

Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 B.Sc. MATHEMATICS - VI SEMESTER SEMESTER EXAMINATION: APRIL 2022 (Examination conducted in July 2022) MT6218 – MATHEMATICS-VIII

Time- 2 1/2 hrs

Max Marks-70

(5X2=10)

This question paper contains TWO printed pages and THREE parts

- I. Answer any FIVE of the following questions
- 1. Evaluate $\int_{C} \left[(3x+y)dx + (2y-x)dy \right]$ along the curve y = 3x+1, from (0,1) and (3,10).
- 2. Evaluate $\int_{0}^{1} \int_{0}^{1} x^2 y^2 dy dx$.
- 3. Evaluate $\int_{0}^{1} \int_{1}^{3} \int_{1}^{2} dz \, dy dx.$
- 4. Write the statement of Stoke's theorem.
- 5. If L[f(t)] = F(s), then prove that $L[e^{at}f(t)] = F(s-a)$.
- 6. Find the Laplace transform of $(1+t)^3$.
- 7. Find the Laplace transform of $[t \cosh(at)]$.
- 8. Show that $L_{0}^{t}[(t-u)ue^{-au}du] = \frac{1}{s^{2}(s+a)^{2}}$.

II. Answer any SEVEN of the following questions

9. Show that $\int_{C} [2xy dx + (x^2 + 2zy) dy + (y^2 + 1) dz]$ is path independent and hence evaluate,

where *C* be any path leading from the origin to the point (1,1,1).

- 10. Evaluate $\iint_D xy(x+y) dy dx$ over the domain *D* between y = x and $y = x^2$. 11. Evaluate $\int_0^a \int_0^{2\sqrt{ax}} x^2 dy dx$ by changing the order of integration.
- 12. Find the surface area of the cylinder $x^2 + y^2 = 4$ cut by the cylinder $x^2 + z^2 = 4$.

(7X6=42)

- 13. Evaluate $\int_{-a}^{a} \int_{-\sqrt{a^2 x^2}}^{\sqrt{a^2 x^2}} \int_{-\sqrt{a^2 x^2}}^{\sqrt{a^2 x^2}} dz dy dx$.
- 14. Find the volume bounded by the surface $z = a^2 x^2$ and the planes x = 0, y = 0, z = 0and y = b.
- 15. Verify Green's theorem in the plane for $\oint_C (xy + y^2) dx + x^2 dy$ where *C* is the closed curve bounded by y = x and $y = x^2$.
- 16. State and Prove Gauss Divergence theorem.
- 17. Evaluate $\oint_C \sin z \, dx \cos x \, dy + \sin y \, dz$ using Stoke's theorem where *C* is the boundary of the rectangle $0 \le x \le \pi$, $0 \le y \le 1$, z = 3.

III. <u>Answer any THREE of the following questions</u>

- 18. Find the Laplace transform of $f(t) = \begin{cases} t & 0 < t < \pi \\ \pi t & \pi < t < 2\pi \end{cases}$ with $f(t) = f(t + 2\pi)$.
- 19. If L[f(t)] = F(s) then prove that $L\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} F(s) ds$.
- 20. Find the inverse Laplace transform of $\frac{1}{s^2(s^2+1)}$.
- 21. Verify the convolution theorem for $f(t) = e^t$ and $g(t) = \cos t$.
- 22. Solve 9y'' 6y' + y = 0 using Laplace transform, where y(0) = 3 and y'(0) = 1.