

PHYSICAL SCIENCES
 Paper - II

Note : This paper contains hundred (100) objective type questions. Each question carries two (2) marks. All questions are compulsory.

1. The eigenvalues of a 5×5 matrix B are $2,1,0,-1,-2$. The determinant of e^{B} is
(A) e
(B) $1 / \mathrm{e}$
(C) 1
(D) 0
2. Given $\hat{A}=\exp \left(2 \pi \frac{d}{d x}\right), \hat{A}\left(e^{-x}\right)$ is
(A) $-e^{x}$
(B) e^{x}
(C) $-e^{-x}$
(D) e^{-x}
3. The value of $\int_{-\infty}^{\infty} \sin x \delta^{\prime}(x) d x$ is
(A) 1
(B) -1
(C) 0
(D) ∞
4. A solution of the differential equation $\frac{d y}{d x}=-\frac{y^{3}}{x^{4}}$ is
(A) $y^{2} x^{3}=$ const.
(B) $y^{3 / 2} / x^{2}=$ const.
(C) $\frac{3}{y^{2}}-\frac{2}{x^{3}}=$ const .
(D) $\frac{3}{y^{2}}+\frac{2}{x^{3}}=$ const .
5. If $A_{k}^{i j}$ is a third rank mixed tensor, it transforms under the coordinate change $\left\{\mathrm{x}^{i}\right\} \rightarrow\left\{\overline{\mathrm{x}}^{\mathrm{j}}\right\}$ as
(A) $\bar{A}_{k}^{i j}=\frac{\partial \bar{x}^{i}}{\partial x^{m}} \frac{\partial \bar{x}^{j}}{\partial x^{n}} \frac{\partial \bar{x}^{k}}{\partial x^{i}} A_{1}^{m n}$
(B) $\bar{A}_{k}^{i j}=\frac{\partial \bar{x}^{i}}{\partial x^{m}} \frac{\partial \bar{x}^{j}}{\partial x^{n}} \frac{\partial x^{\prime}}{\partial \bar{x}^{k}} A_{1}^{m n}$
(C) $\bar{A}_{k}^{i j}=\frac{\partial x^{m}}{\partial \bar{x}^{i}} \frac{\partial x^{n}}{\partial \bar{x}^{j}} \frac{\partial x^{1}}{\partial \bar{x}^{k}} A_{1}^{m n}$
(D) $\bar{A}_{k}^{i j}=\frac{\partial x^{m}}{\partial \bar{x}^{i}} \frac{\partial \mathbf{x}^{n}}{\partial \bar{x}^{j}} \frac{\partial \bar{x}^{k}}{\partial \mathbf{x}^{\prime}} A_{1}^{m n}$
6. Which of the following is not an su(2) matrix ?
(A) $\left(\begin{array}{cc}e^{i \phi} & 0 \\ 0 & e^{-i \phi}\end{array}\right)$
(B) $\left(\begin{array}{cc}0 & e^{i \theta} \\ -\mathrm{e}^{-i \theta} & 0\end{array}\right)$
(C) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
(D) $\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$
7. Which of the following matrices are Hermitian?
a. $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
b. $\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$
c. $\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$
d. $\left(\begin{array}{rr}i & 1 \\ 1 & -i\end{array}\right)$
(A) a, b, c
(B) b, c
(C) b, c, d
(D) a, d, c
8. The work done by the force $\vec{F}=x \hat{i}+y \hat{j}$ along a circular path from $(1,0)$ to $(0,1)$ is
(A) 0
(B) 1
(C) -2
(D) 2
9. The volume of the parallelopiped with edges $\vec{A}=\hat{i}+\hat{j}, \vec{B}=\hat{j}+\hat{k}$ and $\vec{C}=\hat{k}+\hat{i}$ is
(A) 8
(B) 6
(C) 4
(D) 2
10. $f(z)$ is a function of complex variable z given by $f(z)=\frac{\sqrt{z-1}}{(z+1)^{2}}$
(A) $z=-1$ is a simple pole
(B) $z=-1$ is a branch point
(C) $z=1$ is a branch point
(D) $z=1$ is analytic in the region

