

CHEMICAL SCIENCES
 Paper - II

Note : This paper contains hundred (100) objective type questions. Each question carries two (2) marks. All questions are compulsory.

1. Among the following: $\mathrm{NH}_{3} ; \mathrm{SO}_{3} ; \mathrm{PBr}_{3}$; $\left[\mathrm{SO}_{4}\right]^{2-} ;\left[\mathrm{NO}_{3}\right]^{-} ; \mathrm{AlCl}_{3}$, the correct option showing species, containing a C_{3} axis and $\mathrm{a} \sigma_{\mathrm{h}}$ plane is
(A) $\mathrm{AlCl}_{3}, \mathrm{SO}_{3}$ and $\left[\mathrm{NO}_{3}\right]^{-}$
(B) $\mathrm{NH}_{3}, \mathrm{PBr}_{3}$ and $\left[\mathrm{SO}_{4}\right]^{--}$
(C) $\mathrm{AlCl}_{3}, \mathrm{NH}_{3}$ and PBr_{3}
(D) $\mathrm{SO}_{3},\left[\mathrm{SO}_{4}\right]^{2-}$ and NH_{3}
2. For the lanthanide ion having f^{8} electronic configuration, the ground state term symbol and the number of microstates respectively are
(A) ${ }^{7} F_{6}$ and 3003
(B) ${ }^{6} \mathrm{H}_{15 / 2}$ and 2002
(C) ${ }^{8} \mathrm{~S}_{7 / 2}$ and 3003
(D) ${ }^{5}{ }_{8}$ and 2002
3. The reaction between potassium amide and ammonium iodide in liquid ammonia is called as
(A) redox reaction
(B) precipitation reaction
(C) acid-base reaction
(D) complexometric reaction
4. The main difference between HPLC and UPLC is
(A) HPLC operates at higher mobile phase pressure and is reverse phase always
(B) UPLC employs smaller stationary phase particle size
(C) HPLC and UPLC employs different mobile phases
(D) HPLC and UPLC employs different detection methods
5. A thermogram of calcium oxalate monohydrate weighing 20.0 mg loses 2.46 mg in the temperature range of $105-260^{\circ} \mathrm{C}$. The residue product formed is
(A) $\mathrm{H}_{2} \mathrm{O}$
(B) CaCO_{3}
(C) $\mathrm{CaC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
(D) $\mathrm{CaC}_{2} \mathrm{O}_{4}$
6. The height equivalent of theoretical plates and total number of plates if the elution peak of the sample is 9.34 minutes with a base width of 0.43 minute and column length of 18.3 cm respectively are
(A) 2.42×10^{-2} and 7.55×10^{3}
(B) 2.42×10^{-3} and 0.755×10^{3}
(C) 2.42×10^{-3} and 7.55×10^{3}
(D) 3.88×10^{-2} and 471.79
7. In the coulometric titration of U^{4+} in the presence of excess Ce^{4+}, it was found to require 652 seconds to reach the equivalence point using a constant current of 100.0 mA . The number of moles of U^{4+} present in the solution is [Given: $\mathrm{U}^{4+}+2 \mathrm{Ce}^{4+}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{UO}_{2}^{2+}+$ $\left.2 \mathrm{Ce}^{3+}+4 \mathrm{H}^{+}\right]$
(A) 1.35×10^{-3}
(B) 6.76×10^{-4}
(C) 1.69×10^{-4}
(D) 3.38×10^{-4}
8. The active site of metalloprotein, oxyhemocyanin contains
(A) Fe (II) and O_{2}^{2-}
(B) Cu (II) and O_{2}^{2-}
(C) Fe (II) and O_{2}^{-}
(D) Fe (III) and O_{2}^{2-}
9. N-methyl imidazole coordinated iron (II) picket fence porphyrin was employed as a model compound for the active site of
(A) rubredoxin
(B) cytochromes
(C) peroxidase
(D) myoglobin
10. The functions of transferrin, cytochrome and nitrogenase respectively are
(A) iron storage, electron transfer and nitrogen fixation
(B) iron transport, oxygen storage and nitrogen fixation
(C) iron storage, electron transfer and $\mathrm{N}_{2} \mathrm{H}_{4}$ fixation
(D) iron transfer, electron transfer and nitrogen fixation
