Part-B

21. One gram of salt is dissolved in water that is filled to a height of 5 cm in a beaker of diameter 10 cm . The accuracy of length measurement is 0.01 cm while that of mass measurement is 0.01 mg . When measuring the concentration C , the fractional error $\Delta \mathrm{C} / \mathrm{C}$ is
(a) 0.8%
(b) 0.14%
(c) 0.5%
(d) 0.28%
22. A system can have three energy levels: $\mathrm{E}=0, \pm \varepsilon$. The level $\mathrm{E}=0$ is doubly degenerate, while the others are non-degenerate. The average energy at inverse temperature β is
(a) $-\varepsilon \tanh (\beta \varepsilon)$
(b) $\frac{\varepsilon\left(\mathrm{e}^{\beta \varepsilon}-\mathrm{e}^{-\beta \varepsilon}\right)}{\left(1+\mathrm{e}^{\beta \varepsilon}+\mathrm{e}^{-\beta \varepsilon}\right)}$
(c) Zero
(d) $-\varepsilon \tanh \left(\frac{\beta \varepsilon}{2}\right)$
23. For a particular thermodynamics system the entropy S is related to the internal energy U and volume V by

$$
S=c U^{3 / 4} V^{1 / 4}
$$

where c is a constant. The Gibbs potential $G=U-T S+p V$ for this system is
(a) $\frac{3 p U}{4 T}$
(b) $\frac{c U}{3}$
(c) zero
(d) $\frac{U S}{4 V}$
24. An op-amp based voltage follower
(a) is useful for converting a low impedance source into a high impedance source
(b) is useful for converting a high impedance source into a low impedance source
(c) has infinitely high closed loop output impedance
(d) has infinitely high closed loop gain
25. A particle of mass m in three dimensions is in the potential

$$
V(r)= \begin{cases}0 & r<a \\ \infty & r \geq a\end{cases}
$$

Its ground state energy is
(a) $\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}$
(b) $\frac{\pi^{2} \hbar^{2}}{m a^{2}}$
(c) $\frac{3 \pi^{2} \hbar^{2}}{2 m a^{2}}$
(d) $\frac{9 \pi^{2} \hbar^{2}}{2 m a^{2}}$
26. Which of the graphs below gives the correct qualitative behavior of the energy density $E_{T}(\lambda)$ of blackbody radiation of wavelength λ at two temperatures T_{1} and $\mathrm{T}_{2}\left(\mathrm{~T}_{1}<\mathrm{T}_{2}\right)$?
(a)

(b)

(c)

(d)

27. Given that $\hat{p}_{r}=-i \hbar\left(\frac{\partial}{\partial r}+\frac{1}{r}\right)$, the uncertainty Δp_{r} in the ground state

$$
\psi_{0}(r)=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-r / a_{0}}
$$

of the hydrogen atom is
(a) $\frac{\hbar}{a_{0}}$
(b) $\frac{\sqrt{2} \hbar}{a_{0}}$
(c) $\frac{\hbar}{2 a_{0}}$
(d) $\frac{2 \hbar}{a_{0}}$
28. An RC network produces a phase-shift of 30°. How many such RC networks should be cascaded together and connected to a Common Emitter amplifier so that the final circuit behaves as an oscillator?
(a) 6
(b) 12
(c) 9
(d) 3
29. The free energy F of a system depends on a thermodynamics variable ψ as

$$
F=-\alpha \psi^{2}+b \psi^{6}
$$

with $\mathrm{a}, \mathrm{b}>0$. The value of ψ, when the system is in thermodynamic equilibrium, is
(a) zero
(b) $\pm(a / 6 b)^{1 / 4}$
(c) $\pm(a / 3 b)^{1 / 4}$
(d) $\pm(a / b)^{1 / 4}$
30. The inner shield of a triaxial conductor is driven by an (ideal) op-amp follower circuit as shown. The effective capacitance between the signal-carrying conductor and ground is

