ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

M.Sc. Physics: II SEMESTER END SEMESTER EXAMINATION: APRIL 2022 (Examination conducted in July 2022)

PH8421: Quantum Mechanics-I

Time: $2\frac{1}{2}$ hours Maximum marks: 70

This question paper has 2 printed pages and 2 parts

PART A

Answer any **FIVE** of the following questions. Each question carries 10 marks. $[5 \times 10 = 50]$

- 1. Obtain the expression for the Eigen energies and normalized Eigen functions for a particle trapped in an infinite potential well. [10]
- 2. Using the Associated Legendre function and Rodrigues formula construct the angular wave functions for $l=0,\ m=0,$ and $l=2,\ m=1.$ Where l and m are the Azimuthal and magnetic quantum numbers respectively. Check that they are normalized and orthogonal. [10]
- 3. Obtain Bohr's formula for the allowed energies for the Hydrogen atom from the radial wave equation given below.

$$\frac{\hbar^2}{2m}\frac{d^2U}{dr^2} + \left[V(r) + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}\right]~U = E~U$$

[10]

- 4. (a) Use Rodrigues formula to derive Hermite polynomials H_3 and H_4 . [5]
 - (b) Show that the eigen values associated with observables are real. What are the important properties of eigen vectors? [5]
- 5. (a) Obtain the spin matrices σ_x , σ_y and σ_z . What are the Assumptions involved in obtaining these matrices? Given: eigen vectors of i) σ_z are $|u>=\begin{pmatrix}1\\0\end{pmatrix}$, $|d>=\begin{pmatrix}0\\1\end{pmatrix}$, ii) σ_x are $|right>=\frac{1}{\sqrt{2}}(|u>+|d>)$, $|left>=\frac{1}{\sqrt{2}}(|u>-|d>)$, iii) σ_y are $|in>=\frac{1}{\sqrt{2}}(|u>+i|d>)$ and $|out>=\frac{1}{\sqrt{2}}(|u>-i|d>)$ each having eigen values of ± 1
 - (b) Write a note on unitary transformation and its importance in time evolution of a quantum system. [3]
- 6. (a) Prove that $[b,b^{\dagger}]=1$ and hence demonstrate that the Hamiltonian $H=\frac{\hbar\omega}{2}(bb^{\dagger}+b^{\dagger}b)$ can be reduced to $H=\hbar\omega(bb^{\dagger}+1/2)$
 - (b) Why is b^\dagger and b operators are called as raising and lowering operators? [3] Given:- $b=(\frac{m\omega}{2\hbar})^{1/2}(x+\frac{ip}{m\omega})$, $b^\dagger=(\frac{m\omega}{2\hbar})^{1/2}(x-\frac{ip}{m\omega})$ where x, p are the position and momentum operators respectively.

7. (a) Show that
$$[L_x,L_y]=i\hbar L_z$$
 [5]

(b) Prove that $J_{+}|jm>=\sqrt{j(j+1)-m(m+1)}\;\hbar|jm+1>$ [5]

Given:- $[J_x, J_y] = i\hbar J_z$, $|jm\rangle$ is an eigen state of the operator J^2 with an eigen value j(j+1)

PART B

Answer any **FOUR** of the following questions. Each question carries 5 marks. $[4 \times 5 = 20]$

- 8. Define Kroneckar delta. Explain the orthonormal property of the wave function.
- 9. An electron in a 2D infinite potential well needs to absorb an electromagnetic wave with a wavelength of $3500~\rm nm$ to be excited from the lowest state to the next higher energy state. What is the length of the box if this is a square well potential well?
- 10. Construct spherical Newmann functions $n_1(x)$ and $n_2(x)$. Expand the sines and cosines to obtain approximate formulas for $n_1(x)$ and $n_2(x)$ valid when $x \ll 1$, and confirm that they blow up at the origin.
- 11. If $|\psi>=c_1(i|\alpha>+2|\beta>)$ and $|\phi>=c_2(|\alpha>-i|\beta>)$, find the values of c_1 and c_2 such that $|\psi>$ and $|\phi>$ are normalized. Assume that $|\alpha>$ and $|\beta>)$ are ortho-normal to each other.
- 12. If the Hamiltonian $H = \frac{P^2}{2m} + \frac{1}{2}kX^2$, find the value of $\frac{d < P >}{dt}$. Here, P and X are the momentum and the position operators respectively.
- 13. If $j = \frac{1}{2}$, what are the possible values of m?. Find the matrix form of J_+ and J_- operators.