Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.Sc. PHYSICS - IV SEMESTER SEMESTER EXAMINATION: APRIL 2022 (Examination conducted in July 2022) PH0120 – SOLID STATE PHYSICS

Time- 2 1/2 hrs

Max Marks-70

This question paper contains Two printed pages and Two parts

Part A Answer any FIVE questions. Each question carries 10 marks

[5 x 10 = 50]

- 1. Define reciprocal lattice. Calculate the reciprocal lattice for the following systems (i). simple cubic (SC) and (ii). body centered cubic system (BCC).
- Derive the expression for the specific heat of a linear continuous chain of molecules based on the Debye Theory for the specific heat of a linear continuous chain. Discuss the higher and lower temperature limit.
- Define density of states. Derive the expression for the density of energy states in a metal. Plot the density of states as a function of electron energy at different temperatures. [2+8]
- 4. (a). Deduce the Clausius- Mosotti relation and explain its use in predicting the dielectric constant of solids.
 - (b). With a neat sketch, describe ionic polarization and orientation polarization.

[6+4]

- 5. (a). Explain the domain theory of ferromagnetic material with a suitable diagram.
 - (b). Compare the characteristic of soft Magnetic and hard magnetic materials with a necessary diagram. [4+6]
- 6. (a). Define superconductivity. Describe the effect of magnetic field on superconducting substance with suitable diagram.
 - (b). Enumerate the properties of type I and Type II superconductors. [5+5]
- 7. (a). Define coordination number. With a neat sketch, determine the coordination number for simple cubic, BCC and FCC systems.

(b). Describe thermal expansion of solids? Obtain the expression for linear coefficient of solids. [6+4]

Part B

Answer any Four questions. Each question carries 5 marks

[4 x 5 = 20]

- 8. Find the Miller indices of a set of parallel planes which make intercepts in the ratio 3a:4b on the X and Y axes and parallel to the Z-axis. a, b, and c are primitive vectors of the lattice. Also, calculate the interplanar distance of the planes taking the lattice to be a cubic with a = b = c = 2Å.
- 9. The penetration depth of mercury at 3.5 K is about 750 Å. Estimate the penetration depth at 0 K. Calculate the superconducting electron density.
- 10. The atomic weight and density of Sulphur are 32 and 2.08 x 10³ kg m⁻³, respectively. The electronic polarizability of the atom is 3.28 x 10⁻⁴⁰ F m². If Sulphur solid has a cubic structure, calculate its dielectric constant.
- 11. For Nickel, the magnetic moment per atom is 0.6 Bohr magnetron. The density and atomic weight are 8900 kgm⁻³ and 58.71 respectively. Calculate the saturation magnetization and the saturation flux density.
- 12. While silver metal obeys the Dulong Petit's Law at room temperature, diamond does not explain.
- 13. The lattice parameter of KCl is 0.629 nm. It crystallizes like the NaCl crystal structure. The electronic polarizability of K^+ is 1.264 x 10⁻⁴⁰ Fm² and Cl^- is 3.408 x 10⁻⁴⁰ Fm². Calculate the relative permittivity of KCl crystal at optical frequencies.

Speed of light in vacuum (c)	2.997925 x 10 ⁸ ms ⁻¹
Charge of electron (e)	1.6021 x 10 ⁻¹⁹ C
Rest mass of electron (m)	9.109 x 10 ⁻³¹ kg
Atomic mass unit (mu)	1.6604 x 10 ⁻²⁷ kg
Electron radius (r _e)	2.828 x 10 ⁻¹⁵ m
1 Angstrom unit (Å)	10 ⁻¹⁰ m
Avogadro's number (NA)	6.02252 x 10 ²⁶ kmol ⁻¹
Boltzmann constant (k _B)	1.38054 x 10 ⁻²³ jK ⁻¹
Thermal energy at 300K (k _B T)	0.0258 J
Planck's constant (h)	6.626 x 10 ⁻³⁴ Js
Permeability of free space (μ_0)	4π x 10 ⁻⁷ Hm ⁻¹
Permittivity of free space (ϵ_0)	8.854 x 10 ⁻¹² Fm ⁻¹
Rydberg constant for Hydrogen (Rн)	1.0967758 x 10 ⁷ m ⁻¹
Universal gas constant (Ru = N _A k _B)	8.3143 x 10 ³ Jkmol ⁻¹ K

List of Physics Constants