$$
\left|z-\frac{1}{2}\right|=1
$$

11. Whichdifferentialequation hassingularities at $x=1,-1, \infty$?
(A) Legendre differential equation
(B) Bessel differential equation
(C) Hermite differential equation
(D) Laguerre differential equation
12. If $F=a x+b v$, where F, x, v are the magnitudes of force, position and velocity respectively, then $\frac{a}{b}$ has the dimensions
(A) T^{-2}
(B) T^{-1}
(C) T
(D) T^{2}
13. The physical quantity that has the same dimension as the action S in Hamilton's principle is
(A) Linear momentum
(B) Energy
(C) Orbital angular momentum
(D) Torque
14. q_{k} is said to be a cyclic coordinate if
(A) $\frac{\partial L}{\partial q_{k}}=0$
(B) $\frac{\partial \mathrm{L}}{\partial \dot{\mathrm{q}}_{\mathrm{k}}}=0$
(C) $\frac{\partial \mathrm{L}}{\partial \mathrm{q}_{\mathrm{k}}}=2 \pi \mathrm{n}$
(D) $L\left(q_{k}\right)=L\left(q_{k}+2 \pi\right)$
15. If $F=\sum q_{i} Q_{i}$ is the generating function of a set of canonical transformations then
(A) $p_{i}=Q_{i}, P_{i}=-q_{i}$
(B) $p_{i}=q_{i}, P_{i}=-Q_{i}$
(C) $p_{i}=-Q_{i}, P_{i}=q_{i}$
(D) $p_{i}=-Q_{i}, P_{i}=-q_{i}$
16. Lagrangian equations of motion: $\frac{\mathrm{d}}{\mathrm{dt}} \frac{\partial \mathrm{L}}{\partial \dot{q}_{i}}-\frac{\partial \mathrm{L}}{\partial \mathrm{q}_{\mathrm{i}}}=0$ are applicable to
(A) conservative, holonomic systems
(B) non-conservative, holonomic systems
(C) conservative, non-holonomic systems
(D) non-conservative, non-holonomic systems
17. Phasespacetrajectoryofaone-dimensional simple harmonic oscillator is
(A) Hyperbola
(B) Parabola
(C) Ellipse
(D) Cycloid
18. The Lagrangian equations of motion will remain unchanged, if the Lagrangian L is replaced by $L+L^{\prime}$ where L^{\prime} is a total time derivative of a function of
(A) Generalised coordinates and velocities
(B) Generalised velocities and time
(C) Generalised velocities
(D) Generalised coordinates and time
19. A planet moves in an orbit $r(\theta)=\frac{1}{1+\in \cos \theta}$ where I and \in are constants, under the influence of a force $\vec{F}(\vec{r})=-\frac{k \hat{r}}{r^{2}}(k>0)$. The orbital speed of the planet is minimum when
(A) $\theta=0$
(B) $\theta=\pi / 3$
(C) $\theta=\pi / 2$
(D) $\theta=\pi$
20. A particle of mass m moves in a central potential $\mathrm{V}(\mathrm{r})=\mathrm{kmr}^{3}(\mathrm{k}>0)$. The angular momentum for which the orbit will be a circle of radius a about the origin is
(A) $m a \sqrt{k} a$
(B) $\mathrm{ma}^{2} \sqrt{3 \mathrm{ka}}$
(C) $m a^{2} \sqrt{k a}$
(D) $\mathrm{ma} \sqrt{\mathrm{ka}}$
21. If the Lagrangian of a system is $L(q, \dot{q}, t)=\frac{1}{2} q^{2}(\dot{q})^{2}-q^{4}$ the equation of motion is
(A) $q \ddot{q}+(\dot{q})^{2}+4 q^{2}=0$
(B) $\ddot{\mathrm{q}}+(\dot{\mathrm{q}})^{2}+4 \mathrm{q}^{3}=0$
(C) $\ddot{\mathrm{q}}+(\dot{\mathrm{q}})^{2}-4 \mathrm{q}^{3}=0$
(D) $\ddot{q}+(\dot{\mathrm{q}})^{2}-4 \mathrm{q}^{2}=0$
22. If the orbit of the equation in $r-\theta$ plane is $r=e^{\mathrm{k} \theta}$, then the central force varies as
(A) $1 / r^{3}$
(B) $1 / r^{2}$
(C) $1 / r$
(D) r
23. For which values of α and β is the following transformations
$Q=q^{\alpha} \cos \beta q$
$P=q^{\alpha} \sin \beta q$
is a canonical transformation?
(A) $\alpha=\frac{1}{2}, \quad \beta=2$
(B) $\alpha=2, \quad \beta=\frac{1}{2}$
(C) $\alpha=-1 / 2, \quad \beta=2$
(D) $\alpha=\frac{1}{4}, \quad \beta=4$
24. If the spatial and temporal coordinates of two events in an inertial frame are : $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, \mathrm{t}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}, \mathrm{t}_{2}\right)$ then the following expression remains unchanged under Lorentz transformations
(A) $\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}$
(B) $\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}-$ $c^{2}\left(t_{1}-t_{2}\right)^{2}$
(C) $\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}+$ $c^{2}\left(t_{1}-t_{2}\right)^{2}$
(D) $\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}+\left(z_{1}+z_{2}\right)^{2}-$ $c^{2}\left(t_{1}+t_{2}\right)^{2}$
25. In the absence of an applied magnetic field, warm plasma can support both electron plasma waves and ion-plasma waves (ion-acoustic waves). The dispersion relations for these two waves indicate that, at large values of wave number k
