Part-B

21. L-DOPA is used for the treatment of
(a) Tuberculosis
(b) Parkinson's disease
(c) Diabetes
(d) Cancer
22. In the IR spectrum of p-nitrophenyl acetate, the carbonyl absorption band appears at
(a) $1660 \mathrm{~cm}^{-1}$
(b) $1700 \mathrm{~cm}^{-1}$
(c) $1730 \mathrm{~cm}^{-1}$
(d) $1770 \mathrm{~cm}^{-1}$
23. The major product formed in the reaction of styrene with an excess of lithium in liquid ammonia and t-butyl alcohol is:
(a)

(b)

(c)

(d)

24. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

25. For estrone, among the statements $\mathrm{A}-\mathrm{C}$, the correct ones are
A. It is a steroidal hormone
B. It has two hydroxyl groups
C. It has one ketone and one hydroxyl groups
(a) A, B and C
(b) A and B
(c) A and C
(d) B and C
26. An organic compound having the molecular formula $\mathrm{C}_{10} \mathrm{H}_{14}$ exhibited two singlets in the ${ }^{1} \mathrm{H}$ NMR spectrum, and three signals in the ${ }^{13} \mathrm{C}$ NMR spectrum. The compound is
(a)

(b)

(c)

(d)

27. Amongst the following, the compound which has the lowest energy barrier for the cis-trans isomerisation is:
(a)

(b)

(c)

(d)

28. The IUPAC name of the compound given below is

(a) (2E, 4E)-3-chlorohexa-2, 4-diene-1, 6-diol
(b) (2Z, 4E)-3-chlorohexa-2, 4-diene-1, 6-diol
(c) (2Z, 4Z)-4-chlorohexa-2, 4-diene-1, 6-diol
(d) (2E, 4Z)-4-chlorohexa-2, 4-diene-1, 6-diol
29. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

30. The constituent amino acids present in the following dipeptide, respectively, are

(a) (R)-aspartic acid and (S)-lysine
(b) (S)-aspartic acid and (R)-lysine
(c) (R)-glutamic acid and (S)-arginine
(d) (S)-glutamic and (S)-arginine
31. A suitable organocatalyst for enantioselective synthesis of Wieland-Miescher ketone (A) is

A (optically active)
(a) (-)-proline
(b) (+)-menthone
(c) guanidine
(d) (+)-BINOL
32. For acylation with acetic anhydride/triethylamine, and oxidation with chromium trioxide of the transand cis-alcohols A and B, the correct statement is

(a) A undergoes acylation as well as oxidation faster than B
(b) B undergoes acylation as well as oxidation faster than A
(c) A undergoes acylation faster than B, whereas B undergoes oxidation faster than A
(d) B undergoes acylation faster than A, whereas A undergoes oxidation faster than B.
33. The two benzylic hydrogens H_{A} and H_{B} in the compounds I and II, are

(I)

(II)
(a) diastereotopic in I and enantiotopic in II
(b) diastereotopic in II and enantiotopic in I
(c) diastereotopic in both I and II
(d) enantiotopic in both I and II
34. The following reaction proceeds through a

(a) 1, 3-sigmatropic rearrangement
(b) 2, 3-sigmatropic rearrangement
(c) 3, 3-sigmatropic rearrangement
(d) 3, 5-sigmatropic rearrangement
35. The number of nodes present in the highest occupied molecular orbital of 1,3,5-hexatriene in its ground state is
(a) one
(b) two
(c) three
(d) four
36. Deuterium kinetic isotope effect for the following reaction was found to be 4.0. Based on this information, mechanism of the reaction is

(a) E_{1}
(b) E_{2}
(c) $E_{1 C B}$
(d) free radical
37. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