11. A molecule shows two absorption peaks $\left({ }^{13} \mathrm{C}\right)$ at 870 and 975 Hz in a magnetic field of 3T. The corresponding chemical shifts in ppm are (Magnetogyric ratio for ${ }^{13} \mathrm{C}=6.7263 \times 10^{7} \mathrm{rad} \mathrm{T}^{-1} \mathrm{~s}^{-1}$; for ${ }^{13} \mathrm{C}=\frac{1}{2}$).
(A) 277.1 and 310.5 ppm
(B) 13.6 and 15.2 ppm
(C) 27.1 and 30.4 ppm
(D) 32.1 and 35.8 ppm
12. The order of carbonyl stretching frequency in the IR spectra of acetone, benzamide and acetic anhydride is
(A) Acetic anhydride > acetone > benzamide
(B) Acetone > benzamide > acetic anhydride
(C) Benzamide > acetone > acetic anhydride
(D) Acetic anhydride > benzamide > acetone
13. The ${ }^{13} \mathrm{C}$ NMR spectrum of CDCl_{3} consists of
(A) a singlet
(B) a doublet of $1: 1$ intensity
(C) a triplet of $1: 2: 1$ intensity
(D) a triplet of $1: 1: 1$ intensity
14. Choose the correct statements about $\mathrm{Cul}, \mathrm{AuCl}_{2}$ and $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$from the following:
i. Cul is white powder and AuCl_{2} is unstable
ii. Both Cul and $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$are diamagnetic
iii. Both AuCl_{2} and $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$are unstable
iv. Cul is diamagnetic but $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$ is paramagnetic
(A) i and iii
(B) ii and iii
(C) i and ii
(D) i and iv
15. The absorption spectrum of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ shows a broad band with a shoulder because
(A) The ground state of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is Jahn-Teller distorted
(B) Under UV light, $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is reduced to $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(C) The excited state of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ undergoes Jahn-Teller distortion
(D) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is a d${ }^{2}$ ion and hence two absorption bands are displayed
16. For the following, the correct option containing species which shows color that is NOT due to a d-d transition is : $\mathrm{VO}^{2+}, \mathrm{CrO}_{4}^{2-}, \mathrm{MnO}_{4}^{2-} \& \mathrm{MnO}_{4}^{-}$
(A) MnO_{4}^{2-} and CrO_{4}^{2-}
(B) VO^{2+} and MnO_{4}^{-}
(C) CrO_{4}^{2-} and MnO_{4}^{-}
(D) VO^{2+} and CrO_{4}^{2-}
17. The 'd' orbital(s) involved inthe hybridisation representing square pyramidal geometry is (are)
(A) $d_{x^{2}-y^{2}}$ only
(B) $d_{x^{2}-y^{2}}$ and $d_{z^{2}}$
(C) $\mathrm{d}_{\mathrm{z}^{2}}$ and d_{yz}
(D) $\mathrm{d}_{\mathrm{z}^{2}}$ only
18. Among the following, the complex with a magnetic moment of 5.9 BM and also both EPR and Mössbauer active is
(A) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(B) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(C) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(D) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
19. The complexes having square planar geometry and 16 valence electrons are
(A) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{Ni}(\mathrm{CO})_{4}$
(B) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$
(C) $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Ni}(\mathrm{CO})_{4}$
(D) $\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$
20. In the following catalytic reaction, the products obtained are