(a) unaffected
(b) doubled
(c) halved
(d) made zero
31. Consider a system of two non-interacting identical fermions, each of mass m in an infinite square well potential of width a. (Take the potential inside the well to be zero and ignore spin). The composite wavefunction for the system with total energy

$$
E=\frac{5 \pi^{2} \hbar^{2}}{2 m a^{2}}
$$

is
(a) $\frac{2}{a}\left[\sin \left(\frac{\pi x_{1}}{a}\right) \sin \left(\frac{2 \pi x_{2}}{a}\right)-\sin \left(\frac{2 \pi x_{1}}{a}\right) \sin \left(\frac{\pi x_{2}}{a}\right)\right]$
(b) $\frac{2}{a}\left[\sin \left(\frac{\pi x_{1}}{a}\right) \sin \left(\frac{2 \pi x_{2}}{a}\right)+\sin \left(\frac{2 \pi x_{1}}{a}\right) \sin \left(\frac{\pi x_{2}}{a}\right)\right]$
(c) $\frac{2}{a}\left[\sin \left(\frac{\pi x_{1}}{a}\right) \sin \left(\frac{3 \pi x_{2}}{2 a}\right)-\sin \left(\frac{3 \pi x_{1}}{2 a}\right) \sin \left(\frac{\pi x_{2}}{a}\right)\right]$
(d) $\frac{2}{a}\left[\sin \left(\frac{\pi x_{1}}{a}\right) \cos \left(\frac{\pi x_{2}}{a}\right)-\sin \left(\frac{\pi x_{2}}{a}\right) \sin \left(\frac{\pi x_{2}}{a}\right)\right]$
32. A particle of mass m in the potential $V(x, y)=\frac{1}{2} m \omega^{2}\left(4 x^{2}+y^{2}\right)$, is in an eigenstate of energy $E=\frac{5}{2} \hbar \omega$. The corresponding un-normalized eigenfunction is
(a) $y \exp \left[-\frac{m \omega}{2 \hbar}\left(2 x^{2}+y^{2}\right)\right]$
(b) $x \exp \left[-\frac{m \omega}{2 \hbar}\left(2 x^{2}+y^{2}\right)\right]$
(c) $y \exp \left[-\frac{m \omega}{2 \hbar}\left(x^{2}+y^{2}\right)\right]$
(d) $x y \exp \left[-\frac{m \omega}{2 \hbar}\left(x^{2}+y^{2}\right)\right]$
33. A particle of mass m and coordinate q has the Lagrangian

$$
L=\frac{1}{2} m \dot{q}^{2}-\frac{\lambda}{2} q \dot{q}^{2}
$$

where λ is a constant. The Hamiltonian for the system is given by
(a) $\frac{p^{2}}{2 m}+\frac{\lambda q p^{2}}{2 m^{2}}$
(b) $\frac{p^{2}}{2(m-\lambda q)}$
(c) $\frac{p^{2}}{2 m}+\frac{\lambda q p^{2}}{2(m-\lambda q)^{2}}$
(d) $\frac{p q}{2}$
34. If $\vec{A}=y z \hat{i}+z x \hat{j}+x y \hat{k}$ and C is the circle of unit radius in the plane defined by $\mathrm{z}=1$, with the centre on the z-axis, then the value of the integral $\oint_{C} \vec{A} \cdot \overrightarrow{d \ell}$ is
(a) $\frac{\pi}{2}$
(b)
(c) $\frac{\pi}{4}$
(d) 0
35. Given, $\sum_{n=0}^{\infty} P_{n}(x) t^{n}=\left(1-2 x t+t^{2}\right)^{-1 / 2}$, for $|t|<1$, the value of $P_{5}(-1)$ is
(a) 0.26
(b) 1
(c) 0.5
(d) -1
36. A charged particle is at a distance d from an infinite conducting plane maintained at zero potential. When released from rest, the particle reaches a speed u at a distance $d / 2$ from the plane. At what distance from the plane will the particle reach the speed 2 u ?
(a) $\mathrm{d} / 6$
(b) $\mathrm{d} / 3$
(c) $\mathrm{d} / 4$
(d) $\mathrm{d} / 5$
37. Consider the matrix

$$
M=\left(\begin{array}{ccc}
0 & 2 i & 3 i \\
-2 i & 0 & 6 i \\
-3 i & -6 i & 0
\end{array}\right)
$$

