ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27

(Examination conducted in July 2022)
MT6218 - MATHEMATICS-VIII
Time- $21 / 2 \mathrm{hrs}$
Max Marks-70

This question paper contains TWO printed pages and THREE parts
I. Answer any FIVE of the following questions
(5X2=10)

1. Evaluate $\int_{C}[(3 x+y) d x+(2 y-x) d y]$ along the curve $y=3 x+1$, from $(0,1)$ and $(3,10)$.
2. Evaluate $\int_{0}^{1} \int_{0}^{1} x^{2} y^{2} d y d x$.
3. Evaluate $\int_{0}^{1} \int_{1}^{3} \int_{1}^{2} d z d y d x$.
4. Write the statement of Stoke's theorem.
5. If $L[f(t)]=F(s)$, then prove that $L\left[e^{a t} f(t)\right]=F(s-a)$.
6. Find the Laplace transform of $(1+t)^{3}$.
7. Find the Laplace transform of $[t \cosh (a t)]$.
8. Show that $L \int_{0}^{t}\left[(t-u) u e^{-a u} d u\right]=\frac{1}{s^{2}(s+a)^{2}}$.

II. Answer any SEVEN of the following questions

(7X6=42)
9. Show that $\int_{C}\left[2 x y d x+\left(x^{2}+2 z y\right) d y+\left(y^{2}+1\right) d z\right]$ is path independent and hence evaluate, where C be any path leading from the origin to the point $(1,1,1)$.
10. Evaluate $\iint_{D} x y(x+y) d y d x$ over the domain D between $y=x$ and $y=x^{2}$.
11. Evaluate $\int_{0}^{a} \int_{0}^{2 \sqrt{a x}} x^{2} d y d x$ by changing the order of integration.
12. Find the surface area of the cylinder $x^{2}+y^{2}=4$ cut by the cylinder $x^{2}+z^{2}=4$.
13. Evaluate $\int_{-a}^{a} \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} d z d y d x$.
14. Find the volume bounded by the surface $z=a^{2}-x^{2}$ and the planes $x=0, y=0, z=0$ and $y=b$.
15. Verify Green's theorem in the plane for $\oint_{C}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve bounded by $y=x$ and $y=x^{2}$.
16. State and Prove Gauss Divergence theorem.
17. Evaluate $\oint_{C} \sin z d x-\cos x d y+\sin y d z$ using Stoke's theorem where C is the boundary of the rectangle $0 \leq x \leq \pi, 0 \leq y \leq 1, z=3$.

III. Answer any THREE of the following questions

18. Find the Laplace transform of $f(t)=\left\{\begin{array}{ll}t & 0<t<\pi \\ \pi-t & \pi<t<2 \pi\end{array}\right.$ with $f(t)=f(t+2 \pi)$.
19. If $L[f(t)]=F(s)$ then prove that $L\left[\frac{f(t)}{t}\right]=\int_{s}^{\infty} F(s) d s$.
20. Find the inverse Laplace transform of $\frac{1}{s^{2}\left(s^{2}+1\right)}$.
21. Verify the convolution theorem for $f(t)=e^{t}$ and $g(t)=\cos t$.
22. Solve $9 y^{\prime \prime}-6 y^{\prime}+y=0$ using Laplace transform, where $y(0)=3$ and $y^{\prime}(0)=1$.