$\mathrm{CH}_{4} \xrightarrow[\text { Steam, } 800^{\circ} \mathrm{C}]{\text { Ni Catalyst }}$?
(A) H_{2} and CO
(B) $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}
(C) H_{2} and CO_{2}
(D) $\mathrm{H}_{2} \mathrm{O}$ and CO
21. The new isotope formed when atoms aluminum-27 are bombarded with alpha particles, along with a 'neutron' emission is
(A) ${ }_{14}^{31} \mathrm{Si}$
(B) ${ }_{16}^{31} \mathrm{~S}$
(C) ${ }_{15}^{30} \mathrm{P}$
(D) ${ }_{15}^{31} \mathrm{P}$
22. The product nucleus obtained as a result of β (beta) decay is
(A) One atomic number lower than the original element
(B) Two atomic numbers higher than the original element
(C) One atomic number higher than the original element
(D) Two atomic numbers lower than the original element
23. Use the following data to calculate the lattice enthalpy of $\mathrm{KI}_{(\mathrm{s})}$ at 298 K . All values are given in $\mathrm{KJ} / \mathrm{mol}$.
Enthalpy of sublimation of $\mathrm{K}_{(\mathrm{s})}=81$
Ionization enthalpy of $\mathrm{K}_{(\mathrm{g})}=418$
Enthalpy of dissociation of $I_{2(g)}=214$
Enthalpy of electron attachment to
$I_{(\mathrm{g})}=-295$
Enthalpy of formation of $\mathrm{KI}_{(\mathrm{s})}$ from $\mathrm{K}_{(\mathrm{s})}$ and $\frac{1}{2} I_{2(\mathrm{~g})}-328$
(A) $639 \mathrm{KJ} / \mathrm{mol}$
(B) $573 \mathrm{KJ} / \mathrm{mol}$
(C) $746 \mathrm{KJ} / \mathrm{mol}$
(D) $680 \mathrm{KJ} / \mathrm{mol}$
24. According to Wade's rules, boron hydride $\left[\mathrm{B}_{5} \mathrm{H}_{5}\right]^{2-}$ shows
(A) nido structure
(B) closo structure
(C) arachno structure
(D) hypho structure
25. Solid state structure of phosphorus pentachloride is best represented as
(A) $\left.\left[\mathrm{PCl}_{4}\right]^{+[C l}\right]^{-}$
(B) $\left[\mathrm{PCl}_{4}\right]+\left[\mathrm{PCl}_{6}\right]^{-}$
(C) PCl_{5}
(D) $\mathrm{Cl}_{5} \mathrm{P}-\mathrm{PCl}_{5}$
26. Plaster of Paris is
(A) $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{CaSO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{CaCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(D) $\mathrm{CaCO}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
27. The π bond strengths to carbon are in the order
(A) $\mathrm{C}=\mathrm{C}>\mathrm{C}=\mathrm{Si}>\mathrm{C}=\mathrm{Ge}>\mathrm{C}=\mathrm{Sn}$
(B) $\mathrm{C}=\mathrm{C}<\mathrm{C}=\mathrm{Si}<\mathrm{C}=\mathrm{Ge}<\mathrm{C}=\mathrm{Sn}$
(C) $\mathrm{C}=\mathrm{Si}>\mathrm{C}=\mathrm{C}>\mathrm{C}=\mathrm{Ge}>\mathrm{C}=\mathrm{Sn}$
(D) $\mathrm{C}=\mathrm{C}<\mathrm{C}=\mathrm{Si}>\mathrm{C}=\mathrm{Ge}>\mathrm{C}=\mathrm{Sn}$
28. Oxidation states of Xenon in $\left[\mathrm{XeO}_{2} \mathrm{~F}_{3}\right]^{-}$ and $\mathrm{XeO}_{2}\left(\mathrm{OTeF}_{5}\right)_{2}$ respectively, are
(A) +4 and +6
(B) +6 and +8
(C) +6 and +6
(D) +4 and +8
29. The complex that shows quadrupole bonding (delta bond) is
(A) $\left[\mathrm{Re}_{2} \mathrm{Cl}_{8}\right]^{4-}$
(B) $\left[\mathrm{Mo}_{2}(\mathrm{OAc})_{4}\right]$
(C) $\left[\mathrm{Re}_{2} \mathrm{Br}_{4}\left(\mathrm{PMe}_{3}\right)_{2}\right]$
(D) $\left[\mathrm{Re}_{2} \mathrm{Cl}_{6}\left(\mathrm{PPh}_{3}\right)_{2}\right]$
30. Column - I and Column - II contain, respectively, the molecular species and possible geometries. Match the species in Column - I with one or more correct geometries in Column - II. The correct option is

