluate $\lim _{z \rightarrow i}\left(\frac{z^{3}+i}{1-z i}\right)$.
3. Define Harmonic function.
4. Evaluate $\int_{0}^{3+i} z^{2} d z$ along the line $3 y=x$.
5. Find the fixed points of the transformation $w=\frac{3 z-4}{z}$.
6. Find the Laplace transform of $\left(t^{2}-1\right)$.
7. Find the inverse Laplace transform of $\left(\frac{2 s^{2}-5 s+8}{s^{3}}\right)$.
8. State the Convolution theorem.
II. Answer any SEVEN of the following questions.
9. Show that $\arg \left(\frac{z-i}{z+1}\right)=\frac{\pi}{2}$ represents a circle. Find its centre and radius.
10. If a complex function $f(z)=u+i v$ is analytic in a domain D then prove that the first order partial derivatives of u, v with respect to x, y exists and satisfy the C-R equations, $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$.
11. Show that $u=e^{x} \cos y+x y$ is harmonic and find its harmonic conjugate v.
12. Find the analytic function whose real part is $\left(r+\frac{1}{r}\right) \cos \theta$.
13. If a complex function $f(z)=u+i v$ is analytic and $f^{\prime}(z)$ is continuous at each point within and on a closed contour, then prove that $\oint_{c} f(z) d z=0$.
14. Evaluate $\oint_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$ where c is the circle $|z|=4$.
15. Evaluate $\oint_{c} \frac{e^{2 z}}{(z-2)^{3}} d z$ where c is the circle $|z|=3$.
16. Discuss the transformation $w=\sin z$.
17. Find the bilinear transformation which maps $0,-i,-1$ in the z-plane onto $i, 1,0$ in the w-plane.

III. Answer any THREE of the following questions.

18. Solve the system of equation by Gauss-Seidel method:

$$
\begin{gathered}
27 x+6 y-z=85 \\
6 x+15 y+2 z=72 \\
x+y+54 z=110
\end{gathered}
$$

19. Use Euler's modified method to compute y for $x=0.05$, given that $\frac{d y}{d x}=x+y$ with the initial condition $x_{0}=0, y_{0}=1$ and $h=0.05$.
20. Find the Laplace transform of e^{-t} for $0 \leq t \leq 2$ and $f(t+2)=f(t)$.
21. Find the inverse Laplace transform of the function $\left(\frac{s-3}{s^{2}+4 s+13}\right)$.