38. The bond order of the metal-metal bond in the dimeric complex $\left[\operatorname{Re}_{2} \mathrm{Cl}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right]^{+}$is
(a) 4.0
(b) 3.5
(c) 3.0
(d) 2.5
39. The reaction of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with SOCl_{2} yields.
(a) $\mathrm{FeCl}_{2}(\mathrm{~s}), \mathrm{SO}_{2}(\mathrm{~g})$ and $\mathrm{HCl}(\mathrm{g})$
(b) $\mathrm{FeCl}_{3}(\mathrm{~s}), \mathrm{SO}_{2}(\mathrm{~g})$ and $\mathrm{HCl}(l)$
(c) $\mathrm{FeCl}_{2}(\mathrm{~s}), \mathrm{SO}_{3}(\mathrm{~s})$ and $\mathrm{HCl}(\mathrm{g})$
(d) $\mathrm{FeCl}_{3}(\mathrm{~s}), \mathrm{SO}_{2}(\mathrm{~g})$ and $\mathrm{HCl}(\mathrm{g})$
40. Patients suffering from Wilson's disease have
(a) Low level of $\mathrm{Cu}-\mathrm{Zn}$ superoxide dismutase
(b) High level of $\mathrm{Cu}-\mathrm{Zn}$ superoxide dismutase
(c) Low level of copper-storage protein, ceruloplasmin
(d) High level of copper-storage protein, ceruloplasmin
41. High dose of dietary supplement ZnSO_{4} for the cure of Zn deficiency
(a) reduces myoglobin
(b) increases iron level in blood
(c) increases copper level in brain
(d) reduces copper, iron and calcium levels in body
42. Which of the following in NOT suitable as catalyst for hydroformylation?
(a) $\mathrm{HCo}(\mathrm{CO})_{4}$
(b) $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{PBu}_{3}$
(c) $\mathrm{HRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$
(d) $\mathrm{H}_{2} \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$
43. Commonly used scintillator for measuring radiation is
(a) NaI (AI)
(b) $\mathrm{NaI}(\mathrm{TI})$
(c) CsI (TI)
(d) CsI (AI)
44. A sample of aluminium ore (having no other metal) is dissolved in 50 mL of 0.05 M EDTA. For the titration of unreacted EDTA, 4 mL of $0.05 \mathrm{M} \mathrm{MgSO}_{4}$ is required. The percentage of Al in the sample is:
(a) 27
(b) 31
(c) 35
(d) 40
45. In a cluster, $\mathrm{H}_{3} \mathrm{CoRu}_{3}(\mathrm{CO})_{12}$, total number of electrons considered to be involved in its formation is
(a) 57
(b) 60
(c) 63
(d) 72
46. Among the following, the correct acid strength trend is represented by
(a) $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(c) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$
(d) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
47. Among the molten alkali metals, the example of an immiscible pair (in all proportions) is
(a) K and Na
(b) K and Cs
(c) Li and Cs
(d) Rb and Cs
48. Among the following, an example of a hypervalent species is
(a) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$
(b) SF_{4}
(c) $\left[\mathrm{PF}_{6}\right]^{-}$
(d) $\mathrm{Sb}_{2} \mathrm{~S}_{3}$
49. An octahedral metal ion M^{2+} has magnetic moment of 4.0 B.M. The correct combination of metal ion and d-electron configuration is given by
(a) $\mathrm{Co}^{2+}, \mathrm{t}_{2 \mathrm{~g}}^{5} \mathrm{e}_{\mathrm{g}}^{2}$
(b) $\mathrm{Cr}^{2+}, \mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$
(c) $\mathrm{Mn}^{2+}, \mathrm{t}_{2 \mathrm{~g}}^{3} \mathrm{e}_{\mathrm{g}}^{1}$
(d) $\mathrm{Fe}^{2+}, \mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$
50. According to VSEPR theory, the geometry (with lone pair) around the central iodine in I_{3}^{+}and I_{3}^{-} ions respectively are
(a) tetrahedral and tetrahedal
(b) trigonal bipyramidal and trigonal bipyramidal
(c) tetrahedral and trigonal bipyramidal
(d) tetrahedral and octahedral
51. Treatment of CIF_{3} with SbF_{5} leads to the formation of a / an
(a) polymeric material
(b) covalent cluster
(c) ionic compound
(d) lewis acid-base adduct
52. The reason for the chemical inertness of gaseous nitrogen at room temperature is best given by its
(a) high bonding energy only
(b) electronic configuration
(c) HOMO-LUMO gap only
(d) high bond energy and HOMO-LUMO gap
53. Two tautomeric forms of phosphorus acid are
(a)

(b)

(c)

(d)

54. The correct thermodynamics relation among the following is
(a) $\left(\frac{\partial U}{\partial V}\right)_{S}=-P$
(b) $\left(\frac{\partial \mathrm{H}}{\partial \mathrm{V}}\right)_{\mathrm{S}}=-\mathrm{P}$
(c) $\left(\frac{\partial G}{\partial V}\right)_{S}=-P$
(d) $\left(\frac{\partial \mathrm{A}}{\partial \mathrm{V}}\right)_{\mathrm{S}}=-\mathrm{S}$
55. The boiling point of a solution of non-volatile solid is higher than that of the pure solvent. It always indicates that
(a) the enthalpy of the solution is higher than that of the pure solvent.
(b) the entropy of the solution is higher than that of the pure solvent.
(c) the Gibbs free energy of the solution is higher than that of the pure solvent.
(d) the internal energy of the solution is higher than that of pure solvent.
56. According to Arrhenius equation ($\mathrm{K}=$ rate constant and $\mathrm{T}=$ temperature)
(a) $\ln \mathrm{K}$ decreases linearly with $1 / \mathrm{T}$
(b) $\ln \mathrm{K}$ decreases linearly with T
(c) $\ln \mathrm{K}$ increases linearly with $1 / \mathrm{T}$
(d) $\ln \mathrm{K}$ increases linearly with T
57. The angle at which the first order Bragg reflection is observed from (110) plane in a simple cubic unit cell of side $3.238 \AA$, when chromium K_{α} radiation of wavelength $2.29 \AA$ is used, is
(a) 30°
(b) 45°
(c) 60°
(d) 90°
58. The orbital with two radial and two angular nodes is
(a) $3 p$
(b) 5 d
(c) 5 f
(d) 8 d
59. Michael Faraday observed that the colour of colloidal suspensions of gold nanoparticles changes with the size of the nanoparticles. This is because
(a) Gold forms complex with the solvent
(b) Band gap of gold changes with size of the nanoparticle.
(c) Gold in nanocrystalline form undergoes transmutation to other elements.
(d) Colloidal suspensions diffract light
60. The energy of 2 s and 2 p orbitals is the same for
(a) Li
(b) Li^{2+}
(c) Be^{2+}
(d) H^{-}
61. If a homonuclear diatomic molecule is oriented along the Z-axis, the molecular orbital formed by linear combination of p , orbitals of the two atoms is
(a) σ
(b) σ^{*}
(c) π
(d) δ
62. A reaction contains a mixture of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} in equilibrium $\left(\mathrm{K}_{\mathrm{P}}=3.75 \mathrm{~atm}^{-2}\right)$. If sufficient He is introduced into the reactor to double the total pressure, the value of K_{p} at the new equilibrium would be
(a) $0.94 \mathrm{~atm}^{-2}$
(b) $3.75 \mathrm{~atm}^{-2}$
(c) $7.50 \mathrm{~atm}^{-2}$
(d) $15.00 \mathrm{~atm}^{-2}$
63. The volume of a gas absorbed on a solid surface is $10.0 \mathrm{ml}, 11.0 \mathrm{ml}, 11.2 \mathrm{ml}, 14.5 \mathrm{ml}$ and 22.5 ml at $1.0,2.0,3.0,4.0$ and 5.0 atm , pressure, respectively. These data are best represented by
(a) Gibb's isotherm
(b) Langmuir isotherm
(c) Freundlich isotherm
(d) BET isotherm
64. A compound of M and X atoms has a cubic unit cell. M atoms are at the corners and body centre position and X atoms are at face centre positions of the cube. The molecular formula of the compound is
(a) MX
(b) MX_{2}
(c) $\mathrm{M}_{3} \mathrm{X}_{2}$
(d) $\mathrm{M}_{2} \mathrm{X}_{3}$
65. When Frenkel defects are created in an otherwise perfect ionic crystal, the density of the ionic crystal
(a) increases
(b) decreases
(c) remains same
(d) oscillates with the number of defects
66. The molecule in which the bond order increases upon addition of an electron is
(a) O_{2}
(b) B_{2}
(c) P_{2}
(d) N_{2}
67. In a potentiometric titration, the end point is obtained by observing
(a) change in colour
(b) jump in potential
(c) increase in current
(d) increase in turbidity
68. Electrolysis of an aqueous solution of 1.0 M NaOH results in
(a) Na at the cathode and O_{2} at the anode.
(b) H_{2} at the cathode and O_{2} at the anode.
(c) Na and H_{2} at the cathode, and O_{2} at the anode.
(d) O_{2} at the cathode and H_{2} at the anode.
69. The cell voltage of Daniel cell $\left[\mathrm{Zn}\left|\mathrm{ZnSO}_{4}(\mathrm{aq}) \| \mathrm{CuSO}_{4}(\mathrm{aq})\right| \mathrm{Cu}\right]$ is 1.07 V . If reduced potential of $\mathrm{Cu}^{2+} \mid \mathrm{Cu}$ is 0.34 V , the reduction potential of $\mathrm{Zn}^{2+} \mid \mathrm{Zn}$ is
(a) 1.141 V
(b) -1.41 V
(c) 0.73 V
(d) -0.73 V
70. In the mechanism of reaction, $\mathrm{H}_{2}+\mathrm{Br}_{2} \longrightarrow 2 \mathrm{HBr}$, the first step is
(a) dissociation of H_{2} into $\mathrm{H} \bullet$ radicals
(b) dissociation of Br_{2} into $\mathrm{Br} \bullet$ radicals
(c) reaction of $\mathrm{H} \cdot$ radical with Br_{2}
(d) reaction of $\mathrm{Br} \bullet$ radical with H_{2}