Column-I

P. ICl_{4}^{-}
Q. SOF_{4}
R. XeF_{4}
S. SiH_{4}

Column - II

1. tetrahedral
2. octahedral
3. square planar
4. trigonal
bipyramidal
5. trigonal pyramidal
6. square pyramidal
(A) $P=4 ; Q=6 ; R=4 ; S=1$
(B) $P=4 ; Q=2 ; R=2 ; S=3$
(C) $P=2 ; Q=4 ; R=2 ; S=1$
(D) $P=2 ; Q=6 ; R=4 ; S=5$
7. Among the following chemical reactions, hydrogen acting as an oxidizing agent is
(A) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
(B) $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
(C) $2 \mathrm{Na}+\mathrm{H}_{2} \rightarrow 2 \mathrm{NaH}$
(D) $\mathrm{CuO}+\mathrm{H}_{2} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
8. The correct equation to calculate the screening constant (σ) for d-electron of $\operatorname{Br}(Z=35)$ is
(A) $1 \times 10+0.85 \times 8+10 \times 0.35$
(B) $1 \times 18+0.35 \times 9$
(C) $0.85 \times 18+0.35 \times 10$
(D) $1 \times 10+0.85 \times 8+0.35 \times 9$
9. The following is the correct order as a result of polarisation in (i) melting points of the compounds: $\mathrm{LiF}, \mathrm{LiCl}, \mathrm{LiBr}$ and Lil and (ii) solubility of the compounds in polar solvents: $\mathrm{AgF}, \mathrm{AgCl}, \mathrm{AgBr}$ and Agl
(A) $\mathrm{LiF}>\mathrm{LiCl}>\mathrm{LiBr}>\mathrm{Lil} ; \mathrm{AgF}>\mathrm{AgCl}>$ $\mathrm{AgBr}>\mathrm{AgI}$
(B) $\mathrm{LiF}<\mathrm{LiCl}<\mathrm{LiBr}<\mathrm{Lil} ; \mathrm{AgF}<\mathrm{AgCl}<$ $\mathrm{AgBr}<\mathrm{Agl}$
(C) $\mathrm{LiF}>\mathrm{LiCl}>\mathrm{LiBr}>\mathrm{Lil} ; \mathrm{AgF}<\mathrm{AgCl}<$ $\mathrm{AgBr}<\mathrm{AgI}$
(D) $\mathrm{LiF}<\mathrm{LiCl}<\mathrm{LiBr}<\mathrm{Lil} ; \mathrm{AgF}>\mathrm{AgCl}<$ $\mathrm{AgBr}>\mathrm{Agl}$
10. The IUPAC name of the following compound is

(A) 2E, 4E-3-chlorohex 2, 4 - diene - 1, 6 - diol
(B) 2Z, 4E - 3 - chlorohex 2, 4 - diene - 1, 6 - diol
(C) 2Z, 4Z - 4 - chlorohex -

2, 4 - diene - 1, 6 - diol
(D) 2E, 4Z - 4 - chlorohex -

2, 4 - diene - 1, 6 - diol
35. Which is the correct configurational notation for the following at C_{1} and C_{4} centres ?

(A) $1 \mathrm{R}, 4 \mathrm{R}$
(B) 1S, 4R
(C) $1 \mathrm{~S}, 4 \mathrm{~S}$
(D) $1 \mathrm{R}, 4 \mathrm{~S}$
36. Among the following, the most stable isomer for 1,4 - cyclohexane diol is
(A)

(B)

(C)

(D)

37. In the given reactions P and Q respectively are

Q $\frac{\text { 1) }\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \mathrm{MgBr}}{2) \mathrm{NH}_{4} \mathrm{Cl} / \mathrm{H}_{2} \mathrm{O}}$

(B)

(C)

(D) Only

38. The major product in the following reaction is

Benzaldehyde $\xrightarrow[\text { ii) } \mathrm{H}_{3} \mathrm{O} \oplus / \Delta]{\text { i) } \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHOCH}_{3}}$?
(A) $\mathrm{PhCH}=\mathrm{CHCH}_{3}$
(B) $\mathrm{PhCH}_{2} \mathrm{CHO}$
(C) $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(D) $\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{OCH}_{3}$
39. Which of the following dienes is suitable as the diene component in a Diel's - Alder reaction ?
(A)

(B)

(C)

(D)

40. Which of the following is a non-aromatic annulene?
(A) 18 - annulene
(B) 8 - annulene dianion
(C) 8 - annulene
(D) 9 - annulene anion
41. Butadiene on thermal electrocyclic ring closure reaction shows
(A) Dis-rotatory process
(B) Suprafacial rotatory process
(C) Con-rotatory process
(D) Antarafacial rotatory process
42. In the following reaction, the number of isomeric deutero anilines formed is

(A) only one
(B) only two
(C) three
(D) four
43. Which of the following carbocation is likely to undergo rearrangement through hydride shift?