The eigenvalues of M are
(a) $-5,-2,7$
(b) $-7,0,7$
(c) $-4 \mathrm{i}, 2 \mathrm{i}, 2 \mathrm{i}$
(d) 2, 3, 6
38. Consider the differential equation $\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+x=0$ with the initial conditions $x(0)=0$ and $\dot{x}(0)=1$. The solution $x(t)$ attains its maximum value when ' t ' is
(a) $1 / 2$
(b) 1
(c) 2
(d) ∞
39. A light source is switched on and off at a constant frequency f. An observer moving with a velocity u with respect to the light source will observe the freuqency of the switching to be
(a) $f\left(1-\frac{u^{2}}{c^{2}}\right)^{-1}$
(b) $f\left(1-\frac{u^{2}}{c^{2}}\right)^{-1 / 2}$
(c) $f\left(1-\frac{u^{2}}{c^{2}}\right)$
(d) $f\left(1-\frac{u^{2}}{c^{2}}\right)^{1 / 2}$
40. If C is the contour defined by $|z|=\frac{1}{2}$, the value of the integral

$$
\oint_{C} \frac{d z}{\sin ^{2} z}
$$

is
(a) ∞
(b) $2 \pi i$
(c) 0
(d) πi
41. The time period of a simple pendulum under the influence of the acceleration due to gravity g is T . The bob is subjected to an additional acceleration of magnitude $\sqrt{3} g$ in the horizontal direction. Assuming small oscillations, the mean position and time period of oscillation, respectively, of the bob will be
(a) 0° to the vertical and $\sqrt{3} T$
(b) 30° to the vertical and $\mathrm{T} / 2$
(c) 60° to the vertical and $T / \sqrt{2}$
(d) 0° to the vertical and $T / \sqrt{3}$
42. Consider an electromagnetic wave at the interface between two homogeneouos dielectric media of the dielectric constants ε_{1} and ε_{2}. Assuming $\varepsilon_{2}>\varepsilon_{1}$ and non charges on the surface, the electric field vector \vec{E} and the displacement vector \vec{D} in the two media satisfy the following inequalities
(a) $\left|\vec{E}_{2}\right|>\left|\vec{E}_{1}\right|$ and $\left|\vec{D}_{2}\right|>\left|\vec{D}_{1}\right|$
(b) $\left|\vec{E}_{2}\right|<\left|\vec{E}_{1}\right|$ and $\left|\vec{D}_{2}\right|<\left|\vec{D}_{1}\right|$
(c) $\left|\vec{E}_{2}\right|<\left|\vec{E}_{1}\right|$ and $\left|\vec{D}_{2}\right|>\left|\vec{D}_{1}\right|$
(d) $\left|\vec{E}_{2}\right|>\left|\vec{E}_{1}\right|$ and $\left|\vec{D}_{2}\right|<\left|\vec{D}_{1}\right|$
43. If the electrostatic potential in spherical polar coordinates is
$\varphi(r)=\varphi_{0} e^{-r / r_{0}}$
where φ_{0} and r_{0} are constants, then the charge density at a distance $r=r_{0}$ will be
(a) $\frac{\varepsilon_{0} \varphi_{0}}{e r_{0}^{2}}$
(b) $\frac{e \varepsilon_{0} \varphi_{0}}{2 r_{0}^{2}}$
(c) $-\frac{\varepsilon_{0} \varphi_{0}}{e r_{0}^{2}}$
(d) $-\frac{2 e \varepsilon_{0} \varphi_{0}}{r_{0}^{2}}$
44. A current i_{p} flows through the primary coil of a transformer. The graph of $i_{P}(t)$ as a function of time ' t ' is shown in figure below

Which of the following graph represents the current i_{S} in the secondary coil?
(a)

(b)

(c)

(d)

