ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 M.Sc. PHYSICS - II SEMESTER
 SEMESTER EXAMINATION: APRIL 2022
 (Examination conducted in July 2022)

PH8218 - ATOMIC AND MOLECULAR PHYSICS

(For supplementary candidates)

Time- $21 / 2 \mathrm{hrs}$

Max Marks-70

This question paper contains Two printed pages and Two parts
Part A
Answer any FIVE questions. Each question carries 10 marks
[5 x $10=50$]

1. a). Describe the phenomenon of the normal Zeeman effect with a suitable schematic.
b). Sketch out the spectral patterns of sodium lines.
2. a). with a suitable diagram, explain the Paschen-Back effect.
b). Represent in a diagram the electronic, rotational and vibrational energy levels.
3. a). Describe the principle of nuclear magnetic resonance and obtain the expression for the resonance condition.
b). How many ${ }^{1} \mathrm{H}$ NMR signals will arise for the given compounds. Justify your answer.
(i). $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, (ii). $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
4. (a). With a suitable diagram, explain the principle of electron spin resonance (ESR).
(b). Display the Laue diffraction patterns for single crystal, polycrystal and amorphous nature.
5. (a). Explain the electric quadrupole moment of a nucleus.
(b). With a neat sketch, explain the recoilless emission and absorption of gamma rays.
6. (a). Describe the quantum theory of Raman effect with the help of an energy level diagram.
(b). Distinguish between symmetric top (prolate and oblate), spherical top and symmetric top molecules.
7. (a). Explain the Frank-Condon Principle.
(b). Explain the following vibrational modes of CO_{2} molecules with a necessary diagram. (i). symmetric stretch, (ii). asymmetric stretch and (iii). bending modes.

Part B

Answer any Four questions. Each question carries 5 marks

8. How many hyperfine components will there be in the ESR spectrum of a system having an unpaired electron interacting with two equivalent protons?
9. The fundamental and first overtone transitions of ${ }^{14} \mathrm{~N}^{16} \mathrm{O}$ are centred at $1876.06 \mathrm{~cm}^{-1}$ and $3724.20 \mathrm{~cm}^{-1}$ respectively. Evaluate the equilibrium vibrational frequency, the anharmonicity constant, and zero-point energy.
10. Obtain the frequencies of the quadrupolar transition for an axial field gradient (spin of the nucleus is $5 / 2$).
11. Define the Larmor Precession and obtain the expression for Larmor frequency.
12. A Mossbauer nucleus ${ }^{57} \mathrm{Fe}$ makes the transition from the excited state of energy 14.4 keV to the ground state. Calculate the recoil velocity.
13. Determine the geometric structure factor for body centred cubic system.

List of Physics Constants

Speed of light in vacuum (c)	$2.997925 \times 10^{8} \mathrm{~ms}^{-1}$
Charge of electron (e)	$1.6021 \times 10^{-19} \mathrm{C}$
Rest mass of electron (m)	$9.109 \times 10^{-31} \mathrm{~kg}$
Atomic mass unit (mu)	$1.6604 \times 10^{-27} \mathrm{~kg}$
Electron radius (r_{e})	$2.828 \times 10^{-15} \mathrm{~m}$
1 Angstrom unit (A)	$10^{-10} \mathrm{~m}$
Avogadro's number (N_{A})	$6.02252 \times 10^{26} \mathrm{kmol}^{-1}$
Boltzmann constant (kB)	$1.38054 \times 10^{-23} \mathrm{jK}^{-1}$
Thermal energy at 300 K (kBT)	0.0258 J
Planck's constant (h)	$6.626 \times 10^{-34} \mathrm{Js}$
Permeability of free space (μ_{0})	$4 \mathrm{~m} \times 10^{-7} \mathrm{Hm}^{-1}$
Permittivity of free space (ε_{0})	$8.854 \times 10^{-12} \mathrm{Fm}^{-1}$
Rydberg constant for Hydrogen (RH_{H})	$1.0967758 \times 10^{7} \mathrm{~m}^{-1}$
Universal gas constant (Ru = NakB)	$8.3143 \times 10^{3} \mathrm{Jkmol}^{-1} \mathrm{~K}$