(A) only X
(B) X and Y
(C) only Y
(D) only Z
44. The IR stretching frequencies for the compound shown below are as follows : $3300-3500$ (s, br), 3000 (m), 2225 (s), 1680 (s) cm ${ }^{-1}$.

The correct assignment of the absorption band is
(A) $\gamma_{\mathrm{OH}}=3300-3500 ; \gamma_{\mathrm{CH}}=3000$ $\gamma_{C N}=1680 ; \gamma_{C O}=2225 \mathrm{~cm}^{-1}$
(B) $\gamma_{\mathrm{OH}}=3300-3500 ; \gamma_{\mathrm{CH}}=2225$; $\gamma_{C N}=3000 ; \gamma_{C O}=1680 \mathrm{~cm}^{-1}$
(C) $\gamma_{\mathrm{OH}}=3000 ; \gamma_{\mathrm{CH}}=3300-3500$;
$\gamma_{\mathrm{CN}}=2225 ; \gamma_{\mathrm{CO}}=1680 \mathrm{~cm}^{-1}$
(D) $\gamma_{\mathrm{OH}}=3300-3500 ; \gamma_{\mathrm{CH}}=3000$; $\gamma_{\mathrm{CN}}=2225 ; \gamma_{\mathrm{CO}}=1680 \mathrm{~cm}^{-1}$
45. $\lambda_{\text {max }}$ for the following compounds are

(A) 284 nm and 333 nm
(B) 333 nm and 284 nm
(C) 280 nm and 330 nm
(D) 330 nm and 280 nm
46. The formation of the base peak in mass spectrometry is due to
(A) only ionisation
(B) ionisation and stability of cation/ radical cation
(C) ionisation and stability of radical
(D) ionisation and stability of anion
47. The reaction given below is an example of

(A) Aldol condensation
(B) Knoevenagel condensation
(C) Dieckmann cyclisation
(D) Acyloin cyclisation
48. The rearranged product P of the reaction is

(A)

(B)

(C)

49. Predict the product for the following transformation.

(A)

(B)

(C)

(D)

50. α-D-glucose is converted to a mixture of α-D-glucose and β-D-glucose in water due to
(A) mutarotation
(B) epimerization
(C) conformational change
(D) racemization
51. What is the sequence of bases in RNA molecule synthesized on the TATCTACCTGGA strand of DNA ?
(A) AVAGAUGGACCU
(B) ATAGATGGACCT
(C) TATCTACCTGGA
(D) ATTUGGAATG
52. Hofmann degradation is useful in the structural determination of
(A) Terpenoids
(B) Lipids
(C) Steroids
(D) Alkaloids
53. The major product formed in the following reaction is

(A)

(B)

(C)

(D)

54. In the following reaction, X is

(A)

(B)

(C)

(D)

55. The products X and Y in the following reactions are

(B)

(C)

(D) only

56. An organic compound of molecular formula $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$ showed three peaks in the PMR spectrum as given below : $\delta 1.96$, singlet (3 H), $\delta 5.0$, singlet (2 H) and $\delta 7.2$, singlet (5 H). In IR spectrum one of the intense bands of this compound appears at $1740 \mathrm{~cm}^{-1}$. The structure of the compound is
(A)

(B)

(C)

(D)

57. The product X formed in the following reaction is

(A)

(B)

(C)

(D)

58. Which of the following compound yields ${ }^{14} \mathrm{CH}_{2} \mathrm{I}_{2}$ as a product when treated with I_{2} in presence of NaOH ?
(A)

(B)

(C)

(D)

59. What happens when chloroform is oxidised on exposure to air ?
(A) Dichlorocarbene is produced
(B) Carbon dioxide is produced
(C) Phosgene is produced
(D) Carbon monoxide is produced
60. The most probable product in the following reaction is

