ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 M.Sc. Physics: II SEMESTER
 END SEMESTER EXAMINATION: APRIL 2022
 (Examination conducted in July 2022)
 PH8421: Quantum Mechanics-I

Time: $2 \frac{1}{2}$ hours
Maximum marks: 70
This question paper has 2 printed pages and 2 parts

PART A

Answer any FIVE of the following questions. Each question carries 10 marks. [$5 \times 10=50$]

1. Obtain the expression for the Eigen energies and normalized Eigen functions for a particle trapped in an infinite potential well.
2. Using the Associated Legendre function and Rodrigues formula construct the angular wave functions for $l=0, m=0$, and $l=2, m=1$. Where l and m are the Azimuthal and magnetic quantum numbers respectively. Check that they are normalized and orthogonal.
3. Obtain Bohr's formula for the allowed energies for the Hydrogen atom from the radial wave equation given below.

$$
\begin{equation*}
\frac{\hbar^{2}}{2 m} \frac{d^{2} U}{d r^{2}}+\left[V(r)+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] U=E U \tag{10}
\end{equation*}
$$

4. (a) Use Rodrigues formula to derive Hermite polynomials H_{3} and H_{4}.
(b) Show that the eigen values associated with observables are real. What are the important properties of eigen vectors?
5. (a) Obtain the spin matrices σ_{x}, σ_{y} and σ_{z}. What are the Assumptions involved in obtaining these matrices? Given: eigen vectors of i) σ_{z} are $\left|u>=\binom{1}{0},\right| d>=\binom{0}{1}$, ii) σ_{x} are \mid right $>=\frac{1}{\sqrt{2}}(|u>+| d>), \mid$ left $>=\frac{1}{\sqrt{2}}(|u>-| d>)$, iii) σ_{y} are \mid in $>=\frac{1}{\sqrt{2}}(|u>+i| d>)$ and |out $>=\frac{1}{\sqrt{2}}(|u>-i| d>)$ each having eigen values of ± 1
(b) Write a note on unitary transformation and its importance in time evolution of a quantum system.
6. (a) Prove that $\left[b, b^{\dagger}\right]=1$ and hence demonstrate that the Hamiltonian $H=\frac{\hbar \omega}{2}\left(b b^{\dagger}+b^{\dagger} b\right)$ can be reduced to $H=\hbar \omega\left(b b^{\dagger}+1 / 2\right)$
(b) Why is b^{\dagger} and b operators are called as raising and lowering operators?

Given:- $b=\left(\frac{m \omega}{2 \hbar}\right)^{1 / 2}\left(x+\frac{i p}{m \omega}\right), b^{\dagger}=\left(\frac{m \omega}{2 \hbar}\right)^{1 / 2}\left(x-\frac{i p}{m \omega}\right)$ where x, p are the position and momentum operators respectively.
7. (a) Show that $\left[L_{x}, L_{y}\right]=i \hbar L_{z}$
(b) Prove that $J_{+}|j m>=\sqrt{j(j+1)-m(m+1)} \hbar| j m+1>$

Given:-[$\left.J_{x}, J_{y}\right]=i \hbar J_{z}, \mid j m>$ is an eigen state of the operator J^{2} with an eigen value $j(j+1)$

PART B

Answer any FOUR of the following questions. Each question carries 5 marks. [$4 \times 5=20$]
8. Define Kroneckar delta. Explain the orthonormal property of the wave function.
9. An electron in a 2D infinite potential well needs to absorb an electromagnetic wave with a wavelength of 3500 nm to be excited from the lowest state to the next higher energy state. What is the length of the box if this is a square well potential well?
10. Construct spherical Newmann functions $n_{1}(x)$ and $n_{2}(x)$. Expand the sines and cosines to obtain approximate formulas for $n_{1}(x)$ and $n_{2}(x)$ valid when $x \ll 1$, and confirm that they blow up at the origin.
11. If $\mid \psi>=c_{1}(i|\alpha>+2| \beta>)$ and $\mid \phi>=c_{2}(|\alpha>-i| \beta>)$, find the values of c_{1} and c_{2} such that $\mid \psi>$ and $\mid \phi>$ are normalized. Assume that $\mid \alpha>$ and $\mid \beta>)$ are ortho-normal to each other.
12. If the Hamiltonian $H=\frac{P^{2}}{2 m}+\frac{1}{2} k X^{2}$, find the value of $\frac{d<P>}{d t}$. Here, P and X are the momentum and the position operators respectively.
13. If $j=\frac{1}{2}$, what are the possible values of m ?. Find the matrix form of J_{+}and J_{-}operators.