45. A time-dependent current $\vec{I}(t)=K t \hat{z}$ (where K is a constant) is switched on at $t=0$ in an infinite current-carrying wire. The magnetic vector potential at a perpendicular distance ' a ' from the wire is given (for time $t>a / c$) by
(a) $\hat{z} \frac{\mu_{0} K}{4 \pi c} \int_{-\sqrt{c^{2} t^{2}-a^{2}}}^{\sqrt{c^{2} t^{2}-a^{2}}} d z \frac{c t-\sqrt{a^{2}+z^{2}}}{\left(a^{2}+z^{2}\right)^{1 / 2}}$
(b) $\hat{z} \frac{\mu_{0} K}{4 \pi} \int_{-c t}^{c t} d z \frac{t}{\left(a^{2}+z^{2}\right)^{1 / 2}}$
(c) $\hat{z} \frac{\mu_{0} K}{4 \pi c} \int_{-c t}^{c t} d z \frac{c t-\sqrt{a^{2}+z^{2}}}{\left(a^{2}+z^{2}\right)^{1 / 2}}$
(d) $\hat{z} \frac{\mu_{0} K}{4 \pi} \int_{-\sqrt{c^{2} t^{2}-a^{2}}}^{\sqrt{c^{2} t^{2}-a^{2}}} d z \frac{t}{\left(a^{2}+z^{2}\right)^{1 / 2}}$

PART-C

46. The pressure of a non-relativistic free Fermi gas in three-dimensions depends, at $\mathrm{T}=0$, on the density of fermions n as
(a) $n^{5 / 3}$
(b) $n^{1 / 3}$
(c) $n^{2 / 3}$
(d) $n^{4 / 3}$
47. A doubel slit interference experiment uses a laser emitting light of two adjacent frequencies v_{1} and v_{2} $\left(v_{1}<v_{2}\right)$. The minimum path difference between the interfering beams for which the interference pattern disappears is
(a) $\frac{c}{v_{2}+v_{1}}$
(b) $\frac{c}{v_{2}-v_{1}}$
(c) $\overline{2\left(v_{2}-v_{1}\right)}$
(d) $\frac{c}{2\left(v_{2}+v_{1}\right)}$
48. The recently-discovered Higgs boson at hte LHC experiment has a decay mode into a photon and a Z boson. If the rest masses of the Higgs and Z boson are $125 \mathrm{GeV} / \mathrm{c}^{2}$ and $90 \mathrm{GeV} / \mathrm{c}^{2}$ respectively, and the decaying Higgs particle is at rest, the energy of the photon will approximately be
(a) $35 \sqrt{3} \mathrm{GeV}$
(b) 35 GeV
(c) 30 GeV
(d) 15 GeV
49. A permanently deformed even-even nucleus with $\mathrm{J}^{\mathrm{P}}=2^{+}$has rotational energy 93 keV . The energy of the next excited state is
(a) 372 keV
(b) 310 keV
(c) 273 keV
(d) 186 keV
50. How much does the total angular momentum quantum number J change in the transition of $\mathrm{Cr}\left(3 \mathrm{~d}^{6}\right)$ atom as it ionizes to $\mathrm{Cr}^{2+}\left(3 \mathrm{~d}^{4}\right)$?
(a) increases by 2
(b) decreases by 2
(c) decreases by 4
(d) does not change
51. For the logic circuit shown in the figure below

a simplified equivalent circuit is
(a)

(b)

(c)

(d)
A
\bar{C}
\bar{C}

52. A spectral line due to a transition from an electronic state p to an s state splits into three Zeeman lines in the presence of a strong magnetic field. At intermediate field strengths the number of spectral lines is
(a) 10
(b) 3
(c) 6
(d) 9
53. A particle in the infinite square well

$$
V(x)= \begin{cases}0 & 0<x<a \\ \infty & \text { otherwise }\end{cases}
$$

is prepared in a state with the wavefunction

$$
\psi(x)= \begin{cases}A \sin ^{3}\left(\frac{\pi x}{a}\right) & 0<x<a \\ 0 & \text { otherwise }\end{cases}
$$