(A)

(B)

(C)

(D)

61. Which one is not a green solvent among the following?
(A) Liquid carbon dioxide
(B) Liquid ammonia
(C) Ionic liquids
(D) Water
62. The chemical bonding of carbon nanotubes is composed entirely by
(A) $s p$ bonds
(B) sp^{2} bonds
(C) sp^{3} bonds
(D) $s p$ and $s p^{3}$ bonds
63. The product formed in the following reaction is

(A)

(B)

(C)

(D)

64. The products formed in the following reaction are

(A) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{I}$ and $\mathrm{CH}_{3}-\mathrm{OH}$
(B) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{OH}$ and $\mathrm{C}_{3}-\mathrm{I}$
(C) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{SiMe}_{3}$ and $\mathrm{CH}_{3}-\mathrm{OH}$
(D) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{OH}$ and $\mathrm{CH}_{3}-\mathrm{SiMe}_{3}$
65. The effective catalyst for the mutarotation of monosaccharides is
(A) pyridine
(B) phenol
(C) 2-hydroxypyridine
(D) anhydrous acetic acid
66. Among the following the narcotic analgesic is
(A) Heroin
(B) Ibuprofen
(C) Naproxen
(D) Aspirin
67. Crown ether and creptate have
(A) N and O donor atoms respectively
(B) S and N donor atoms respectively
(C) O and N donor atoms respectively
(D) O and S donor atoms respectively
68. ∇^{2} in $\nabla^{2} \Psi+\frac{8 \pi^{2} \mathrm{~m}}{\mathrm{~h}^{2}}(\mathrm{E}-\mathrm{V}) \Psi=0$ is known as
(A) Hamiltonian operator
(B) Laplacian operator
(C) Angular momentum
(D) Energy operator
69. If the function $f=e^{-a x}$ is acted upon by the operator $\frac{d}{d x}$, the eigen value and eigen function respectively are
(A) - a and $e^{-a x}$
(B) $2 a$ and $e^{a x}$
(C) ax and $e^{-2 x}$
(D) $\frac{d}{d x}$ and $e^{a x}$
70. The quantum mechanical operator for kinetic energy of a particle moving in three directions is
(A) $\frac{-h^{2}}{8 \pi^{2} m} \nabla^{2}$
(B) $\frac{\mathrm{h}}{2 \pi \mathrm{i}} \nabla$
(C) $\frac{h}{8 \pi^{2} m} \nabla^{2}$
(D) $\frac{8 \pi^{2} m}{h^{2}} \nabla^{2}$
71. According to Schrodinger equation the energy of a particle (E_{n}) in one dimensional box
(A) $E_{n}=\frac{n^{2} h^{2}}{m a^{2}}$
(B) $E_{n}=\frac{n^{2} h^{2}}{4 m a}$
(C) $E_{n}=\frac{n^{2} h^{2}}{8 m a^{2}}$
(D) $E_{n}=\frac{n h}{8 m^{2}}$
72. The ground state term symbol for Nb (atomic number : 41) is ${ }^{6} \mathrm{D}$. The electronic configuration is
(A) $[\mathrm{Kr}] 4 \mathrm{~d}^{3} 5 \mathrm{~s}^{2}$
(B) $[\mathrm{Kr}] 4 \mathrm{~d}^{4} 5 \mathrm{~s}^{1}$
(C) $[\mathrm{Kr}] 4 \mathrm{~d}^{5} 5 \mathrm{~s}^{0}$
(D) $[K r] 4 d^{3} 5 s^{1} 5 p^{1}$
73. The hybridization $\mathrm{sp}^{3} \mathrm{~d}$ gives rise to the following arrangement
(A) Linear
(B) Octahedral
(C) Trigonal bipyramidal
(D) Trigonal planar
74. In the following molecule, the hybrid state of 1 and 3 carbon atoms is
$\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$
(A) sp
(B) sp^{2}
(C) sp^{3}
(D) $\mathrm{sp}^{3} \mathrm{~d}$
75. The bond order of the super oxide $\left(\mathrm{O}_{2}^{-}\right)$is
(A) 1.5
(B) 2.5
(C) 1.0
(D) 2.0
76. Which of the following species possesses both C_{2} and C_{3} axis ?
(A) SO_{3}
(B) NH_{3}
(C) PCl_{3}
(D) $\stackrel{\oplus}{\mathrm{H}}_{3} \mathrm{O}$
77. The symmetric streching vibrational mode of CO_{2} molecule is
(A) IR and Raman inactive
(B) IR and Raman active
(C) IR inactive but Raman active
(D) IR active but Raman inactive
78. Arrange the methyl halides $\left(\mathrm{CH}_{3} \mathrm{Br}\right.$, $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{I}, \mathrm{CH}_{3} \mathrm{~F}$) in the order of increasing field strength by 'HNMR technique.
