CSIR-UGC-NET/JRF- JUNE - 2014

PHYSICAL SCIENCES BOOKLET - [C]

Part-B

21. One gram of salt is dissolved in water that is filled to a height of 5 cm in a beaker of diameter 10 cm. The accuracy of length measurement is 0.01 cm while that of mass measurement is 0.01 mg. When measuring the concentration C, the fractional error $\Delta C/C$ is

(a) 0.8%

(b) 0.14%

(c) 0.5%

(d) 0.28%

22. A system can have three energy levels: $E = 0, \pm \varepsilon$. The level E = 0 is doubly degenerate, while the others are non-degenerate. The average energy at inverse temperature β is

(a) $-\varepsilon \tanh(\beta \varepsilon)$

(b) $\frac{\varepsilon \left(e^{\beta \varepsilon} - e^{-\beta \varepsilon}\right)}{\left(1 + e^{\beta \varepsilon} + e^{-\beta \varepsilon}\right)}$ (c) Zero

(d) $-\varepsilon \tanh\left(\frac{\beta\varepsilon}{2}\right)$

23. For a particular thermodynamics system the entropy S is related to the internal energy U and volume V by

 $S - c U^{3/4} V^{1/4}$

where c is a constant. The Gibbs potential G = U - TS + pV for this system is

(a) $\frac{3pU}{4T}$

(b) $\frac{cU}{3}$ (c) zero

(d) $\frac{US}{4V}$

- 24. An op-amp based voltage follower
 - (a) is useful for converting a low impedance source into a high impedance source
 - (b) is useful for converting a high impedance source into a low impedance source
 - (c) has infinitely high closed loop output impedance
 - (d) has infinitely high closed loop gain
- 25. A particle of mass m in three dimensions is in the potential

Its ground state energy is

(a) $\frac{\pi^2 \hbar^2}{2ma^2}$

(b) $\frac{\pi^2 \hbar^2}{ma^2}$ (c) $\frac{3\pi^2 \hbar^2}{2ma^2}$ (d) $\frac{9\pi^2 \hbar^2}{2ma^2}$

26. Which of the graphs below gives the correct qualitative behavior of the energy density $E_T(\lambda)$ of blackbody radiation of wavelength λ at two temperatures T_1 and T_2 $(T_1 < T_2)$?

Given that $\hat{p}_r = -i\hbar \left(\frac{\partial}{\partial r} + \frac{1}{r} \right)$, the uncertainty Δp_r in the ground state 27.

$$\psi_0(r) = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$$

of the hydrogen atom is

- (a) $\frac{\hbar}{a_0}$
- (b) $\frac{\sqrt{2}\hbar}{a_2}$
- (c) $\frac{\hbar}{2a_0}$
- 28. An RC network produces a phase-shift of 30°. How many such RC networks should be cascaded together and connected to a Common Emitter amplifier so that the final circuit behaves as an oscillator?
 - (a) 6
- (b) 12
- (c)9

- 29. The free energy F of a system depends on a thermodynamics variable ψ as

$$F = -\alpha \psi^2 + b \psi^6$$

with a, b > 0. The value of ψ , when the system is in thermodynamic equilibrium, is

- (a) zero
- (b) $\pm (a/6b)^{1/4}$ (c) $\pm (a/3b)^{1/4}$ (d) $\pm (a/b)^{1/4}$
- The inner shield of a triaxial conductor is driven by an (ideal) op-amp follower circuit as shown. The 30. effective capacitance between the signal-carrying conductor and ground is

- (a) unaffected
- (b) doubled
- (c) halved
- (d) made zero
- 31. Consider a system of two non-interacting identical fermions, each of mass m in an infinite square well potential of width a. (Take the potential inside the well to be zero and ignore spin). The composite wavefunction for the system with total energy

$$E = \frac{5\pi^2 \hbar^2}{2ma^2}$$

is

(a)
$$\frac{2}{a} \left[\sin \left(\frac{\pi x_1}{a} \right) \sin \left(\frac{2\pi x_2}{a} \right) - \sin \left(\frac{2\pi x_1}{a} \right) \sin \left(\frac{\pi x_2}{a} \right) \right]$$