(A) Electron plasma waves become constant velocity waves, whereas ion plasma waves become constant frequency waves
(B) Both waves become constant frequency waves
(C) Ion plasma waves become constant velocity waves, whereas electron plasma waves become constant frequency waves
(D) Both waves become constant velocity waves
26. The wave equation corresponding to a certain electromagnetic phenomenon occurring in a material medium is given by $\left(\nabla^{2}+k_{0}^{2}\right) \vec{E}(\vec{r}, t)=\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}$
where k_{0}^{2} is a real constant of suitable dimensions. An electromagnetic wave whose electric field is given as $\vec{E}(\vec{r}, t)=\vec{E}_{0} e^{i(\vec{k} \cdot \vec{r}-\omega t)}$ propagates through the medium, where \vec{E}_{0} is a constant vector. The relation between w and k is
(A) $\omega^{2}=k^{2} c^{2}$
(B) $\omega^{2}=\left(k+k_{0}\right)^{2} c^{2}$
(C) $\omega^{2}=\left(k^{2}-k_{0}^{2}\right) c^{2}$
(D) $\omega^{2}=\left(k^{2}+k_{0}^{2}\right) c^{2}$
27. Which of the following is the incorrect Maxwell's equation in free space, where both charges and currents are absent?
(A) $\nabla \cdot \vec{E}=0$
(B) $\nabla \cdot \vec{B}=0$
(C) $\nabla \times \overrightarrow{\mathrm{E}}=-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}}$
(D) $\nabla \times \overrightarrow{\mathrm{B}}=\frac{1}{\mu_{0} \epsilon_{0}} \frac{\partial \overrightarrow{\mathrm{E}}}{\partial \mathrm{t}}$
28. The electric field associated with a static charge distribution is given by $\vec{E}=-\frac{Q e^{-\mu r}}{4 \pi \epsilon_{0} r^{2}} \hat{r}$. The value of the integral $\int \rho(\vec{r}) d^{3} r$ over a spherical volume of radius $\mathrm{R}>0$ centered around the origin and $\rho(\vec{r})$ being the charge density is given by
(A) $Q e^{-\mu R}$
(B) $Q\left(1-e^{-\mu R}\right)$
(C) $4 \pi Q$
(D) 0
29. The electric field in a source-free region is given by $\vec{E}=x \hat{i}+b y \hat{j}$. The value of b is
(A) -1
(B) 0
(C) 1
(D) ∞
30. A co-axial cable of uniform cross section contains an insulating material of dielectric constant 3.5. The radius of the central wire is 0.01 m and that of the sheath is 0.02 m . The capacitance per kilometer of a cable is
(A) 280.5 nF
(B) 28.05 nF
(C) 56.10 nF
(D) 2.805 nF
31. The electric field created by a charged sphere of radius R, having a charge density distribution given by $\rho=\rho_{0} \mathrm{r}$, is given by :
[Let $\mathrm{E}_{<}$represent the electric field for $r<R$ and E, represent the electric field for $r>R$]
(A) $E_{<}=\frac{\rho_{0} r^{2}}{4 \epsilon_{0}}, E_{>}=\frac{\rho_{0} R^{4}}{4 \epsilon_{0} r^{2}}$
(B) $E_{<}=\frac{\rho_{0} r}{3 \epsilon_{0}}, E_{>}=\frac{\rho_{0} R^{3}}{3 \epsilon_{0} r^{2}}$
(C) $E_{<}=\frac{\rho_{0}}{3 \epsilon_{0}}, E_{>}=\frac{\rho_{0} R^{3}}{2 \epsilon_{0} r^{2}}$
(D) $E_{<}=\frac{\rho_{0} r}{4 \epsilon_{0}}, E_{>}=\frac{\rho_{0} R^{4}}{4 \epsilon_{0} r^{2}}$
32. A thin conducting wire is bent into a circular loop of radius r and placed in a time dependent magnetic field $\vec{B}(\mathrm{t})=\mathrm{B}_{0} \mathrm{e}^{-\alpha \mathrm{t}} \hat{\mathrm{k}},\left(\mathrm{B}_{0}>0\right.$ and $\left.\alpha>0\right)$. Then the induced emf in the loop is
(A) $\pi r^{2} \alpha B_{0} e^{-\alpha t}$
(B) $\pi r^{2} B_{0} e^{-\alpha t}$
(C) $-\pi r^{2} \alpha B_{0} e^{-\alpha t}$
(D) $-\pi r^{2} B_{0} e^{-\alpha t}$
33. An infinite current sheet in the $z=0$ plane carries a uniform constant current along the positive y-axis. According to Ampere's law in magnetostatics, the magnetic field vector generated by the current sheet in the region $z>0$ is
(A) Oriented perpendicular to the current sheet and points away from it
(B) Oriented parallel to the current sheet and points along the negative y-axis
(C) Oriented parallel to the current sheet and is parallel to the x-axis
(D) Oriented parallel to the current sheet and making an angle of 45° with y-axis
34. A loop made of copper wire is bent in the shape as shown in the figure below. The radius of the smaller semi-circular segment is 'a' and that of the larger semi-circular segment is 'b'. If a current I flows in the loop, the magnetic field at the centre ' 0 ' of the semi-circular segment is