(A) $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{Br}, \mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{~F}$
(B) $\mathrm{CH}_{3} \mathrm{Br}, \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{~F}$
(C) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{CH}_{3} \mathrm{Br}, \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{~F}$
(D) $\mathrm{CH}_{3} \mathrm{~F}, \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{Br}, \mathrm{CH}_{3} \mathrm{I}$
79. The relation between $\Delta \mathrm{E}$ and $\Delta \mathrm{H}$ is
(A) $\Delta \mathrm{E}=\Delta \mathrm{H}+\mathrm{P} \Delta \mathrm{V}$
(B) $\Delta \mathrm{E}=\Delta \mathrm{H}-\mathrm{V} \Delta \mathrm{P}$
(C) $\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{V}$
(D) $\Delta \mathrm{H}=\Delta \mathrm{E}-\mathrm{V} \Delta \mathrm{P}$
80. Using the fundamental equation $d A=-S d T-P d V$ the Maxwell relation is
(A) $\left(\frac{\partial S}{\partial T}\right)_{T}=\left(\frac{\partial V}{\partial S}\right)_{V}$
(B) $\left(\frac{\partial S}{\partial V}\right)_{P}=\left(\frac{\partial P}{\partial T}\right)_{V}$
(C) $\left(\frac{\partial T}{\partial V}\right)_{S}=\left(\frac{\partial P}{\partial S}\right)_{T}$
(D) $\left(\frac{\partial \mathrm{S}}{\partial \mathrm{V}}\right)_{\mathrm{T}}=\left(\frac{\partial \mathrm{P}}{\partial \mathrm{T}}\right)_{\mathrm{V}}$
81. The condensed phase rule used for $\mathrm{Pb}-\mathrm{Ag}$ system is
(A) $F=C-P+1$
(B) $F=C+P-1$
(C) $F=C-P+2$
(D) $\mathrm{F}=\mathrm{C}+\mathrm{P}+2$
82. The number of phases in equilibrium at triple point in water system are
(A) One
(B) Two
(C) Three
(D) Zero
83. The value of $1.38 \times 10^{-23} \mathrm{JK}^{-1}$ represents
(A) Boltzmann constant
(B) Avogadro number
(C) Planck constant
(D) Gas constant
84. The rate of entropy production is
(A) sum of force and flux
(B) product of force and flux
(C) differences of force and flux
(D) $\frac{\text { force }}{\text { flux }}$
85. A quantity of PCl_{5} was heated in a 10 litre vessel at $250^{\circ} \mathrm{C}$. At equilibrium the vessel contains 0.10 mole of PCl_{5}, 0.20 mole of PCl_{3} and 0.20 mole of Cl_{2}. The equilibrium constant of the reaction, $\mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$ is
(A) 0.02
(B) 0.05
(C) 0.04
(D) 0.025
86. Le Chatelier's principle is not applicable to
(A) $\mathrm{Fe}_{(\mathrm{s})}+\mathrm{S}_{(\mathrm{s})} \rightleftharpoons \mathrm{FeS}_{(\mathrm{s})}$
(B) $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}$
(C) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$
(D) $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}$
87. The value of standard electrode potential for the change $\mathrm{Fe}^{3+}{ }_{(\text {aq })}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{(\text {aq })}$ will be (Given, $\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}}^{0}=-0.036 \mathrm{~V}$; $\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.439 \mathrm{~V}$)
(A) -0.072 V
(B) +0.385 V
(C) +0.770 V
(D) -0.270 V
88. The standard $E_{\text {red }}^{0}$ values of A, B and C are $+0.68 \mathrm{~V},-2.54 \mathrm{~V},-0.50 \mathrm{~V}$ respectively. The order of their reducing power is
(A) A $>$ B $>$ C
(B) A $>$ C $>$ B
(C) $\mathrm{C}>$ B $>$ A
(D) B $>$ C $>$ A
89. The rate of equation for the reaction, $2 A B+B_{2} \rightarrow 2 A B_{2}$ is given by rate $=k[A B]\left[B_{2}\right]$
A possible mechanism consistent with this rate law is
(A) $2 \mathrm{AB}+\mathrm{B}_{2} \xrightarrow{\text { slow }} 2 \mathrm{AB}_{2}$
(B) $A B+B_{2} \xrightarrow{\text { slow }} A B_{3}$