Part-C

71. For an electronic configuration of two non-equivalent π electronics $\left[\pi^{1}, \pi^{1}\right]$, which of the folllowing terms is not possible?
(a) ${ }^{1} \Sigma$
(b) ${ }^{3} \Sigma$
(c) ${ }^{3} \Delta$
(d) ${ }^{3} \Phi$
72. Consider a two-dimensional harmonic oscillator with potential energy $V(x, y)=\frac{1}{2} k_{x} x^{2}+\frac{1}{2} k_{y} y^{2}$. If $\psi_{n x}(x)$ and $\psi_{n y}(y)$ are the eigensolutions and $E_{n x}$ and $E_{n y}$ are the eigenvalues of harmonic oscillator problem in x and y direction with potential $\frac{1}{2} k_{x} x^{2}$ and $\frac{1}{2} k_{y} y^{2}$, respectively, the wave function and eigenvalues of the above two-dimensional harmonic oscillator problem are
(a) $\psi_{n x, n y}=\psi_{n x}(x)+\psi_{n y}(y)$
(b) $\psi_{\mathrm{nx}, \mathrm{ny}}=\psi_{\mathrm{nx}}(\mathrm{x}) \psi_{\mathrm{ny}}(\mathrm{y})$ $E_{n x, n y}=E_{n x} E_{n y}$
$E_{n x, n y}=E_{n x}+E_{n y}$
(c) $\psi_{\mathrm{nx}, \mathrm{ny}}=\psi_{\mathrm{nx}}(\mathrm{x}) \psi_{\mathrm{ny}}(\mathrm{y})$
(d) $\psi_{\mathrm{nx}, \mathrm{ny}}=\psi_{\mathrm{nx}}(\mathrm{x})+\psi_{\mathrm{ny}}(\mathrm{y})$
$E_{n x, n y}=E_{n x}+E_{n y}$
$\mathrm{E}_{\mathrm{nx}, \mathrm{ny}}=\mathrm{E}_{\mathrm{nx}} \mathrm{E}_{\mathrm{ny}}$
73. The quantum mechanical virial theorem for a general potential $V(x, y, z)$ is given by $\left\langle x \frac{\partial v}{\partial x}+y \frac{\partial v}{\partial y}+z \frac{\partial v}{\partial z}\right\rangle$ where T is the kinetic energy operator and $<>$ indicates expectation value.
This leads to the following relation between the expectation value of kinetic energy and potential energy for a quantum mechanical harmonic oscillator problem with potential $\mathrm{V}=\frac{1}{2} \mathrm{k}_{\mathrm{x}} \mathrm{x}^{2}+\frac{1}{2} \mathrm{k}_{\mathrm{y}} \mathrm{y}^{2}+\frac{1}{2} \mathrm{k}_{\mathrm{z}} \mathrm{z}^{2}$
(a) $\langle\mathrm{T}\rangle=\langle\mathrm{V}\rangle$
(b) $\langle\mathrm{T}\rangle=-\frac{1}{2}\langle\mathrm{~V}\rangle$
(c) $\langle\mathrm{T}\rangle=\frac{1}{2}\langle\mathrm{~V}\rangle$
(d) $\langle\mathrm{T}\rangle=-\langle\mathrm{V}\rangle$
74. Consider a particle in a one dimensional box of length 'a' with the following potential
$V(x)=\infty \quad x<0$
$V(x)=\infty \quad x>a$
$V(x)=0 \quad 0 \leq x \leq a / 2$
$V(x)=V_{1} \quad a / 2 \leq x \leq a$
Starting with the standard particle in a box hamiltonian as the zeroth order Hamiltonian and the potential of V_{1} from ' $\mathrm{a} / 2$ ' to ' a ' as a perturbation, thefirst-order energy correction to the ground state is
(a) V_{1}
(b) $\mathrm{V}_{1} / 4$
(c) $-\mathrm{V}_{1}$
(d) $\mathrm{V}_{1} / 2$
75. The most probable value of ' r ' for an electron in 1 s orbital of hydrogen atom is
(a) $\mathrm{a}_{0} / 2$
(b) a_{0}
(c) $\sqrt{2} \mathrm{a}_{0}$
(d) $3 \mathrm{a}_{0} / 2$
76. The angular momentum operator $\hat{\mathrm{L}}_{\mathrm{y}}$ is
(a) $-\frac{\hbar}{i}\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right)$
(b) $\frac{\hbar}{i}\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right)$
(c) $\frac{-\mathrm{i} \hbar}{2 \mathrm{~m}} \frac{\partial}{\partial \mathrm{x}}$
(d) $\frac{\hbar}{i}\left(z \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)$
77. The molecule with the smallest rotation partition function at any temperature among the following is
(a) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
(b) $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
(c) $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{D}$
(d) $\mathrm{D}-\mathrm{C} \equiv \mathrm{C}-\mathrm{D}$
78. Both NaCl and KCl crystallize with the FCC structure. However, the X-ray powder diffraction pattern of NaCl corresponds to the FCC structure whereas, that of KCl corresponds to simple cubic structure. This is because
(a) K^{+}and Cl^{-}are isoelectronic
(b) Na^{+}and Cl^{-}are isoelectronic
(c) K^{+}and Cl^{-}are disordered in the crystal lattice
(d) KCl has anti-site defects.
79. Consider the cell:
$\mathrm{Zn}\left|\mathrm{Zn}^{2+}(\mathrm{a}=0.01) \| \mathrm{Fe}^{2+}(\mathrm{a}=0.001), \mathrm{Fe}^{3+}(\mathrm{a}=0.01)\right| \mathrm{Pt}$
$\mathrm{E}_{\text {cell }}=1.71 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ for the above cell. The equilibrium constant for the reaction:

$$
\mathrm{Zn}+2 \mathrm{Fe}^{3+} \rightleftharpoons \mathrm{Zn}^{2+}+2 \mathrm{Fe}^{2+} \text { at } 25^{\circ} \mathrm{C} \text { would be close to }
$$

(a) 10^{27}
(b) 10^{54}
(c) 10^{81}
(d) 10^{40}
80. The molecule that has the smallest diffusion coefficient in water is
(a) glucose
(b) fructose
(c) ribose
(d) surcrose
81. Metallic gold crystallizes in FCC structure with unit cell dimension of $4.00 \AA$. The atomic radius of gold is
(a) $0.866 \AA$
(b) $1.414 \AA$
(c) $1.732 \AA$
(d) $2.000 \AA$
82. A first order gaseous reaction is 25% complete in 30 minutes at $227^{\circ} \mathrm{C}$ and in 10 minutes at $237^{\circ} \mathrm{C}$. The activation eneryg of the reaction is closest to $\left(\mathrm{R}=2 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$
(a) $27 \mathrm{kcal} \mathrm{mol}^{-1}$
(b) $110 \mathrm{kcal} \mathrm{mol}^{-1}$
(c) $55 \mathrm{kcal} \mathrm{mol}^{-1}$
(d) $5.5 \mathrm{kcal} \mathrm{mol}^{-1}$
83. In the reaction between NO and H_{2} the following data are obtained

Experiment I: $\mathrm{P}_{\mathrm{H}_{2}}=$ constant

$\mathrm{P}_{\mathrm{NO}}(\mathrm{mm}$ of Hg$)$	359	300	152
$\frac{-\mathrm{dP}_{\mathrm{NO}}}{\mathrm{dt}}$	1.50	1.03	0.25

Experiment II : $\mathrm{P}_{\mathrm{NO}}=$ constant

$\mathrm{P}_{\mathrm{H}_{2}}(\mathrm{~mm}$ of Hg$)$	289	205	147
$\frac{-\mathrm{dP}_{\mathrm{H}_{2}}}{\mathrm{dt}}$	1.60	1.10	0.79

The orders with respect to H_{2} and NO are
(a) 1 with respect to NO and 2 with respect to H_{2}
(b) 2 with respect to NO and 1 with respect to H_{2}
(c) 1 with respect to NO and 3 with respect to H_{2}
(d) 2 with respect to NO and 2 with respect to H_{2}
84. The energy for a single electron excitation in cyclopropenium cation in Hückel theory is
(a) β
(b) 2β
(c) 3β
(d) 4β
85. The atomic masses of fluorine and hydrogen are 19.0 and 1.0 amu , respectively ($1 \mathrm{amu}=1.67 \times 10^{-27}$ kg). The bond length of HF is $2.0 \AA$. The moment of inertia of HF is
(a) $3.2 \times 10^{-47} \mathrm{~kg} \mathrm{~m}^{2}$
(b) $6.4 \times 10^{-47} \mathrm{~kg} \mathrm{~m}^{2}$
(c) $9.6 \times 10^{-47} \mathrm{~kg} \mathrm{~m}^{2}$
(d) $4.8 \times 10^{-47} \mathrm{~kg} \mathrm{~m}^{2}$
86. The masses recorded when a substance is weighed 4 times are $15.8,15.4,15.6$ and 16.0 mg . The variance (square of the standard deviation) is closest to
(a) 0.02
(b) 0.05
(c) 0.10
(d) 0.20
87. The transition that is allowed by x-polarized light in trans-butadiene is
(The character table for $\mathrm{C}_{2 \mathrm{~h}}$ is given below)

| $\mathrm{C}_{2 \mathrm{~h}}$ | E | C_{2} | i | σ_{h} | ADC |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A_{g} | 1 | 1 | 1 | 1 | $\mathrm{R}_{\mathrm{x}}, \mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}, \mathrm{xy}$ |
| B_{g} | 1 | -1 | 1 | -1 | $\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}, \mathrm{xz}, \mathrm{yz}$ |
| A_{u} | 1 | 1 | -1 | -1 | z |
| B_{u} | 1 | -1 | -1 | 1 | x, y |