(b)
$$\frac{2}{a} \left[\sin \left(\frac{\pi x_1}{a} \right) \sin \left(\frac{2\pi x_2}{a} \right) + \sin \left(\frac{2\pi x_1}{a} \right) \sin \left(\frac{\pi x_2}{a} \right) \right]$$

(c)
$$\frac{2}{a} \left[\sin \left(\frac{\pi x_1}{a} \right) \sin \left(\frac{3\pi x_2}{2a} \right) - \sin \left(\frac{3\pi x_1}{2a} \right) \sin \left(\frac{\pi x_2}{a} \right) \right]$$

(d)
$$\frac{2}{a} \left[\sin \left(\frac{\pi x_1}{a} \right) \cos \left(\frac{\pi x_2}{a} \right) - \sin \left(\frac{\pi x_2}{a} \right) \sin \left(\frac{\pi x_2}{a} \right) \right]$$

A particle of mass m in the potential $V(x, y) = \frac{1}{2}m\omega^2(4x^2 + y^2)$, is in an eigenstate of energy 32. $E = \frac{5}{2}\hbar\omega$. The corresponding un-normalized eigenfunction is

(a)
$$y \exp \left[-\frac{m\omega}{2\hbar} \left(2x^2 + y^2 \right) \right]$$
 (b) $x \exp \left[-\frac{m\omega}{2\hbar} \left(2x^2 + y^2 \right) \right]$

(b)
$$x \exp \left[-\frac{m\omega}{2\hbar} \left(2x^2 + y^2 \right) \right]$$

(c)
$$y \exp \left[-\frac{m\omega}{2\hbar} \left(x^2 + y^2 \right) \right]$$

(d)
$$xy \exp \left[-\frac{m\omega}{2\hbar} (x^2 + y^2) \right]$$

33. A particle of mass m and coordinate q has the Lagrangian

$$L = \frac{1}{2}m\dot{q}^2 - \frac{\lambda}{2}q\dot{q}^2$$

where λ is a constant. The Hamiltonian for the system is given by

(a)
$$\frac{p^2}{2m} + \frac{\lambda q p^2}{2m^2}$$

(b)
$$\frac{p^2}{2(m-\lambda q)}$$

(a)
$$\frac{p^2}{2m} + \frac{\lambda q p^2}{2m^2}$$
 (b) $\frac{p^2}{2(m-\lambda q)}$ (c) $\frac{p^2}{2m} + \frac{\lambda q p^2}{2(m-\lambda q)^2}$ (d) $\frac{pq}{2}$

If $\vec{A} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ and C is the circle of unit radius in the plane defined by z = 1, with the centre 34. on the z-axis, then the value of the integral $\oint_C \vec{A} \cdot \vec{d\ell}$ is

(a)
$$\frac{\pi}{2}$$

(b)
$$\pi$$
AREER $E_{(c)} \frac{\pi}{4} EAVOUR_{(d)} 0$

Given, $\sum_{n=0}^{\infty} P_n(x) t^n = (1-2xt+t^2)^{-1/2}$, for |t| < 1, the value of $P_5(-1)$ is 35.

(a) 0.26

A charged particle is at a distance d from an infinite conducting plane maintained at zero potential. 36. When released from rest, the particle reaches a speed u at a distance d/2 from the plane. At what distance from the plane will the particle reach the speed 2u?

