

Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.Sc. PHYSICS - II SEMESTER SEMESTER EXAMINATION: APRIL 2022 (Examination conducted in July 2022) PH8218 – ATOMIC AND MOLECULAR PHYSICS

(For supplementary candidates)

Time- 2 1/2 hrs

Max Marks-70

This question paper contains Two printed pages and Two parts

Part A Answer any FIVE questions. Each question carries 10 marks [5 x 10 = 50]

- 1. a). Describe the phenomenon of the normal Zeeman effect with a suitable schematic.
 - b). Sketch out the spectral patterns of sodium lines.
- 2. a). with a suitable diagram, explain the Paschen-Back effect.
 - b). Represent in a diagram the electronic, rotational and vibrational energy levels. [7+3]
- 3. a). Describe the principle of nuclear magnetic resonance and obtain the expression for the resonance condition.
 - b). How many ¹H NMR signals will arise for the given compounds. Justify your answer.
 - (i). CICH₂CH₂CI, (ii). CICH₂CH₂CH₂Br
- 4. (a). With a suitable diagram, explain the principle of electron spin resonance (ESR).
 (b). Display the Laue diffraction patterns for single crystal, polycrystal and amorphous nature.
- 5. (a). Explain the electric quadrupole moment of a nucleus.
 - (b). With a neat sketch, explain the recoilless emission and absorption of gamma rays.

[**5**+5]

[7+3]

[7+3]

- 6. (a). Describe the quantum theory of Raman effect with the help of an energy level diagram.
 (b). Distinguish between symmetric top (prolate and oblate), spherical top and symmetric top molecules.
- 7. (a). Explain the Frank-Condon Principle.
 - (b). Explain the following vibrational modes of CO_2 molecules with a necessary diagram.
 - (i). symmetric stretch, (ii). asymmetric stretch and (iii). bending modes.

[5+5]

Part B

Answer any Four questions. Each question carries 5 marks

[4 x 5 = 20]

- 8. How many hyperfine components will there be in the ESR spectrum of a system having an unpaired electron interacting with two equivalent protons?
- The fundamental and first overtone transitions of ¹⁴N¹⁶O are centred at 1876.06 cm⁻¹ and 3724.20 cm⁻¹ respectively. Evaluate the equilibrium vibrational frequency, the anharmonicity constant, and zero-point energy.
- 10. Obtain the frequencies of the quadrupolar transition for an axial field gradient (spin of the nucleus is 5/2).
- 11. Define the Larmor Precession and obtain the expression for Larmor frequency.
- 12. A Mossbauer nucleus ⁵⁷Fe makes the transition from the excited state of energy 14.4 keV to the ground state. Calculate the recoil velocity.
- 13. Determine the geometric structure factor for body centred cubic system.

List of Physics Constants

Speed of light in vacuum (c)	2.997925 x 10 ⁸ ms ⁻¹
Charge of electron (e)	1.6021 x 10 ⁻¹⁹ C
Rest mass of electron (m)	9.109 x 10 ⁻³¹ kg
Atomic mass unit (m _u)	1.6604 x 10 ⁻²⁷ kg
Electron radius (r _e)	2.828 x 10 ⁻¹⁵ m
1 Angstrom unit (Å)	10 ⁻¹⁰ m
Avogadro's number (N _A)	6.02252 x 10 ²⁶ kmol ⁻¹
Boltzmann constant (k _B)	1.38054 x 10 ⁻²³ jK ⁻¹
Thermal energy at 300K (k _B T)	0.0258 J
Planck's constant (h)	6.626 x 10 ⁻³⁴ Js
Permeability of free space (μ_0)	4π x 10 ⁻⁷ Hm ⁻¹
Permittivity of free space (ϵ_0)	8.854 x 10 ⁻¹² Fm ⁻¹
Rydberg constant for Hydrogen (R_H)	1.0967758 x 10 ⁷ m ⁻¹
Universal gas constant (Ru = N _A k _B)	8.3143 x 10 ³ Jkmol ⁻¹ K