(A) $\frac{\mu_{0}}{2}\left(\frac{1}{a}+\frac{1}{b}\right)$
(B) $\frac{\mu_{0} \mathrm{l}}{2}\left(\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}\right)$
(C) $2 \mu_{0} I\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}\right)$
(D) $\frac{\mu_{0} \mathrm{l}}{2}\left(\frac{1}{\mathrm{a}^{2}}-\frac{1}{\mathrm{~b}^{2}}\right)$
35. A particle of mass m and charge e moves in an electromagnetic field described by a scalar potential $\phi(\vec{r})$ and vector potential $\vec{A}(\vec{r})$. If c is the speed of light in vacuum, the momentum conjugate to the position \vec{r} is
(A) mv
(B) $m \vec{v}+e^{2} \vec{A}$
(C) $m \vec{v}-\frac{e \vec{A}}{c}$
(D) $m \vec{v}+\frac{e \vec{A}}{c}$
36. If light is incident at Brewster angle on a glass slab it results in
(A) The production of plane polarised light in reflection
(B) Total internal reflection of light
(C) The production of circularly polarised light in reflection
(D) The production of circularly polarised light in transmission
37. The product of the uncertainties Δx and Δp_{x} for the ground state of a one dimensional simple harmonic oscillator satisfies
(A) $\Delta \mathrm{x} \Delta \mathrm{p}_{\mathrm{x}}>\frac{\hbar}{2}$
(B) $\Delta x \Delta p_{x}=\frac{\hbar}{2}$
(C) $\Delta \mathrm{x} \Delta \mathrm{p}_{\mathrm{x}}<\frac{\hbar}{2}$
(D) $\Delta x \Delta p_{x}=0$
38. If the Bohr radius is a_{0}, the most probable value of r in the ground state $\psi=\frac{1}{\sqrt{\pi \mathrm{a}_{0}^{3}}} \mathrm{e}^{-\mathrm{r} / \mathrm{a}_{0}}$ of Hydrogen atom is
(A) a_{0}
(B) $2 \mathrm{a}_{0} / 3$
(C) $3 a_{0} / 2$
(D) $\sqrt{2} \mathrm{a}_{0}$
39. The total number of energy eigen functions $\psi_{\mathrm{nlm}}(\mathrm{r} \theta \phi)$ corresponding to the same energy level E_{n}, without considering spin, according to non-relativistic quantum mechanics in the case of Hydrogen atom is
(A) $2 l+1$
(B) $2 n^{2}$
(C) n^{2}
(D) $I(I+1)$
40. The wave function of a particle is given by $\delta\left(x-x_{0}\right)$. The uncertainty in momentum
Δp_{x} is
(A) zero
(B) $\frac{\sqrt{\hbar}}{2}$
(C) $\sqrt{\hbar}$
(D) infinity
41. A particle of mass M is moving in a potential $V(x, y, z)=K\left(x^{2}+y^{2}+z^{2}\right)$ where K is a positive constant and $-\infty<x, y, z<\infty$. The degeneracy of the second excited state is
(A) zero
(B) 3
(C) 6
(D) 9
42. The wave function of the second excited state of a particle in a box whose length is L, is proportional to
(A) $\sin \left(\frac{2 \pi x}{L}\right)$
(B) $\sin \left(\frac{3 \pi x}{L}\right)$
(C) $\sin \left(\frac{\pi x}{L}\right)$
(D) $\sin \left(\frac{\pi x}{3 L}\right)$
43. The Klein-Gordon equation is used to describe a particle with spin
(A) zero
(B) $\frac{\hbar}{2}$
(C) \hbar
(D) $2 \hbar$
44. The relation between the partial cross section σ_{1} and the phase shift δ_{1} according to partial wave analysis is
(A) $\sigma_{l}=\frac{4 \pi}{k^{2}}(2 l+1) \sin ^{2} \delta_{l}$
(B) $\sigma_{l}=\frac{4 \pi}{k}(2 l+1) \sin \delta_{l}$
(C) $\sigma_{I}=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{I}$
(D) $\sigma_{1}=\frac{4 \pi}{k} \sin \delta_{1}$
45. Fine structure interaction involves coupling between
(A) Spin and orbital angular momentum of electron
(B) Spin and orbital angular momentum of nucleus
(C) Spin angular momentum of electron and spin angular momentum of nucleus
(D) Orbital angular momentum of the electron and spin angular momentum of the nucleus
46. Consider a quantum system described by a Hamiltonian H. Let $\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle$ denote the eigenvectors of H with respective eigenvalues $\mathrm{E}_{1}, \mathrm{E}_{2}$. The system is initially preparedinthestate $\left|\psi_{\text {in }}\right\rangle=\frac{4}{5}\left|\phi_{1}\right\rangle+\frac{3}{5}\left|\phi_{2}\right\rangle$ and then it is allowed to evolve with time.