(a) d/6

(b) d/3

(d) d/5

37. Consider the matrix

$$M = \begin{pmatrix} 0 & 2i & 3i \\ -2i & 0 & 6i \\ -3i & -6i & 0 \end{pmatrix}$$

The eigenvalues of M are

$$(a) -5, -2, 7$$

(b) -7, 0, 7

$$(c)$$
 $-4i$, $2i$, $2i$

(d) 2, 3, 6

- Consider the differential equation $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 0$ with the initial conditions x(0) = 0 and 38.
 - $\dot{x}(0) = 1$. The solution x(t) attains its maximum value when 't' is
 - (a) 1/2
- (b) 1

- (c) 2
- (d) ∞
- A light source is switched on and off at a constant frequency f. An observer moving with a velocity 39. u with respect to the light source will observe the freugency of the switching to be

 - (a) $f\left(1-\frac{u^2}{c^2}\right)^{-1}$ (b) $f\left(1-\frac{u^2}{c^2}\right)^{-1/2}$ (c) $f\left(1-\frac{u^2}{c^2}\right)$
- If C is the contour defined by $|z| = \frac{1}{2}$, the value of the integral 40.
 - $\oint_C \frac{dz}{\sin^2 z}$

is

- (a) ∞
- (b) $2\pi i$
- (c) 0
- (d) πi
- The time period of a simple pendulum under the influence of the acceleration due to gravity g is T. 41. The bob is subjected to an additional acceleration of magnitude $\sqrt{3}g$ in the horizontal direction. Assuming small oscillations, the mean position and time period of oscillation, respectively, of the bob will be
 - (a) 0° to the vertical and $\sqrt{3}T$
- (b) 30° to the vertical and T/2
- (c) 60° to the vertical and $T/\sqrt{2}$
- (d) 0° to the vertical and $T/\sqrt{3}$
- 42. Consider an electromagnetic wave at the interface between two homogeneous dielectric media of the dielectric constants ε_1 and ε_2 . Assuming $\varepsilon_2 > \varepsilon_1$ and non charges on the surface, the electric field vector \vec{E} and the displacement vector \vec{D} in the two media satisfy the following inequalities
- (a) $|\vec{E}_2| > |\vec{E}_1|$ and $|\vec{D}_2| > |\vec{D}_1|$ (b) $|\vec{E}_2| < |\vec{E}_1|$ and $|\vec{D}_2| < |\vec{D}_1|$ (c) $|\vec{E}_2| < |\vec{E}_1|$ and $|\vec{D}_2| < |\vec{D}_1|$ (d) $|\vec{E}_2| > |\vec{E}_1|$ and $|\vec{D}_2| < |\vec{D}_1|$
- 43. If the electrostatic potential in spherical polar coordinates is

$$\varphi(r) = \varphi_0 e^{-r/r_0}$$

where φ_0 and r_0 are constants, then the charge density at a distance $r = r_0$ will be

- (a) $\frac{\varepsilon_0 \varphi_0}{e r_0^2}$

- (b) $\frac{e\varepsilon_0\varphi_0}{2r_0^2}$ (c) $-\frac{\varepsilon_0\varphi_0}{er_0^2}$ (d) $-\frac{2e\varepsilon_0\varphi_0}{r_0^2}$
- A current i_p flows through the primary coil of a transformer. The graph of $i_p(t)$ as a function of time 44. 't' is shown in figure below

Which of the following graph represents the current i_s in the secondary coil?

A time-dependent current $\vec{I}(t) = Kt\hat{z}$ (where K is a constant) is switched on at t = 0 in an infinite 45. current-carrying wire. The magnetic vector potential at a perpendicular distance 'a' from the wire is given (for time t > a/c) by

(a)
$$\hat{z} \frac{\mu_0 K}{4\pi c} \int_{-\sqrt{c^2 t^2 - a^2}}^{\sqrt{c^2 t^2 - a^2}} dz \frac{ct - \sqrt{a^2 + z^2}}{\left(a^2 + z^2\right)^{1/2}}$$

(b)
$$\hat{z} \frac{\mu_0 K}{4\pi} \int_{-ct}^{ct} dz \frac{t}{(a^2 + z^2)^{1/2}}$$

(c)
$$\hat{z} \frac{\mu_0 K}{4\pi c} \int_{-ct}^{ct} dz \frac{ct - \sqrt{a^2 + z^2}}{\left(a^2 + z^2\right)^{1/2}}$$