The expectation value of the energy of the particle is
(a) $\frac{5 \hbar^{2} \pi^{2}}{2 m a^{2}}$
(b) $\frac{9 \hbar^{2} \pi^{2}}{2 m a^{2}}$
(c) $\frac{9 \hbar^{2} \pi^{2}}{10 m a^{2}}$
(d) $\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}$
54. The average local internal magnetic field acting on an Ising spin is $H_{\mathrm{int}}=\alpha M$, where M is the magnetization and α is a positive constant. At a temperature T sufficiently close to (and above) the critical temperature T_{c}, the magnetic susceptibility at zero external field is proportional to (k_{B} is the Boltzmann constant)
(a) $k_{B} T-\alpha$
(b) $\left(k_{B} T+\alpha\right)^{-1}$
(c) $\left(k_{B} T-\alpha\right)^{-1}$
(d) $\tanh \left(k_{B} T+\alpha\right)$
55. In one dimension, a random walker takes a step with equal probability to the left or right. What is the probability that the walker returns to the starting point after 4 steps?
(a) $3 / 8$
(b) $5 / 16$
(c) $1 / 4$
(d) $1 / 16$
56. Consider an electron in a b.c.c. lattice with lattice constant a. A single particle wavefunction that satisfies the Bloch theorem will have the form $f(\vec{r}) \exp (i \vec{k} \cdot \vec{r})$, with $f(\vec{r})$ being
(a) $1+\cos \left[\frac{2 \pi}{a}(x+y-z)\right]+\cos \left[\frac{2 \pi}{a}(-x+y+z)\right]+\cos \left[\frac{2 \pi}{a}(x-y+z)\right]$
(b) $1+\cos \left[\frac{2 \pi}{a}(x+y)\right]+\cos \left[\frac{2 \pi}{a}(y+z)\right]+\cos \left[\frac{2 \pi}{a}(z+x)\right]$
(c) $1+\cos \left[\frac{\pi}{a}(x+y)\right]+\cos \left[\frac{\pi}{a}(y+z)\right]+\cos \left[\frac{\pi}{a}(z+x)\right]$
(d) $1+\cos \left[\frac{\pi}{a}(x+y-z)\right]+\cos \left[\frac{\pi}{a}(-x+y+z)\right]+\cos \left[\frac{\pi}{a}(x-y+z)\right]$
57. The dispersion relation for electrons in an f.c.c. crystal is given, in the tight binding approximation by

$$
\varepsilon(k)=-4 \varepsilon_{0}\left[\cos \frac{k_{x} a}{2} \cos \frac{k_{y} a}{2}+\cos \frac{k_{y} a}{2} \cos \frac{k_{z} a}{2}+\cos \frac{k_{z} a}{2} \cos \frac{k_{x} a}{2}\right]
$$

where ' a ' is the lattice constant and ε_{0} is a constant with the dimension of energy. The x-component of the velocity of the electrons at $\left(\frac{\pi}{a}, 0,0\right)$ is
(a) $-\frac{2 \varepsilon_{0} a}{\hbar}$
(b) $\frac{2 \varepsilon_{0} a}{\hbar}$
(c) $-\frac{4 \varepsilon_{0} a}{\hbar}$
(d) $\frac{4 \varepsilon_{0} a}{\hbar}$
58. The following data is obtained in an expriment that measures the viscosity η as a function of molecular weight M for a set of polymers.

$M(D a)$	
990	
5032	0.28 ± 0.03
10191	30 ± 2
19825	250 ± 10
	2000 ± 200

The relation that best describes the dependence of η on M is
(a) $\eta \sim M^{4 / 9}$
(b) $\eta \sim M^{3 / 2}$
(c) $\eta \sim M^{2}$
(d) $\eta \sim M^{3}$
59. The integral $\int_{0}^{1} \sqrt{x} d x$ is to be evaluated up to 3 decimal places using Simpson's 3-point rule. If the interval $[0,1]$ is divided into 4 equal parts, the correct result is
(a) 0.683
(b) 0.667
(c) 0.657
(d) 0.638
60. In a classical model, a scalar (spin-0) meson consists of a quark and an antiquark bound by a potential

$$
V(r)=a r+\frac{b}{r}
$$

where $\mathrm{a}=200 \mathrm{MeV} \mathrm{fm}^{-1}$ and $\mathrm{b}=100 \mathrm{MeV} \mathrm{fm}$. If the masses of the quark and antiquark are negligible, the mass of the meson can be estimated as approximately
(a) $141 \mathrm{MeV} / \mathrm{c}^{2}$
(b) $283 \mathrm{MeV} / \mathrm{c}^{2}$
(c) $353 \mathrm{MeV} / \mathrm{c}^{2}$
(d) $425 \mathrm{MeV} / \mathrm{c}^{2}$
61. Let $y=\frac{1}{2}\left(x_{1}+x_{2}\right)-\mu$, where x_{1} and x_{2} are independent and identically distributed Gaussian random variables of mean μ and standard deviation σ. Then $\frac{\left\langle y^{4}\right\rangle}{\sigma^{4}}$ is
(a) 1
(b) $\frac{3}{4}$
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$
62. The graph of a real periodic function $f(x)$ for the range $[-\infty, \infty]$ is shown below