The state of the system is found to be $|\psi(\mathrm{t})\rangle=\frac{4}{5}\left|\phi_{1}\right\rangle-\frac{3}{5}\left|\phi_{2}\right\rangle$ at time t given by
(A) $h / 4\left(E_{2}-E_{1}\right)$
(B) $h / 2\left(E_{2}-E_{1}\right)$
(C) $2 h /\left(E_{2}-E_{1}\right)$
(D) $h /\left(E_{2}-E_{1}\right)$
47. Which of the statements is NOT correct for the free particle Dirac Hamiltonian?
(A) It commutes with the total angular momentum operator \vec{J}
(B) It commutes with the helicity operator
(C) It commutes with the spin operator $\overrightarrow{\mathrm{S}}$
(D) It doesn't commute with the Dirac matrix β
48. If a system has the Hamiltonian operator $\mathrm{H}=\mathrm{H}_{0}+\mathrm{H}^{\prime}$, where H^{\prime} is a perturbation part and ψ_{n} are the eigen functions of the Hamiltonian H_{0} such that $H_{0} \psi_{n}=E_{n} \psi_{n}$, then the first order correction to E_{n} due to the perturbing Hamiltonian is given by
(A) $\frac{\left.\left|\left\langle\psi_{n}\right| H^{\prime}\right| \psi_{n}\right\rangle \mid}{\left\langle\psi_{n} \mid \psi_{n}\right\rangle}$
(B) $\frac{\left\langle\psi_{n}\right| H^{\prime}\left|\psi_{n}\right\rangle}{\left\langle\psi_{n} \mid \psi_{n}\right\rangle}$
(C) $\left|\frac{\left\langle\psi_{n}\right| H^{\prime}\left|\psi_{n}\right\rangle}{\left\langle\psi_{n} \mid \psi_{n}\right\rangle}\right|^{1 / 2}$
(D) $\frac{\left(\left\langle\psi_{n}\right| H^{\prime}\left|\psi_{n}\right\rangle\right)^{2}}{\left\langle\psi_{n} \mid \psi_{n}\right\rangle}$
49. The equation of state of a gas with internal energy U is given by $P V=1 / 3 \mathrm{U}$. Then the corresponding equation for an adiabatic process is
(A) $\mathrm{PV}^{4 / 3}=$ constant
(B) $\mathrm{PV}^{1 / 3}=$ constant
(C) $\mathrm{PV}^{2 / 3}=$ constant
(D) $\mathrm{PV}^{3 / 5}=$ constant
50. Blackbody radiation characterized by thermodynamic state variables T and V undergoes an adiabatic process. Which of the following describes this ?
(A) $\mathrm{TV}^{-2 / 3}=$ constant
(B) $T V^{\frac{2}{3}}=$ constant
(C) $\mathrm{TV}^{1 / 3}=$ constant
(D) $\mathrm{TV}^{1 / 2}=$ constant
51. One mole of oxygen gas undergoes isothermal expansion at a temperature of 310 K during which its volume increases from 12 litres to 19 litres. Assuming oxygen to be an ideal gas, the work done by the gas is (Given that gas constant $R=8.31 \mathrm{~J} /($ mole K$)$)
(A) ~ 14,000 Joules
(B) ~ 2360 Joules
(C) ~ 1180 Joules
(D) ~ 7585 Joules
52. As $\mathrm{T} \rightarrow 0$, which combination of the following statements is correct?
I. The entropy of every system vanishes.
II. The heat capacity of a system tends to infinity.
III. The thermal expansion coefficient approaches zero.
IV. The absolute temperature can never be reached.
(A) I, II and III are correct
(B) II, III and IV are correct
(C) III, IV and II are correct
(D) III, IV and I are correct
53. Ratio of the mean speed to the most probable speed of particles obeying Maxwell-Boltzmann distribution is given by
(A) $2 / \sqrt{\pi}$
(B) 2
(C) $\pi / 3$
(D) $\sqrt{3 / 2}$
54. The number of ways in which 5 identical Bosons can be distributed in 4 states is
(A) 5^{4}
(B) $\frac{8!}{5!3!}$
(C) $\frac{9!}{5!4!}$
(D) 4^{5}
55. A system consists of N weakly interacting subsystems, each with two internal states with energies O and E. The internal energy of the system at absolute temperature T is equal to
(A) $\frac{N E}{\exp (E / K T)+1}$
(B) $N E \exp (-E / K T)$
(C) $\frac{3}{2} \mathrm{NKT}$
(D) NE
56. The occupation probability for an electron of energy E in a metal is given by the Fermi function $f(E)=\frac{1}{e^{\left(E-E_{F}\right) / K T}+1}$. The energy of the state with an occupation probability of 1% is given by
(A) $E=E_{F}+2.0 \mathrm{KT}$
(B) $E=E_{F}-4.6 \mathrm{KT}$
(C) $E=E_{F}+4.6 \mathrm{KT}$
(D) $E=E_{F}-2.0 \mathrm{KT}$
57. With reference to thermal behaviour of any material the "Triple point" is
(A) the temperature at which the material exists in all the three phases, i.e. vapour, liquid and solid, at the same time
(B) the pressure at which the material exists in all the three phases, i.e. vapour, liquid and solid at the same time
(C) the temperature at which the material exists in only liquid and solid phase simultaneously
(D) the material exists in the solid phase only
58. The paramagnetic susceptibility (χ) for electrons is given by
(A) $\frac{\mathrm{N} \mu^{2}}{\mathrm{KT}}$
(B) $\frac{\mathrm{N}^{2} \mu}{\mathrm{KT}}$
(C) $\frac{\mathrm{N} \mu}{\mathrm{KT}^{2}}$
(D) $\frac{\mathrm{N} \mu}{\mathrm{KT}}$
where $N=$ number of electrons per unit volume, $\mathrm{K}=$ Boltzmann constant and $\mu=$ electron magnetic moment
59. A walker travels along a one dimensional discrete lattice, labeled by points $-\mathrm{N},-\mathrm{N}+1, \ldots 0, \ldots, \mathrm{~N}-1, \mathrm{~N}$, by putting random left and/or right steps of length I with equal probability for every step. Suppose the random walker starts from the lattice position 0 and is found at the same lattice position after (i) 10 and (ii) 7 step walks. The corresponding probabilities are respectively given by
(A) $0.5,0.5$
(B) $0,0.5$
(C) $0.25,0$
(D) $0.25,0.25$
60. Liquid helium $\left(\mathrm{He}^{4}\right)$ undergoes a sudden transition to the superfluid state at a temperature of2.18K. This is called "Lambda Transition" and is an example of phase transition. This transition is characterised at the transition temperature by
(Given G is the Gibbs Free Energy and T is the temperature)
(A) Discontinuous change in $\frac{d G}{d T}$ but continuous behaviour of $\frac{d^{2} G}{d T^{2}}$
(B) Continuous behaviour of $\frac{d G}{d T}$ but discontinuous change in $\frac{d^{2} G}{d T^{2}}$
(C) Both $\left(\frac{d G}{d T}\right)$ and $\frac{d^{2} G}{d T^{2}}$ are continuous functions of temperature
(D) Both $\frac{d G}{d T}$ and $\frac{d^{2} G}{d T^{2}}$ show discontinuous change
61. In the circuit given alongside, the silicon diodes used have a cut-in voltage of 0.7 V . The output voltage V_{0} is close to