(d)
$$\hat{z} \frac{\mu_0 K}{4\pi} \int_{-\sqrt{c^2 t^2 - a^2}}^{\sqrt{c^2 t^2 - a^2}} dz \frac{t}{\left(a^2 + z^2\right)^{1/2}}$$

PART-C

The pressure of a non-relativistic free Fermi gas in three-dimensions depends, at T = 0, on the 46. density of fermions n as

(a)
$$n^{5/3}$$

(b)
$$n^{1/3}$$

(c)
$$n^{2/3}$$

(d)
$$n^{4/3}$$

A doubel slit interference experiment uses a laser emitting light of two adjacent frequencies v_1 and v_2 47. $(v_1 < v_2)$. The minimum path difference between the interfering beams for which the interference (b) $v_2 + v_1$ are erest $2(v_2 + v_1)$ our $2(v_2 + v_1)$ pattern disappears is

(a)
$$\frac{c}{v_2 + v_1}$$

(b)
$$\frac{c}{v_2 + v_1}$$

(c)
$$\frac{c}{2(v_2 - v_1)}$$

(d)
$$\frac{c}{2(v_2 + v_1)}$$

- The recently-discovered Higgs boson at hte LHC experiment has a decay mode into a photon and a 48. Z boson. If the rest masses of the Higgs and Z boson are 125 GeV/c² and 90 GeV/c² respectively, and the decaying Higgs particle is at rest, the energy of the photon will approximately be
 - (a) $35\sqrt{3}$ GeV
- (b) 35 GeV
- (c) 30 GeV
- (d) 15 GeV
- A permanently deformed even-even nucleus with $J^P = 2^+$ has rotational energy 93 keV. The energy of 49. the next excited state is
 - (a) 372 keV
- (b) 310 keV
- (c) 273 keV
- (d) 186 keV
- 50. How much does the total angular momentum quantum number J change in the transition of Cr(3d⁶) atom as it ionizes to $Cr^{2+}(3d^4)$?
 - (a) increases by 2
- (b) decreases by 2
- (c) decreases by 4
- (d) does not change

51. For the logic circuit shown in the figure below

a simplified equivalent circuit is

- 52. A spectral line due to a transition from an electronic state p to an s state splits into three Zeeman lines in the presence of a strong magnetic field. At intermediate field strengths the number of spectral lines is
 - (a) 10
- (b) 3

- 53.

(a) 10 (b) 3 (c) 6 (d) 9
A particle in the infinite square well **REER ENDEAVOUR**

$$V(x) = \begin{cases} 0 & 0 < x < a \\ \infty & \text{otherwise} \end{cases}$$

is prepared in a state with the wavefunction

$$\psi(x) = \begin{cases} A \sin^3 \left(\frac{\pi x}{a}\right) & 0 < x < a \\ 0 & \text{otherwise} \end{cases}$$

The expectation value of the energy of the particle is

- (a) $\frac{5\hbar^2\pi^2}{2ma^2}$
- (b) $\frac{9\hbar^2\pi^2}{2ma^2}$ (c) $\frac{9\hbar^2\pi^2}{10ma^2}$ (d) $\frac{\hbar^2\pi^2}{2ma^2}$
- 54. The average local internal magnetic field acting on an Ising spin is $H_{\text{int}} = \alpha M$, where M is the magnetization and α is a positive constant. At a temperature T sufficiently close to (and above) the critical temperature T_c , the magnetic susceptibility at zero external field is proportional to $(k_{_{\rm B}}$ is the Boltzmann constant)
 - (a) $k_BT \alpha$

- (b) $(k_B T + \alpha)^{-1}$ (c) $(k_B T \alpha)^{-1}$ (d) $\tanh(k_B T + \alpha)$