(a) ${ }^{1} \mathrm{~A}_{u} \rightarrow{ }^{1} \mathrm{~A}_{u}$
(b) ${ }^{1} \mathrm{~A}_{\mathrm{u}} \rightarrow{ }^{1} \mathrm{~B}_{\mathrm{g}}$
(c) ${ }^{1} \mathrm{~B}_{\mathrm{u}} \rightarrow{ }^{1} \mathrm{~B}_{\mathrm{g}}$
(d) ${ }^{3} \mathrm{~B}_{\mathrm{g}} \rightarrow{ }^{1} \mathrm{~A}_{\mathrm{g}}$
88. The heat capacity of 10 mol of an ideal gas at a certain temperature is $300 \mathrm{JK}^{-1}$ at constant pressure.

The heat capacity of the same gas at the same temperature and at constant volume would be
(a) $383 \mathrm{JK}^{-1}$
(b) $217 \mathrm{JK}^{-1}$
(c) $134 \mathrm{JK}^{-1}$
(d) $466 \mathrm{JK}^{-1}$
89. The Maxwell's relationship derived from the equation $\mathrm{dG}=\mathrm{VdP}-\mathrm{SdT}$ is
(a) $\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{P}}=\left(\frac{\partial \mathrm{S}}{\partial \mathrm{P}}\right)_{\mathrm{T}}$
(b) $\left(\frac{\partial \mathrm{P}}{\partial \mathrm{V}}\right)_{\mathrm{T}}=\left(\frac{\partial \mathrm{T}}{\partial \mathrm{S}}\right)_{\mathrm{P}}$
(c) $\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{P}}=-\left(\frac{\partial \mathrm{S}}{\partial \mathrm{P}}\right)_{\mathrm{T}}$
(d) $\left(\frac{\partial P}{\partial V}\right)_{T}=-\left(\frac{\partial T}{\partial S}\right)_{P}$
90. The chemical potential $\left(\mu_{\mathrm{i}}\right)$ of the $\mathrm{i}^{\text {th }}$ component is defined as
(a) $\mu_{\mathrm{i}}=\left(\frac{\partial \mathrm{U}}{\partial \mathrm{n}_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{P}}$
(b) $\mu_{\mathrm{i}}=\left(\frac{\partial \mathrm{H}}{\partial \mathrm{n}_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{P}}$
(c) $\mu_{\mathrm{i}}=\left(\frac{\partial \mathrm{A}}{\partial \mathrm{n}_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{P}}$
(d) $\mu_{\mathrm{i}}=\left(\frac{\partial \mathrm{G}}{\partial \mathrm{n}_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{P}}$
91. Work (w) involved in isothermal reversible expansion from V_{i} to V_{f} of n moles of an ideal gas is
(a) $\mathrm{w}=-\mathrm{nRT} \ln \left(\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right)$
(b) $\mathrm{w}=\mathrm{nRT} \ln \left(\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right)$
(c) $\mathrm{w}=-\mathrm{nRT}\left(\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right)$
(d) $\mathrm{w}=-\mathrm{nRT} \log \left(\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right)$
92. The limiting molar conductivities of $\mathrm{NaCl}, \mathrm{NaI}$ and RbI are $12.7,10.8$ and $9.1 \mathrm{mS} \mathrm{m}^{2} \mathrm{~mol}^{-1}$, respectively. The limiting molar conductivity of RbCl would be
(a) $32.6 \mathrm{mS} \mathrm{m}^{2} \mathrm{~mol}^{-1}$
(b) $7.2 \mathrm{mS} \mathrm{m}^{2} \mathrm{~mol}^{-1}$
(c) $14.4 \mathrm{~m} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
(d) $11.0 \mathrm{mS} \mathrm{m}^{2} \mathrm{~mol}^{-1}$
93. The number of ways in which four molecules can be distributed in two different energy levels is
(a) 6
(b) 3
(c) 16
(d) 8
94. An element exists in two crystallographic modifications with FCC and BCC structures. The ratio of the densities of the FCC and BCC modifications in terms of the volumes of their unit cells ($\mathrm{V}_{\mathrm{FCC}}$ and $\mathrm{V}_{\mathrm{BCC}}$) is
(a) $V_{B C C}: V_{F C C}$
(b) $2 \mathrm{~V}_{\mathrm{BCC}}: \mathrm{V}_{\mathrm{FCC}}$
(c) $\mathrm{V}_{\mathrm{BCC}}: 2 \mathrm{~V}_{\mathrm{FCC}}$
(d) $\mathrm{V}_{\mathrm{BCC}}: \sqrt{2} \mathrm{~V}_{\mathrm{FCC}}$
95. Given $\gamma\left({ }^{1} \mathrm{H}\right) \simeq 2.7 \times 10^{8} \mathrm{~T}^{-1} \mathrm{~s}^{-1}$. The resonance frequency of a proton in magnetic field of 12.6 T is close to $(\pi=3.14)$
(a) 60 MHz
(b) 110 MHz
(c) 540 MHz
(d) 780 MHz
96. In Mössbauer experiment, a source emitting at $14.4 \mathrm{KeV}\left(3.48 \times 10^{18} \mathrm{~Hz}\right)$ had to be moved towards absorber at $2.2 \mathrm{~mm} \mathrm{~s}^{-1}$ for resonance. The shift in the frequency between the source and the absorber is
(a) 15.0 MHz
(b) 20.0 MHz
(c) 25.5 MHz
(d) 30.0 MHz
97. Among the following, the correct combination of complex and its color is

