REG NO:

DATE: 24-11-2020

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 B.Sc. Biotechnology - III SEMESTER SEMESTER EXAMINATION: NOVEMBER 2020 BT318 – MOLECULAR BIOLOGY AND BIOPHYSICS

Time- 2 1/2 hrs

Max Marks-70

This paper contains TWO printed pages and THREE sections

I. Answer any TEN of the following

2x10=20 marks

- 1. What are molecular chaperone proteins and what are their roles?
- There is a loss of function mutation in the Operator sequence of the lac operon of E.
 coliand both lactose and glucose are present in the medium.Draw a diagram and
 explain how transcription of the lac operon genes is affected.
- 3. If a terminator was removed from a gene, how would this affect transcription? Where would transcription end?
- 4. What are the functions of the 7-Methyl Guanosine cap added to the 5' end of eukaryotic mRNAs?
- 5. Write a brief note comparing prokaryotic and eukaryotic promoters.
- 6. A mutation in which of the following regions of a eukaryotic gene is least likely to affect gene function? Justify your answer.
 - a. Promoter sequence
 - b. Coding region
 - c. Splice junction
 - d. Intergenic region.
- 7. What is the function of the Topoisomerase?
- 8. Briefly describe how eukaryotic genomes are packaged.
- 9. What is a Svedberg unit? How is it helpful in analysing macromolecules?
- 10. What is resolution in a microscope? What are the factors affecting it?
- 11. What factors determine the hazard potential for a radioactive material? What does a Sievert represent?
- 12. Write a short note on how chromophores in spectroscopy can act as reporters to probe their immediate environment.

II. Answer any FIVE of the following

6x5=30 marks

- 13. How is the trp operon regulated by the process of attenuation?
- 14. What are the different types of mutagens? Give examples for each.
- 15. Compare and contrast the different conformations of DNA.
- 16. What are theoretical plates? Describe its importance in chromatography with appropriate illustrations and a mathematical equation.
- 17. Explain Bragg's law with a neat diagram. If an X-ray of 120 picometer incident on two consecutive layers of a peptide crystal separated by 1.2 Angstrom produced a constructive interference, what is the glancing angle?

18. Which microscope is being illustrated here? Label and describe the function of components A, B and C. Additionally, indicate the path of 'wavelengths' of light with a ray diagram.

19. Write a note on the factors affecting sedimentation. Describe the order in which the following cellular components would sediment under differential centrifugation: mitochondria, ribosomes, microsomes, nucleus. Mention the conversion formula for RPM to RCF.

III. Answer ANY TWO of the following

10x2=20 marks

- 20. Describe the structure of the bacterial RNA Polymerase and how this enzyme initiates transcription in prokaryotes.
- 21. Compare and contrast the molecular mechanisms of prokaryotic and eukaryotic translation initiation and termination.
- 22. A. Describe the origins of replication in *E. coli* and *S. cerevisiae*.B.Draw a neat diagram of a replication fork and correctly label all the different components of an active replication fork.

BT318_A_20