55.	In one dimension, a random walker takes a step with equal probability to the left or right. What is the probability that the walker returns to the starting point after 4 steps?					
	(a) 3/8 (b) 5/16 (c) 1/4 (d) 1/16					
56.	Consider an electron in a b.c.c. lattice with lattice constant a. A single particle wavefunction that					
	satisfies the Bloch theorem will have the form $f(\vec{r})\exp(i\vec{k}\cdot\vec{r})$, with $f(\vec{r})$ being					
	(a) $1 + \cos\left[\frac{2\pi}{a}(x+y-z)\right] + \cos\left[\frac{2\pi}{a}(-x+y+z)\right] + \cos\left[\frac{2\pi}{a}(x-y+z)\right]$					
	(b) $1 + \cos\left[\frac{2\pi}{a}(x+y)\right] + \cos\left[\frac{2\pi}{a}(y+z)\right] + \cos\left[\frac{2\pi}{a}(z+x)\right]$					
	(c) $1 + \cos\left[\frac{\pi}{a}(x+y)\right] + \cos\left[\frac{\pi}{a}(y+z)\right] + \cos\left[\frac{\pi}{a}(z+x)\right]$					
	(d) $1 + \cos\left[\frac{\pi}{a}(x+y-z)\right] + \cos\left[\frac{\pi}{a}(-x+y+z)\right] + \cos\left[\frac{\pi}{a}(x-y+z)\right]$					
57.	The dispersion relation for electrons in an f.c.c. crystal is given, in the tight binding approximation by					
	$\varepsilon(k) = -4\varepsilon_0 \left[\cos \frac{k_x a}{2} \cos \frac{k_y a}{2} + \cos \frac{k_y a}{2} \cos \frac{k_z a}{2} + \cos \frac{k_z a}{2} \cos \frac{k_x a}{2} \right]$					
	where 'a' is the lattice constant and ε_0 is a constant with the dimension of energy. The x-component					
	of the velocity of the electrons at $\left(\frac{\pi}{a},0,0\right)$ is					
	(a) $-\frac{2\varepsilon_0 a}{\hbar}$ (b) $\frac{2\varepsilon_0 a}{\hbar}$ (c) $-\frac{4\varepsilon_0 a}{\hbar}$ (d) $\frac{4\varepsilon_0 a}{\hbar}$					
58.	The following data is obtained in an expriment that measures the viscosity η as a function of mo-					
	lecular weight M for a set of polymers.					
	lecular weight M for a set of polymers. $M(Da)$ $\eta(kPa-s)$					
	$\begin{array}{c} 1000000000000000000000000000000000000$					
	10191 250 ± 10					
	$19825 2000 \pm 200$					

The relation that best describes the dependence of η on M is

(a)
$$\eta \sim M^{4/9}$$

(b)
$$\eta \sim M^{3/2}$$

(c)
$$\eta \sim M^2$$

(d)
$$\eta \sim M^3$$

59. The integral $\int_0^1 \sqrt{x} dx$ is to be evaluated up to 3 decimal places using Simpson's 3-point rule. If the interval [0, 1] is divided into 4 equal parts, the correct result is

(a) 0.683

(b) 0.667

(c) 0.657

(d) 0.638

60. In a classical model, a scalar (spin-0) meson consists of a quark and an antiquark bound by a potential

$$V(r) = ar + \frac{b}{r}$$

where $a = 200 \text{ MeV fm}^{-1}$ and b = 100 MeV fm. If the masses of the quark and antiquark are negligible, the mass of the meson can be estimated as approximately

(a) 141 MeV/c^2

(b) 283 MeV/c^2

(c) 353 MeV/c^2

(d) 425 MeV/c^2

Let $y = \frac{1}{2}(x_1 + x_2) - \mu$, where x_1 and x_2 are independent and identically distributed Gaussian ran-61.

dom variables of mean μ and standard deviation σ . Then $\frac{\left\langle y^4 \right\rangle}{\sigma^4}$ is

- (a) 1
- (b) $\frac{3}{4}$
- (c) $\frac{1}{2}$
- (d) $\frac{1}{4}$
- The graph of a real periodic function f(x) for the range $[-\infty, \infty]$ is shown below 62.