Complex

(a)

$$
\left[\mathrm{Co}(\mathrm{CN})_{4}\right]^{2-}
$$

Color

Red
(b) $\quad\left[\mathrm{CoCl}_{4}\right]^{2-}$

Orange
(c) $\left[\mathrm{Co}(\mathrm{NCS})_{4}\right]^{2-} \quad$ Blue
(d) $\left[\mathrm{CoF}_{4}\right]^{2-} \quad$ Yellow
98. In a specific reaction, hexachlorocyclotriphosphazene, $\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{Cl}_{6}$ was reacted with a metal fluoride to obtain mixed halo derivatives namely $\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{Cl}_{5} \mathrm{~F}(\mathrm{~A}), \mathrm{N}_{3} \mathrm{P}_{3} \mathrm{Cl}_{4} \mathrm{~F}_{2}(\mathrm{~B}), \mathrm{N}_{3} \mathrm{P}_{3} \mathrm{Cl}_{3} \mathrm{~F}_{3}(\mathrm{C}), \mathrm{N}_{3} \mathrm{P}_{3} \mathrm{Cl}_{2} \mathrm{~F}_{4}(\mathrm{D})$, $\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{ClF}_{5}(\mathrm{E})$. Compositions among these which can give isomeric products are
(a) A, B and C
(b) B, C and D
(c) C, D and E
(d) E, A and B
99. Xenon forms several fluorides and oxofluorides which exihibit acidic behaviour. The correct sequence of descending Lewis acidity among the given species is represented by
(a) $\mathrm{XeF}_{6}>\mathrm{XeOF}_{4}>\mathrm{XeF}_{4}>\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(b) $\mathrm{XeOF}_{4}>\mathrm{XeO}_{2} \mathrm{~F}_{2}>\mathrm{XeOF}_{4}>\mathrm{XeF}_{6}$
(c) $\mathrm{XeF}_{4}>\mathrm{XeO}_{2} \mathrm{~F}_{2}>\mathrm{XeOF}_{4}>\mathrm{XeF}_{6}$
(d) $\mathrm{XeF}_{4}>\mathrm{XeF}_{6}>\mathrm{XeOF}_{4}>\mathrm{XeO}_{2} \mathrm{~F}_{2}$
100. Number of isomeric derivatives possible for the neutral closo-carborane, $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$ is
(a) three
(b) two
(c) four
(d) six
101. For higher boranes $3 \mathrm{c}-2 \mathrm{e}$ ' BBB ' bond may be a part of their structures. In $\mathrm{B}_{5} \mathrm{H}_{9}$, the number of such electron deficient bond(s) present is/are
(a) four
(b) two
(c) zero
(d) one
102. In the atomic absorption spectroscopic estimation of Fe (III) using $\mathrm{O}_{2} / \mathrm{H}_{2}$ flame, the absorbance decreases with the addition of
(a) CO_{3}^{2-}
(b) SO_{4}^{2-}
(c) EDTA
(d) Cl^{-}
103. In a polarographic estimation, the limiting currents $(\mu \mathrm{A})$ were $0.15,4.65,9.15$ and 27.15 when concentration (mM) of $\mathrm{Pb}(\mathrm{II})$ were $0,0.5,1.0$ and 3.0 respectively. An unknown solution of $\mathrm{Pb}(\mathrm{II})$ gives a limiting current of $13.65 \mu \mathrm{~A}$. Cocentration of Pb (II) in the unknown is
(a) 1.355 mM
(b) 1.408 mM
(c) 1.468 mM
(d) 1.500 mM
104. The gases SO_{2} and SO_{3} were reacted separately with CIF gas under ambient conditions. The major products expected from the two reactions respectively, are
(a) SOF_{2} and $\mathrm{ClOSO}_{2} \mathrm{~F}$
(b) SOF_{2} and $\mathrm{SO}_{2} \mathrm{~F}_{2}$
(c) $\mathrm{SO}_{2} \mathrm{ClF}$ and $\mathrm{SO}_{2} \mathrm{~F}_{2}$
(d) $\mathrm{SO}_{2} \mathrm{ClF}$ and $\stackrel{2}{\mathrm{ClO}} \mathrm{SO}_{2} \mathrm{~F}$
105. The correct statement regarding terminal/bridging CO groups in solid $\mathrm{Co}_{4}(\mathrm{CO})_{12}$ and $\mathrm{Ir}_{4}(\mathrm{CO})_{12}$ is
(a) both have equal number of bridging CO groups
(b) number of bridging CO groups in $\mathrm{Co}_{4}(\mathrm{CO})_{12}$ is 4
(c) the number of terminal CO groups in $\mathrm{Co}_{4}(\mathrm{CO})_{12}$ is 8
(d) the number of bridging CO groups in $\mathrm{Ir}_{4}(\mathrm{CO})_{12}$ is zero.
106. On reducing $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ with an excess of sodium, a carbonylate ion is formed. The iron is isoelectronic with
(a) $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$
(b) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(c) $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{+}$
(d) $\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}$
107. The correct statement for ozone is
(a) It absorbs radiations in wavelength region 290-320 nm .
(b) It is mostly destroyed by NO radical in atmosphere
(c) It is non toxic even at 100 ppm level
(d) Its concentration near poles is high due to its paramagnetic nature.
108. Among the following clusters,
$\mathrm{A}=\left[(\mathrm{H}) \mathrm{Co}_{6}(\mathrm{CO})_{15}\right]^{-}, \mathrm{B}=\left[(\mathrm{H})_{2} \mathrm{Os}_{6}(\mathrm{CO})_{18}\right], \mathrm{C}=\left[(\mathrm{H})_{2} \mathrm{Os}_{5}(\mathrm{CO})_{16}\right]$
H is encapsulated in
(a) A only
(b) B only
(c) B and C only
(d) A and B only
109. The solid state structure of aluminum fluoride is
(a)

