Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.Sc. PHYSICS - IV SEMESTER SEMESTER EXAMINATION: APRIL 2022 (Examination conducted in July 2022) PH0118 – Experimental Physics II (For supplementary condidate)

(For supplementary candidate)

Time- 2 1/2 hrs

Max Marks-70

This question paper contains Two printed pages and Two parts

Part A Answer any FIVE questions. Each question carries 10 marks

[5 x 10 = 50]

- 1. (a). How the vacuum should be classified based on the pressure range. What are the suitable pump selections to attain ultra-high vacuum range?
 - (b). With a neat sketch, explain the physical principle of the rotary pump. [5+5]
- 2. (a). Describe the construction and working principle of Ionization gauges for pressure.

(b). Construct the ultra-high vacuum system. Explain the role of the essential components in the ultra-high vacuum system. [5+5]

3. (a). With a neat sketch, describe the construction and working principle of Sputtering process.

(b). Explain the vacuum evaporation mechanism with suitable diagram. [5+5]

4. (a). Explain the construction of scanning electron microscope (SEM) and transmission electron microscope (TEM).(b). Describe the physical principle of scanning tunneling microscope with a suitable

sketch. [6+4]

- 5. (a). With a suitable diagram, explain the working of continuous flow cryostat.
 (b). Draw and explain the phase diagram of liquid Helium (⁴He). [5+5]
- 6. Describe the working principle of the following systems. (i). Stirling -cryocooler and Gifford Mcmahon (GM) cryocooler. [5+5]
- 7. Explain Joule-Thomson Throttling and its use in liquification of gases. Derive the expression for the Joule-Thomson Coefficient in term of Joule-Thomson expansion.

Part B

Answer any Four questions. Each question carries 5 marks

[4 x 5 = 20]

8. Define tooling factor. Calculate the tooling factor of thermal evaporation for the given condition as shown in the figure.

- 9. Define De Broglie wavelength. Calculate de Broglie wavelength associated with an electron accelerated by a potential difference of 100 volts.
- 10. The formula for the mean free path of a given gas is $\lambda = \frac{K.T}{\sqrt{2}.\pi.p.d_m^2}$ where
 - K = Boltzmann's Constant $(1.381 \times 10^{-23} / K^{-1})$
 - T = Temperature (in Kelvin)
 - p = Pressure (in Pascals)
 - d = Molecular radius (~ 400 pm for air)

If a chamber is operated at ultra-high vacuum (10^{-8} mbars), what is the mean free path inside the chamber?

- 11. With a neat sketch, describe the inside- out and outside-in leak detection methods.
- 12. Define the characteristic of superfluid. Explain why Helium II has been referred to be superfluid.
- 13. Explain the difference between Thermionic and Penning Ionization gauges used to measure vacuum pressure.

List of Physics Constants

Speed of light in vacuum (c)	2.997925 x 10 ⁸ ms ⁻¹
Charge of electron (e)	1.6021 x 10 ⁻¹⁹ C
Rest mass of electron (m)	9.109 x 10 ⁻³¹ kg
Atomic mass unit (m _u)	1.6604 x 10 ⁻²⁷ kg
Electron radius (r _e)	2.828 x 10 ⁻¹⁵ m
1 Angstrom unit (Å)	10 ⁻¹⁰ m
Avogadro's number (N _A)	6.02252 x 10 ²⁶ kmol ⁻¹
Boltzmann constant (k _B)	1.38054 x 10 ⁻²³ jK ⁻¹
Thermal energy at 300K (k _B T)	0.0258 J
Planck's constant (h)	6.626 x 10 ⁻³⁴ Js
Permeability of free space (μ_0)	4π x 10 ⁻⁷ Hm ⁻¹
Permittivity of free space (ϵ_{o})	8.854 x 10 ⁻¹² Fm ⁻¹
Rydberg constant for Hydrogen (R _H)	1.0967758 x 10 ⁷ m ⁻¹
Universal gas constant (Ru = N _A k _B)	8.3143 x 10 ³ Jkmol ⁻¹ K