Which of the following graphs represents the real part of its Fourier transform?

63. The matrices

$$A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

satisfy the commutation relations

- (a) [A, B] = B + C, [B, C] = 0, [C, A] = B + C
- (b) [A,B]=C, [B,C]=A, [C,A]=B careerendeavour.com
- (c) [A, B] = B, [B, C] = 0, [C, A] = A
- (d) [A, B] = C, [B, C] = 0, [C, A] = B
- The function $\Phi(x, y, z, t) = \cos(z vt) + \text{Re}(\sin(x + iy))$ satisfies the equation 64.

(a)
$$\frac{1}{v^2} \frac{\partial^2 \Phi}{\partial t^2} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \Phi$$

(a)
$$\frac{1}{v^2} \frac{\partial^2 \Phi}{\partial t^2} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \Phi$$
 (b)
$$\left(\frac{1}{v^2} \frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial z^2} \right) \Phi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \Phi$$

(c)
$$\left(\frac{1}{v^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial z^2}\right)\Phi = \left(\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2}\right)\Phi$$

(c)
$$\left(\frac{1}{v^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial z^2}\right)\Phi = \left(\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2}\right)\Phi$$
 (d) $\left(\frac{\partial^2}{\partial z^2} - \frac{1}{v^2}\frac{\partial^2}{\partial t^2}\right)\Phi = \left(\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2}\right)\Phi$

The coordinates and momenta x_i , p_i (i = 1, 2, 3) of a particle satisfy the canonical Poisson bracket

relations $\{x_i, p_j\} = \delta_{ij}$. If $C_1 = x_2 p_3 + x_3 p_2$ and $C_2 = x_1 p_2 - x_2 p_1$ are constants of motion, and if

 $C_3 = \{C_1, C_2\} = x_1 p_3 + x_3 p_1$, then

65.

	(a) $\{C_2, C_3\} = C_1$ and	$\left\{C_3,C_1\right\}=C_2$	(b) $\{C_2, C_3\} = -C_1$ and	and $\{C_3, C_1\} = -C_2$		
	(c) $\{C_2, C_3\} = -C_1$ and	$\left\{ C_3, C_1 \right\} = C_2$	(d) $\{C_2, C_3\} = C_1$ and	$\left\{C_3,C_1\right\} = -C_2$		
66.	A canonical transformation relates the old coordinates (q, p) to the new ones (Q, P) by the relation $Q = q^2$ and $P = p/2q$. The corresponding time-independent generating function is					
	(a) $\frac{P}{q^2}$	(b) q^2P	(c) q^2/P	(d) qP^2		
67.	. The time evolution of a one-dimensional dynamical system is described by					
		$\frac{dx}{dt} = -(x+1)(x^2 - b^2)$				
	If this has one stable as (a) $0 < b < 1$	nd two unstable fixed (b) $b > 1$	points, then the param (c) $b < -1$	neter 'b' satisfies (d) $b = 2$		
68.	A charge (-e) is place	ed in vacuum at the p	oint (d, 0, 0), where	$d > 0$. The region $x \le 0$ is filled		
	uniformly with a metal. The electric field at the point $\left(\frac{d}{2},0,0\right)$ is					
	(a) $-\frac{10e}{9\pi\varepsilon_0 d^2}(1,0,0)$	(b) $\frac{10e}{9\pi\varepsilon_0 d^2} (1,0,0)$	(c) $\frac{e}{\pi \varepsilon_0 d^2} (1,0,0)$	$(d) -\frac{e}{\pi \varepsilon_0 d^2} (1,0,0)$		
69.	An electron is in the ground state of a hydrogen atom. The probability that it is within the Bohr radius is approximately equal to					
70.	(a) 0.60 (b) 0.90 (c) 0.16 (d) 0.32 A beam of light of frequency ω is reflected from a dielectric-metal interface at normal inc					
	refractive index of the dielectric medium is n and that of the metal is $n_2 = n(1+i\rho)$. If the bear polarised parallel to the interface, then the phase change experienced by the light upon reflection					
	(a) $\tan\left(\frac{2}{\rho}\right)$	(b) $\tan^{-1}\left(\frac{1}{\rho}\right)$	(c) $\tan^{-1}\left(\frac{2}{\rho}\right)$	(d) $\tan^{-1}(2\rho)$		
71.	The scattering amplitu	ide $f(\theta)$ for the pote	ntial $V(r) = \beta e^{-\mu r}$, w	where β and μ are positive con-		
	stants, is given, in the Born approximation by					
	(in the following $b = 2$	$k \sin \frac{\theta}{2}$ and $E = \frac{\hbar^2 k^2}{2m}$	-)			
	$(a) -\frac{4m\beta\mu}{\hbar^2 \left(b^2 + \mu^2\right)^2}$	$\frac{4m\beta\mu}{+2+2(+2-2)}$	$(c) = \frac{4m\beta\mu}{2\sqrt{2m^2}}$	$\frac{4m\beta\mu}{(d)^{2}(d)^{2}}$		
	$\hbar^2 \left(b^2 + \mu^2\right)$	$n^-b^-(b^-+\mu^-)$	$\hbar^2 \sqrt{b^2 + \mu^2}$	$h^2(b^2+\mu^2)$		