Which of the following graphs represents the real part of its Fourier transform?
(a)

(b)

(c)

(d)

63. The matrices
$A=\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $C=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
satisfy the commutation relations
(a) $[A, B]=B+C,[B, C]=0,[C, A]=B+C$ ENDEAVOUR
(b) $[A, B]=C,[B, C]=A,[C, A]=B$
(c) $[A, B]=B,[B, C]=0,[C, A]=A$
(d) $[A, B]=C,[B, C]=0,[C, A]=B$
64. The function $\Phi(x, y, z, t)=\cos (z-v t)+\operatorname{Re}(\sin (x+i y))$ satisfies the equation
(a) $\frac{1}{v^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \Phi$
(b) $\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \Phi=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \Phi$
(c) $\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial z^{2}}\right) \Phi=\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}\right) \Phi$
(d) $\left(\frac{\partial^{2}}{\partial z^{2}}-\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \Phi=\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}\right) \Phi$
65. The coordinates and momenta $x_{i}, p_{i}(i=1,2,3)$ of a particle satisfy the canonical Poisson bracket relations $\left\{x_{i}, p_{j}\right\}=\delta_{i j}$. If $C_{1}=x_{2} p_{3}+x_{3} p_{2}$ and $C_{2}=x_{1} p_{2}-x_{2} p_{1}$ are constants of motion, and if $C_{3}=\left\{C_{1}, C_{2}\right\}=x_{1} p_{3}+x_{3} p_{1}$, then
(a) $\left\{C_{2}, C_{3}\right\}=C_{1}$ and $\left\{C_{3}, C_{1}\right\}=C_{2}$
(b) $\left\{C_{2}, C_{3}\right\}=-C_{1}$ and $\left\{C_{3}, C_{1}\right\}=-C_{2}$
(c) $\left\{C_{2}, C_{3}\right\}=-C_{1}$ and $\left\{C_{3}, C_{1}\right\}=C_{2}$
(d) $\left\{C_{2}, C_{3}\right\}=C_{1}$ and $\left\{C_{3}, C_{1}\right\}=-C_{2}$
66. A canonical transformation relates the old coordinates (q, p) to the new ones (Q, P) by the relations $\mathrm{Q}=\mathrm{q}^{2}$ and $\mathrm{P}=\mathrm{p} / 2 \mathrm{q}$. The corresonding time-independent generating function is
(a) $\frac{P}{q^{2}}$
(b) $q^{2} P$
(c) q^{2} / P
(d) $q P^{2}$
67. The time evolution of a one-dimensional dynamical system is described by