(A) 22 V
(B) $\overline{1} 0 \mathrm{~V}$
(C) 8.5 V
(D) 17 V
62. I-V characteristic curve of a tunnel diode is given by
(A)

(B)

(C)

(D)

63. A differential amplifier takes two inputs V_{+}and V_{-}. It produces an output $V_{\text {out }}=A_{d}\left(V_{+}-V_{-}\right)+A_{C M}\left(V_{+}+V_{-}\right)$. A good differential amplifier will have
(A) Low A_{d} and high $A_{C M}$
(B) High A_{d} and low $A_{c m}$
(C) $A_{d}=A_{C M}$
(D) $A_{d}=A_{\text {CM }} / 2$
64. The maximum number of $1 / O$ ports that can be interfaced to Intel 8085 Microprocessor is
(A) 2
(B) 8
(C) 64
(D) 256
65. One gets percentage resolution of a 10 bit data converter as
(A) 0.024%
(B) 0.39%
(C) 0.098%
(D) 0.041%
66. The number 216 is represented in the binary number system as
(A) 1101100
(B) 11011000
(C) 10011000
(D) 11001001
67. The number of NOR logic gates required to implement an AND function is
(A) 5
(B) 4
(C) 3
(D) 2
68. The following circuit carries out the function

(A) $\mathrm{F}=\mathrm{W}_{1} \oplus \mathrm{~W}_{2} \oplus \mathrm{~W}_{3}$
(B) $F=\bar{W}_{1} \quad \bar{W}_{2} \quad W_{3}$
(C) $\mathrm{F}=\mathrm{W}_{1} \mathrm{~W}_{2}+\mathrm{W}_{2} \mathrm{~W}_{3}+\mathrm{W}_{1} \mathrm{~W}_{3}$
(D) $\mathrm{F}=\mathrm{W}_{1}+\mathrm{W}_{2}+\mathrm{W}_{3}$
69. Least count of a voltmeter is 0.01 V . It measures a voltage to be 2.38 V , whereas the actual voltage is 2.50 V in 20 trials. The voltmeter can be termed as
(A) Precise but not accurate
(B) Accurate but not precise
(C) Both accurate and precise
(D) Neither accurate nor precise
70. An experiment yields a set of data ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$), $i=1,2, \ldots N$. It is required to fit the data to a straight line $y=m x+c$. Let \bar{x} and \bar{y} be the mean values. Then the best fit values of m and c as per least squares method are given by
(A) $m=\frac{\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}, c=\bar{y}-m \bar{x}$
(B) $m=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}, c=\bar{y}-m \bar{x}$
(C) $m=\frac{\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}, c=\bar{x}-m \bar{y}$
(D) $m=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}, c=\bar{x}-m \bar{y}$
71. For inter-atomic separation much larger than r_{0} the equilibrium value, the radial form of potential energy between two spinless, identical atoms in ground state, is of the form $\left[1 / r^{n}\right]$ where n is
(A) 3
(B) 4
(C) 5
(D) 6
72. Atoms with nuclear spin $J=\frac{1}{2}$ cannot have
(A) fine structure
(B) hyperfine structure coupling
(C) electric quadruple interactions
(D) magnetic interactions
73. The number of energy sublevels into which $n=2$ level of a hydrogen atom splits into due to the linear Stark effect is
(A) 1
(B) 2
(C) 3
(D) 4
74. A molecule is formed from two undistinguishable atoms each of nuclear spin zero. It is known that such a molecule cannot have odd rotated states. The reason is
(A) the molecule cannot possess an electric dipole moment
(B) the total wave function must be antisymmetric with respect to the interchange of two nuclei
(C) the total wave function must be symmetric with respect to the interchange of two nuclei
(D) such a molecule does not have a definite parity
75. The coherence length of a laser beam is defined as optical path length difference which corresponds to $x \%$ of the fringe visibility, x is
(A) 10
(B) 27
(C) 50
(D) 37
76. Franck-Condon principle predicts large intensity spectral line for electronic transitions
(A) in monoatomic gases
(B) between the vibrational energy levels of any electronic state
(C) between vibrational levels of two electronic states at a constant inter-nuclear separation
(D) between the $v=0$ vibrational levels of the two electronic states
77. The ground state energy of a positronium is
(A) -6.8 eV
(B) +6.8 eV
(C) +13.6 eV
(D) -13.6 eV
78. Nd-YAG Laser is an example of a 4-level laser whereas Ruby laser is a 3-level laser. Nd-YAG lasers have the special feature that
(A) They can generate laser light at different wavelengths since 4 different energy levels are involved
(B) The pump power required to achieve population inversion is less than that required for a 3-level laser
(C) The pump power required to achieve population inversion is more than that required for a 3-level laser
(D) It has two metastable states
79. For a sodium $(Z=11)$ atom, ten electrons are removed and only one last electron remains. The minimum energy that is required to remove the last remaining electron is
(A) 13.6 eV
(B) 1.64 keV
(C) 136 eV
(D) 1.64 eV
80. A_{ij}, the spontaneous transition probability between two states i and j is proportional to the stimulated transition probability B_{ij} as
(A) $\mathrm{A}_{\mathrm{ij}} \alpha \vee \mathrm{B}_{\mathrm{ij}}$
(B) $\mathrm{A}_{\mathrm{ij}} \propto v^{2} \mathrm{~B}_{\mathrm{ij}}$
(C) $\mathrm{A}_{\mathrm{ij}} \alpha v^{3} \mathrm{~B}_{\mathrm{ij}}$
(D) $\mathrm{A}_{\mathrm{ij}} \propto v^{4} \mathrm{~B}_{\mathrm{ij}}$