(b)

(c)

(d)

110. Oxidised form of enzyme catalase (structure A); prepared by the reaction of $[\mathrm{Fe}(\mathrm{P})]^{+}(\mathrm{P}=$ porphyrin $)$ with $\mathrm{H}_{2} \mathrm{O}_{2}$, has green color becauase

A (substitutents on ring are removed for clarity)
(a) Oxidation state of iron changed from $\mathrm{Fe}^{\mathrm{III}}$ to $\mathrm{Fe}^{\mathrm{IV}}$.
(b) Porphyrin ring is oxidized by one electron
(c) $\pi-\pi^{*}$ transition appears in the visible region
(d) $\mathrm{Fe}^{\mathrm{IV}}$ is coordinated with anionic tyrosinate ligand in axial position.
111. The reactive position of nicotinamide adenine dinucleotide (NAD) in biological redox reactions is
(a) 2-position of the pyridine ring
(b) 6-position of the pyridine ring
(c) 4-position of the pyridine ring
(d) 5-position of the pyridine ring
112. The electrophile $\mathrm{Ph}_{3} \mathrm{C}^{+}$reacts with $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{CDMe}_{2}\right)\right]^{+}$to give a product A . The product A is formed because
(a) Fe is oxidised
(b) alkyl is susbtituted with $\mathrm{Ph}_{3} \mathrm{C}$
(c) $\mathrm{Fe}-\mathrm{Ph}$ bond is formed
(d) Alkyl is converted to alkene
113. Subsitution of L with other ligands will be easiest for the species
(a)

(b)

(c)

(d)

114. Among the following, the correct statement is
(a) CH is isolobal to $\mathrm{Co}(\mathrm{CO})_{3}$
(b) CH_{2} is isolobal to $\mathrm{Ni}(\mathrm{CO})_{2}$
(c) CH is isolobal to $\mathrm{Fe}(\mathrm{CO})_{4}$
(d) CH_{2} is isolobal to $\mathrm{Mn}(\mathrm{CO})_{4}$
115. $\mathrm{MnCr}_{2} \mathrm{O}_{4}$ is likely to have a normal spinel structure because
(a) Mn^{2+} will have a LFSE in the octahedral site whereas the Cr^{3+} will not
(b) Mn is +2 oxidation state and both the Cr are in +3 oxidation state.
(c) Mn is +3 oxidation state and 1 Cr is in +2 and the other is in +3 state.
(d) Cr^{3+} will have a LFSE in the octahedral site whereas the Mn^{2+} ion will not.
116. The ground state forms of Sm^{3+} and Eu^{3+} respectively, are
(a) ${ }^{7} \mathrm{~F}_{0}$ and ${ }^{6} \mathrm{H}_{5 / 2}$
(b) ${ }^{6} \mathrm{H}_{5 / 2}$ and ${ }^{7} \mathrm{~F}_{0}$
(c) ${ }^{2} \mathrm{~F}_{5 / 2}$ and ${ }^{5} \mathrm{I}_{4}$
(d) ${ }^{7} \mathrm{~F}_{6}$ and ${ }^{2} \mathrm{~F}_{7 / 2}$
117. The orbital interactions shown below represent

(a) $\mathrm{CH}_{3}-\mathrm{Al}$ interactions in $\mathrm{Al}_{2}\left(\mathrm{CH}_{3}\right)_{6}$
(b) B-H interactions in $\mathrm{B}_{2} \mathrm{H}_{6}$
(c) $\mathrm{CH}_{3}-\mathrm{Li}$ interaction in $\mathrm{Li}_{4}\left(\mathrm{CH}_{3}\right)_{4}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Mg}$ interactions in EtMgBr . $\left(\mathrm{OEt}_{2}\right)_{2}$
118. Compounds $\mathrm{K}_{2} \mathrm{Ba}\left[\mathrm{Cu}\left(\mathrm{NO}_{2}\right)_{6}\right]$ (A) and $\mathrm{Cs} 2 \mathrm{Ba}\left[\mathrm{Cu}\left(\mathrm{NO}_{2}\right)_{6}\right]$ (B) exhibit tetragonal elongation and tetragonal compression, respectively. The unpaired electron in A and B are found respectively, in orbitals,
(a) d_{z}^{2} and $d_{x^{2}-y^{2}}$
(b) $d_{x^{2}-y^{2}}$ and d_{z}^{2}
(c) $\mathrm{d}_{\mathrm{z}}^{2}$ and $\mathrm{d}_{\mathrm{z}}^{2}$
(d) $\mathrm{d}_{\mathrm{x}^{2}-y^{2}}$ and $\mathrm{d}_{\mathrm{x}^{2}-y^{2}}$
119. Reaction of $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ in a $2: 1$ molar ratio gives a crystalline solid A . The IR spectrum of complex A shows v_{CO} at $1985 \mathrm{~cm}^{-1}$. The ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR spectrum of A consists of two doublets of doublets of equal intensities $\left({ }^{103} \mathrm{Rh}\right.$ is 100% abundant and $\left.\mathrm{I}=1 / 2\right)$. The structure of complex A is
(a)

(b)

(c)

(d)

120. The most appropriate structure for the complex $\left[\mathrm{Pt}_{2}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{NCS})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is
(a)

(b)

(c)

(d)

121. The major product formed in the following reaction sequence is

(a)

(b)

(c)

(d)

122. The major product formed in the following reaction sequence is

(a)

(b)

(c)

(d)

123. The major product formed in the following reaction sequence is
(a)

(b)

(c)

(d)