$$
\mathrm{AB}_{3}+\mathrm{AB} \xrightarrow{\text { fast }} 2 \mathrm{AB}_{2}
$$

(C) $A B+A B \rightleftharpoons A_{2} B_{2}$ (fast)

$$
\mathrm{A}_{2} \mathrm{~B}_{2}+\mathrm{B}_{2} \xrightarrow{\text { slow }} 2 \mathrm{AB}_{2}
$$

(D) $A B+B_{2} \rightleftharpoons A B_{3}$ (fast)
$A B_{3}+A B \xrightarrow{\text { slow }} 2 A B_{2}$
90. Half life of a reaction is found to be inversely proportional to the cube of initial concentration. The order of the reaction is
(A) $1 / 3$
(B) 2
(C) 3
(D) 4
91. Which of the following is the Wilkinson's catalyst?
(A) $\left(\mathrm{PPh}_{3}\right)_{2}$ Ir $(\mathrm{CO}) \mathrm{Cl}$
(B) $\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{RhCl}$
(C) PtO_{2}
(D) $\mathrm{Ra}-\mathrm{Ni}$
92. The correct statements among the following are

1. A catalyst does not affect the equilibrium constant.
2. Le Chatelier's principle states that a system at equilibrium, when subjected to a disturbance responds in a way that minimizes the effect of the disturbance.
3. Increase in temperature favours the reactants in endothermic reactions and products in exothermic reactions.
4. Oxidation is the removal of electrons from a species and reduction is the addition of electrons to a species.
(A) 1, 2 and 3
(B) 1, 2 and 4
(C) 1, 3 and 4
(D) 2, 3 and 4
5. The following compound is used in the preparation of Terylene
(A) Adipic acid
(B) Bisphenol A
(C) Glycine
(D) Dimethyl terephthalate
6. The number average molecular weight of a polymer sample containing equal number of molecules of molecular mass 10^{4} and 10^{15} is
(A) 0.5×10^{9}
(B) 0.5×10^{20}
(C) 5.5×10^{4}
(D) 5.0×10^{4}
7. The atoms in a molecule of water adopts what kind of geometry
(A) Square planar
(B) Trigonal planar
(C) Linear
(D) Tetrahedral
8. The coordinates for the atoms in a body centred cubic (bcc) unit cell are
(A) $(0,0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
(B) $(0,0,0)$ and $\left(\frac{1}{2}, 0,0\right)$
(C) $(0,0,0)$ and $\left(0, \frac{1}{2}, 0\right)$
(D) $(0,0,0)$ and $\left(0,0, \frac{1}{2}\right)$
9. When a beam of light is passed through a colloidal solution, it gets
(A) scattered
(B) absorbed
(C) reflected
(D) refracted
10. An arsenic sulfide sol. carries (-)ve charge. The maximum precipitating power for this sol. is possessed by
(A) $\mathrm{K}_{2} \mathrm{SO}_{4}$
(B) CaCl_{2}
(C) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
(D) AlCl_{3}
11. Median of the following set of results $0.124,0.130,0.128,0.126$ and 0.122 is
(A) 0.124
(B) 0.126
(C) 0.129
(D) 0.130
12. Precision refers to
(A) agreement of measured parameters with the theoretical value
(B) agreement among respective values of the measured parameters
(C) difference between the highest and lowest values of the measured parameters
(D) systematic errors only