Where $h \nu$ is the energy difference between the two levels.
81. A lattice plane parallel to the X axis makes intercepts of 1 and 1 along Y and the Z axes. The Miller indices are
(A) $(0,1,1)$
(B) $(2,0,1)$
(C) $(1,1,1)$
(D) $(1,0,1)$
82. For a close packed BCC structure of hard spheres, the lattice constant ' a ' is related to the sphere of radius R as
(A) $a=4 R / \sqrt{3}$
(B) $a=2 R / \sqrt{3}$
(C) $a=4 \sqrt{2} R$
(D) $a=2 \sqrt{2} R$
83. The packing fraction of a simple cubic lattice is
(A) 0.34
(B) 0.74
(C) 0.68
(D) 0.52
84. The diamond structure has a space filling factor that is \qquad that of close packed structures.
(A) Approximately half
(B) Approximately $1 / 3^{\text {rd }}$
(C) Almost double
(D) Almost the same as
85. The binding energy of an ionic crystal depends on
a. attractive interaction between ions of opposite charge
b. repulsive interaction between ions of equal charge
c. van der Waals interaction
(A) mainly on (a) and (b) and marginally on (c)
(B) mainly (a) and marginally on (c)
(C) equally on (a), (b) and (c)
(D) only on (a)
86. Match the following descriptions with the corresponding values of energy.
i. $\mathrm{k}_{\mathrm{B}} \mathrm{T}$ at room temperature a. 2 eV
ii. photon energy in crystallography
b. 9 eV
iii. photon energy at the
red end of the visible
electromagnetic spectrum c. 8 KeV
iv. tripple covalent bond in Acetylene
d. 26 meV
(A) i - b, ii - d, iii - a, iv - c
(B) $\mathrm{i}-\mathrm{c}$, ii -a , iii -b, iv -d
(C) i - d, ii - b, iii - c, iv - a
(D) $i-d$, ii $-c$, iii $-a$, iv $-b$
87. Consider the free electron model of a divalent solid having a simple cubic lattice with lattice constant a. Let m be the mass of the electron.
(A) The electron energy at the facecenter of the first Brillouin zone is given by $\hbar^{2} \pi^{2} / 2 \mathrm{ma}^{2}$
(B) The electron energy is $\hbar^{2} \pi^{2} / 2 \mathrm{ma}^{2}$ at the corner of the first Brillouin zone
(C) The volume of Fermi sphere is equal to the volume of first Brillouin zone
(D) The volume of Fermi sphere is smaller than the volume of first Brillouin zone
88. Type - II superconductors are
characterised by two critical magnetic fields $\mathrm{H}_{\mathrm{c} 1} \quad(<1000$ Gauss) and $\mathrm{H}_{\mathrm{c} 2}\left(>100 \mathrm{H}_{\mathrm{c} 1}\right)$. These materials are used for making very high field electromagnets (> 100 kG). These materials show
(A) Meissner effect upto $\mathrm{H}_{\mathrm{c} 1}$ and constant magnetization between $\mathrm{H}_{\mathrm{c} 1}$ and $\mathrm{H}_{\mathrm{c} 2}$
(B) Meissner effect upto $\mathrm{H}_{\mathrm{c} 1}$ and the magnetization reduces to zero between $\mathrm{H}_{\mathrm{c} 1}$ and $\mathrm{H}_{\mathrm{c} 2}$
(C) Meissner effect upto $\mathrm{H}_{\mathrm{c} 2}$
(D) Meissner effect only between $\mathrm{H}_{\mathrm{c} 1}$ and $\mathrm{H}_{\mathrm{c} 2}$
89. Contact between a metal and semiconductor is