124. The most suitable reagent combination of A-C, required in the following conversions are

(a) $\mathrm{A}=\mathrm{Li} /$ liq. NH_{3};
$\mathrm{B}=\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$;
$\mathrm{C}=\mathrm{H}_{2},\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}$.
(b) $\mathrm{A}=\mathrm{Li} /$ liq. NH_{3};
$\mathrm{B}=\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$;
$\mathrm{C}=\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$.
(c) $\mathrm{A}=\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} ; \mathrm{B}=\mathrm{Li} / \mathrm{liq} . \mathrm{NH}_{3}$;
$\mathrm{C}=\mathrm{H}_{2},\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}$.
(d) $\mathrm{A}=\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} ; \mathrm{B}=\mathrm{Li} /$ liq. NH_{3};
$\mathrm{C}=\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$
125. The major product B formed in the following reaction sequence, and overall yield of its formation are
(S) - glutamic acid $\xrightarrow[\substack{180^{\circ} \mathrm{C} \\ 60 \%}]{\text { Phenyl a anine }} \mathrm{A} \xrightarrow[80 \%]{\mathrm{LiAlH}_{4}} \mathrm{~B}$
(a)

(b)

(c)

(d)

126. An organic compound $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}\right)$, which does not change the color of ferric chloride solution, exhibited the following ${ }^{1} \mathrm{H}$ NMR spectral data: $\delta 7.3(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}), 7.0(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{s})$, $6.9(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}) 5.3\left(1 \mathrm{H}, \mathrm{br}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $), 4.6(2 \mathrm{H}, \mathrm{s}), 3.9(3 \mathrm{H}, \mathrm{s})$. Structure of the compound is
(a)

(b)

(c)

(d)

127. Methyl 4-oxopentanoate exhibited signals at $\delta 208,172,51,37,32$ and 27 ppm in its ${ }^{13} \mathrm{C}$ NMR spectrum. The signals due to the methoxy, $\mathrm{C} 1, \mathrm{C} 4$ and C 5 carbons are
(a) $\mathrm{OMe}-32$; $\mathrm{Cl}-208 ; \mathrm{C} 4-172 ; \mathrm{C} 5-51$
(b) OMe-51; Cl-208; C4-172; C5-32
(c) $\mathrm{OMe}-32 ; \mathrm{Cl}-172 ; \mathrm{C} 4-208 ; \mathrm{C} 5-51$
(d) OMe-51; Cl-172, C4-208; C5-32
128. In the following reaction, the intermediate and the major product A are

(a) : CHCl and

(b)

(b)

(d) $: \mathrm{CCl}_{2}$ and

129. The major product formed in the sulfuric acid mediated rearrangement of the sesquiterpene saritonin A is

(a)

(b)

(c)

(d)

130. In the following transformation, the reagent A and the major product B , respectively, are

(a)

(b)

(c)

(d)

131. The major product formed in the following reaction sequence is

(1) BH_{3}, THF; $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$
(2) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{DEAD}$, 4-nitrobenzoic acid
$\xrightarrow[(3) \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH} \quad \text { (DEAD }=\text { diethyl azodicarboxylate) }]{ }$
(a)

(b)

(c)

(d)

132. The major product formed in the following reaction sequence is

(a)

(b)

(c)

(d)

133. The major product formed in the following reaction sequence is

$$
\sum_{\mathrm{Ph}}^{\mathrm{Ph}} \mathrm{COOH} \xrightarrow[3 \cdot \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{OEt}]{\frac{1 . \mathrm{SOCl}_{2}}{2 \cdot \mathrm{NEt}_{3}}}
$$

(a)

(b)

(c)

(d)

134. The peptide A on reaction with 1-fluoro-2, 4-dinitrobenzene followed by exhaustive hydrolysis gave phenylalanine, alanine, serine and N -(2, 4-dinitrophenyl) glycine. On the other hand, pepetide A after two cycles of Edman degradation gave Phe-Ser as the product. The structure of the peptide A is
(a) Phe-Ser-Ala-Gly
(b) Phe-Ser-Gly-Ala
(c) Gly-Ala-Phe-Ser
(d) Ala-Gly-Phe-Ser
135. The compound (B) (labeled) is precursor for biosynthesis of the natural product A. The labeled carbons in the product A are

(A)
$\mathrm{Me}^{14} \mathrm{COOH}$
(B)
(a) $\mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 5$ and Me
(b) C2, C4, C6 and Me
(c) $\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 6$ and COOH
(d) $\mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 5$ and COOH
136. The major product formed in the following reaction sequence is

137. The major product formed in the following reaction sequence is

(a)

(b)

(c)

(d)

138. The major product formed in the following reaction sequence is

(a)

(b)

(c)

(d)

139. The conditions A-B, required for the following pericyclic reactions are

(a) $\mathrm{A}-\Delta ; \mathrm{B}-\Delta$
(b) $\mathrm{A}-\mathrm{h} v ; \mathrm{B}-\Delta$
(c) $\mathrm{A}-\mathrm{h} v ; \mathrm{B}-\mathrm{h} \nu$
(d) $\mathrm{A}-\Delta ; \mathrm{B}-\mathrm{h} \nu$
140. The number of π electrons participating and the pericyclic mode in the following reaction are

(a) 4 and conrotatory
(b) 4 and disrotatory
(c) 6 and conrotatory
(d) 6 and disrotatory
141. Stereoselective reduction of the dione A with a chiral reducing agent provides the corresponding diol B in 100% diastereoselectivity and 90% ee favoring R, R configuration. The composition of the product is

(a)

(b)

and
95\%

(c)

(d)

142. The major product formed in the following reaction sequence is

(a)

(b)

(c)

(d)

143. The major product formed in the following reaction sequence is

(a)

(b)

(d)

144. The major product formed in the following reaction sequence is

(b)

(c)

(d)

145. The major product formed in the following photochemical reaction is

(a)

(b)

(c)

(d)