- The ground state eigenfunction for the potential $V(x) = -\delta(x)$, where $\delta(x)$ is the delta function, is 72. given by $\psi(x) = Ae^{-\alpha|x|}$, where A and $\alpha > 0$ are constants. If a perturbation $H' = bx^2$ is applied, the first order correction to the energy of the ground state will be
 - (a) $\frac{b}{\sqrt{2}\alpha^2}$
- (b) $\frac{b}{2}$
- (c) $\frac{2b}{2}$
- (d) $\frac{b}{2a^2}$
- 73. A thin infinitely long solenoid placed along the z-axis contains a magnetic flux ϕ . Which of the following vector potentials corresponds to the magnetic field at an arbitrary point (x, y, z)?

(a)
$$(A_x, A_y, A_z) = \left(-\frac{\phi}{2\pi} \frac{y}{x^2 + y^2}, \frac{\phi}{2\pi} \frac{x}{x^2 + y^2}, 0\right)$$

(b)
$$(A_x, A_y, A_z) = \left(-\frac{\phi}{2\pi} \frac{y}{x^2 + y^2 + z^2}, \frac{\phi}{2\pi} \frac{x}{x^2 + y^2 + z^2}, 0\right)$$

(c)
$$(A_x, A_y, A_z) = \left(-\frac{\phi}{2\pi} \frac{x+y}{x^2+y^2}, \frac{\phi}{2\pi} \frac{x+y}{x^2+y^2}, 0\right)$$

(d)
$$(A_x, A_y, A_z) = \left(-\frac{\phi}{2\pi} \frac{x}{x^2 + y^2}, \frac{\phi}{2\pi} \frac{y}{x^2 + y^2}, 0\right)$$

74. The van der Waals equation of state for a gas is given by

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$

where, P, V and T represent the pressure, volume and temperature respectively, and a and b are constant parameters. At the critical point, where all the roots of the above cubic equation are degenerate, the volume is given by

- (a) $\frac{a}{\Omega h}$
- (b) $\frac{a}{27b^2}$ (c) $\frac{8a}{27bR}$ (d) 3b
- An electromagnetically-shielded room is designed so that at a frequency $\omega = 10^7$ rad/s the intensity 75. of the external radiation that penerates the room is 1% of the incident radiation. If $\sigma = \frac{1}{2\pi} \times 10^6 (\Omega m)^{-1}$ is the conductivity of the shielding material, its minimum thickness should be (given that ln10 = 2.3) (a) 4.60 mm (b) 2.30 mm (c) 0.23 mm (d) 0.46 mm