$$
\frac{d x}{d t}=-(x+1)\left(x^{2}-b^{2}\right)
$$

If this has one stable and two unstable fixed points, then the parameter ' b ' satisfies
(a) $0<$ b <1
(b) $\mathrm{b}>1$
(c) $\mathrm{b}<-1$
(d) $\mathrm{b}=2$
68. A charge $(-\mathrm{e})$ is placed in vacuum at the point $(\mathrm{d}, 0,0)$, where $\mathrm{d}>0$. The region $x \leq 0$ is filled uniformly with a metal. The electric field at the point $\left(\frac{d}{2}, 0,0\right)$ is
(a) $-\frac{10 e}{9 \pi \varepsilon_{0} d^{2}}(1,0,0)$
(b) $\frac{10 e}{9 \pi \varepsilon_{0} d^{2}}(1,0,0)$
(c) $\frac{e}{\pi \varepsilon_{0} d^{2}}(1,0,0)$
(d) $-\frac{e}{\pi \varepsilon_{0} d^{2}}(1,0,0)$
69. An electron is in the ground state of a hydrogen atom. The probability that it is within the Bohr radius is approximately equal to
(a) 0.60
(b) 0.90
(c) 0.16
(d) 0.32
70. A beam of light of frequency ω is reflected from a dielectric-metal interface at normal incience. The refractive index of the dielectric medium is n and that of the metal is $n_{2}=n(1+i \rho)$. If the beam is polarised parallel to the interface, then the phase change experienced by the light upon reflection is
(a) $\tan \left(\frac{2}{\rho}\right)$
(b) $\tan ^{-1}\left(\frac{1}{\rho}\right)$
(c) $\tan ^{-1}\left(\frac{2}{\rho}\right)$
(d) $\tan ^{-1}(2 \rho)$
71. The scattering amplitude $f(\theta)$ for the potential $V(r)=\beta e^{-\mu r}$, where β and μ are positive constants, is given, in the Born approximation by (in the following $b=2 k \sin \frac{\theta}{2}$ and $E=\frac{\hbar^{2} k^{2}}{2 m}$)
(a) $-\frac{4 m \beta \mu}{\hbar^{2}\left(b^{2}+\mu^{2}\right)^{2}}$
(b) $-\frac{4 m \beta \mu}{\hbar^{2} b^{2}\left(b^{2}+\mu^{2}\right)}$
(c) $-\frac{4 m \beta \mu}{\hbar^{2} \sqrt{b^{2}+\mu^{2}}}$
(d) $-\frac{4 m \beta \mu}{\hbar^{2}\left(b^{2}+\mu^{2}\right)^{3}}$
72. The ground state eigenfunction for the potential $V(x)=-\delta(x)$, where $\delta(x)$ is the delta function, is given by $\psi(x)=A e^{-\alpha|x|}$, where A and $\alpha>0$ are constants. If a perturbation $H^{\prime}=b x^{2}$ is applied, the first order correction to the energy of the ground state will be
(a) $\frac{b}{\sqrt{2} \alpha^{2}}$
(b) $\frac{b}{\alpha^{2}}$
(c) $\frac{2 b}{\alpha^{2}}$
(d) $\frac{b}{2 \alpha^{2}}$
73. A thin infinitely long solenoid placed along the z-axis contains a magnetic flux ϕ. Which of the following vector potentials corresponds to the magnetic field at an arbitrary point (x, y, z) ?
(a) $\left(A_{x}, A_{y}, A_{z}\right)=\left(-\frac{\phi}{2 \pi} \frac{y}{x^{2}+y^{2}}, \frac{\phi}{2 \pi} \frac{x}{x^{2}+y^{2}}, 0\right)$
(b) $\left(A_{x}, A_{y}, A_{z}\right)=\left(-\frac{\phi}{2 \pi} \frac{y}{x^{2}+y^{2}+z^{2}}, \frac{\phi}{2 \pi} \frac{x}{x^{2}+y^{2}+z^{2}}, 0\right)$
(c) $\left(A_{x}, A_{y}, A_{z}\right)=\left(-\frac{\phi}{2 \pi} \frac{x+y}{x^{2}+y^{2}}, \frac{\phi}{2 \pi} \frac{x+y}{x^{2}+y^{2}}, 0\right)$
(d) $\left(A_{x}, A_{y}, A_{z}\right)=\left(-\frac{\phi}{2 \pi} \frac{x}{x^{2}+y^{2}}, \frac{\phi}{2 \pi} \frac{y}{x^{2}+y^{2}}, 0\right)$
74. The van der Waals equation of state for a gas is given by

$$
\left(P+\frac{a}{V^{2}}\right)(V-b)=R T
$$

where, P, V and T represent the pressure, volume and temperature respectively, and a and b are constant parameters. At the critical point, where all the roots of the above cubic equation are degenerate, the volume is given by
(a) $\frac{a}{9 b}$
(b) $\frac{a}{27 b^{2}}$
(c) $\frac{8 a}{27 b R}$
(d) $3 b$
75. An electromagnetically-shielded room is designed so that at a frequency $\omega=10^{7} \mathrm{rad} / \mathrm{s}$ the intensity of the external radiation that penerates the room is 1% of the incident radiation. If $\sigma=\frac{1}{2 \pi} \times 10^{6}(\Omega \mathrm{~m})^{-1}$ is the conductivity of the shielding material, its minimum thickness should be (given that $\ln 10=2.3$)
(a) 4.60 mm
(b) 2.30 mm
(c) 0.23 mm
(d) 0.46 mm