(A) always ohmic
(B) depends on the bandgap of the semiconductor alone
(C) dependsonthe relative workfunction of the metal and the semiconductor
(D) never ohmic
90. Match the following materials with their resistivity values at room temperature.
i. Deionised water a. $1.80 \times 10^{5} \Omega \mathrm{~m}$
ii. Fused quartz
b. $1.68 \times 10^{-8} \Omega \mathrm{~m}$
iii. Copper
c. $2.0 \times 10^{-1} \Omega \mathrm{~m}$
iv. Sea water
d. $7.5 \times 10^{17} \Omega \mathrm{~m}$
(A) i - d, ii - b, iii - c, iv - a
(B) i - a, ii - d, iii - b, iv - c
(C) i-b, ii - a, iii - c, iv - d
(D) i-c, ii - d, iii - b, iv - a
91. The nucleus ${ }^{16} \mathrm{O}$ is assumed to be spherical with a charge radius R and volume $V=\frac{4}{3} \pi R^{3}$. Based on the empirical observation on the charge radius of the nucleus ${ }^{128} \mathrm{Xe}$, one finds its volume as
(A) 2 V
(B) 8 V
(C) 6.75 V
(D) 1.89 V
92. The characteristic time of strong interactions is about
(A) $10^{-43} \mathrm{~s}$
(B) $10^{-2} s$
(C) $10^{-10} \mathrm{~s}$
(D) $10^{-23} \mathrm{~s}$
93. Choose the correct statement regarding the spin and isospin of \sum hyperon.
(A) spin $=\frac{1}{2}$, isospin $=\frac{1}{2}$
(B) spin $=1$, isospin $=\frac{1}{2}$
(C) spin $=\frac{1}{2}$, isospin $=1$
(D) spin $=1$, isospin $=1$
94. Which is the correct binding energy per nucleon curve?
(A)

A

(C)

(D)

95. Let $|p\rangle$ and $|n\rangle$ denote the proton and neutron states, with the value of isospin quantum number $I=\frac{1}{2}$ and the third component of isospin $I_{3}=\frac{1}{2}$ and $-\frac{1}{2}$ respectively. Which of the following two-nucleon state has isospin I = 0 and $I_{3}=0$?
(A) $\frac{1}{\sqrt{2}}(|n, p\rangle-|p, n\rangle)$
(B) $\frac{1}{\sqrt{2}}(|n, n\rangle-|p, p\rangle)$
(C) $\frac{1}{\sqrt{2}}(|n, n\rangle+|p, p\rangle)$
(D) $\frac{1}{\sqrt{2}}(|n, p\rangle+|p, n\rangle)$
96. According to the shell model, the ground state spin-parity of ${ }_{5}^{11} B$ is
(A) $\frac{3^{+}}{2}$
(B) $\frac{3^{-}}{2}$
(C) $\frac{1^{+}}{2}$
(D) $\frac{1^{-}}{2}$
97. According to Fermi's theory of beta decay, the decay constant λ varies as the end-point energy E_{0} of electrons as
(A) $\lambda \propto E_{0}^{3 / 2}$
(B) $\lambda \propto E_{0}^{3}$
(C) $\lambda \alpha E_{0}^{4}$
(D) $\lambda \alpha E_{0}^{5}$
98. The charge conjugation invariance does not allow the reaction
(A) $\pi^{0} \rightarrow r+r$
(B) $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow r+r+r+r$
(C) $\pi^{0} \rightarrow r+r+r$
(D) $\mathrm{r}+\mathrm{r} \rightarrow \mathrm{e}^{+}+\mathrm{e}^{-}$
99. Which of the following is an antiparticle of itself?
(A) eta meson
(B) neutrino
(C) neutral kaon
(D) neutron
100. Weak interactions respect the following conservation law
(A) strangeness
(B) parity
(C) charge
(D) combined charge conjugation and parity

ఒెత్తు బరజఠ్త్రిగి స్ద్ర Space for Rough Work

