

PHYSICALSCIENCE
 PAPER - III

Note : This paper contains seventy-five (75) objective type questions. Each question carries two (2) marks. All questions are compulsory.

1. A solution of the differential equation $\frac{d y}{d x}=-\frac{y^{2}}{x^{2}}$ is
(A) $x y=$ constant
(B) $y / x=$ constant
(C) $\frac{1}{y}-\frac{1}{x}=$ constant
(D) $\frac{1}{y}+\frac{1}{x}=$ constant
2. The general solution of the equation $\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}$ is
(A) $y=F(x+c t)+G(x / c+t)$
(B) $y=F(x+c t)+G(x-c t)$
(C) $y=F(x c+t)+G(x c-t)$
(D) $y=F(x / c+t)+G(x / c+t)$

Where F and G are arbitrary
differentiable functions.
3. The general solution of the Laplace equation in cylindrical co-ordinates
$\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$ is
(A) $u=\sum_{m}\left[e^{k z}\left(A_{m} \cos m \theta+B_{m} \sin m \theta\right)\right.$
$\left.+e^{-k z} \times\left(C_{m} \cos m \theta+D_{m} \sin m \theta\right)\right]$
$J_{m}(k r)$
(B) $\mathrm{u}=\sum_{\mathrm{m}}\left[\mathrm{e}^{\mathrm{kz}}\left(\mathrm{A}_{\mathrm{m}} \operatorname{coshm} \theta+\mathrm{B}_{\mathrm{m}} \operatorname{sinhm} \theta\right)\right.$ $\left.+e^{-k z} \times\left(C_{m} \operatorname{coshm} \theta+D_{m} \sinh m \theta\right)\right]$ $\mathrm{J}_{\mathrm{m}}(\mathrm{kr})$
(C) $\mathrm{u}=\sum_{\mathrm{m}}\left\{\mathrm{A}_{\mathrm{m}} \operatorname{coshm} \theta(\cos k z+\sin k z)\right.$
$\left.+B_{m} \operatorname{sinhm} \theta(\operatorname{coskz}-\operatorname{sinkz})\right\}$ $\mathrm{J}_{\mathrm{m}}(\mathrm{kr})$
(D) $u=\sum_{m}\left\{A_{m} \cos k z e^{-i m \theta}+B_{m} \operatorname{sinkz}\right.$ $\left.e^{+i m \theta}\right\} J_{m}(k r)$

Where $A_{m}, B_{m}, C_{m}, D_{m}$ and k are constants and $J_{m}(k r)$ is Bessel function of order m.
4. The Green's function for the Poisson equation
$\nabla^{2} \phi(\vec{r})=-\frac{\rho(\vec{r})}{\epsilon_{0}}$ is
(A) $G\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{4 \pi}{\left|\vec{r}_{2}-\vec{r}_{1}\right|^{2}}$
(B) $G\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{4 \pi}{\sqrt{\left|\vec{r}_{2}-\vec{r}_{1}\right|}}$
(C) $\mathrm{G}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{4 \pi\left|\vec{r}_{2}-\vec{r}_{1}\right|}$
(D) $G\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{4 \pi} e^{-\left|\vec{r}-\vec{\zeta}_{1}\right|}$
5. The Lagrange polynomial passing through the two points ($\mathrm{x}_{0}, \mathrm{y}_{0}$) and ($\mathrm{x}_{1}, \mathrm{y}_{1}$) is
(A) $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{0}-\mathrm{x}_{1}} \mathrm{y}_{0}+\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{x}_{1}-\mathrm{x}_{0}} \mathrm{y}_{1}$
(B) $\frac{x-x_{1}}{x_{1}-x_{0}} y_{0}+\frac{x-x_{0}}{x_{1}-x_{0}} y_{1}$
(C) $\frac{x-x_{1}}{x_{0}-x_{1}} y_{1}+\frac{x-x_{0}}{x_{1}-x_{0}} y_{0}$
(D) $\frac{\mathrm{x}_{1}-\mathrm{x}}{\mathrm{x}_{0}-\mathrm{x}_{1}} \mathrm{y}_{0}+\frac{\mathrm{x}_{0}-\mathrm{x}}{\mathrm{x}_{1}-\mathrm{x}_{0}} \mathrm{y}_{1}$
6. If T_{j}^{i} is a second rank mixed tensor, it transforms under the co-ordinate change $\left\{x^{i}\right\} \rightarrow\left\{\bar{x}^{j}\right\}$ as
(A) $\bar{T}_{\beta}^{\alpha}=\frac{\partial \bar{x}^{\alpha}}{\partial x^{i}} \frac{\partial \bar{x}^{\beta}}{\partial x^{j}} \mathrm{~T}_{j}^{i}$
(B) $\bar{T}_{\beta}^{\alpha}=\frac{\partial \bar{x}^{\alpha}}{\partial x^{i}} \frac{\partial x^{j}}{\partial \bar{x}^{\beta}} T_{j}^{i}$
(C) $\bar{T}_{\beta}^{\alpha}=\frac{\partial x^{i}}{\partial \bar{x}^{\alpha}} \cdot \frac{\partial x^{j}}{\partial \bar{x}^{\beta}} T_{j}^{i}$
(D) $\bar{T}_{\beta}^{\alpha}=\frac{\partial \bar{x}^{\alpha}}{\partial x^{i}} \cdot \frac{\partial \bar{x}^{j}}{\partial x^{\beta}} T_{j}^{i}$
7. Let $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots .\left(x_{n}, y_{n}\right)$ be n points in the $x-y$ plane then integral $\int_{x_{0}}^{x_{n}} y d x$ by the Simpson's rule is given by
(A) $\frac{\mathrm{h}}{3}\left[\left(\mathrm{y}_{0}+\mathrm{y}_{\mathrm{n}}\right)+2\left(\mathrm{y}_{1}+\mathrm{y}_{3}+\mathrm{y}_{5}+\ldots\right.\right.$

$$
\left.\left.+y_{n-1}\right)+4\left(y_{2}+y_{4}+\ldots y_{n-2}\right)\right]
$$

(B) $\frac{\mathrm{h}}{3}\left[\left(\mathrm{y}_{0}+\mathrm{y}_{\mathrm{n}}\right)+3\left(\mathrm{y}_{1}+\mathrm{y}_{3}+\mathrm{y}_{5}+\ldots\right.\right.$

$$
\left.\left.+y_{n-1}\right)+4\left(y_{2}+\ldots+y_{n-2}\right)\right]
$$

(C) $\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+\ldots+y_{n-1}\right)\right.$

$$
\left.+2\left(y_{2}+y_{4}+\ldots+y_{n-2}\right)\right]
$$

(D) $\frac{\mathrm{h}}{3}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{3}+\ldots+y_{n-1}\right)\right.$

$$
\left.+3\left(y_{2}+y_{4}+\ldots+y_{n-2}\right)\right]
$$

Where h is the equal interval between the points $x_{0}, x_{1}, x_{2} \cdots$ and n is even.
8. In the modified Euler's method, solution to the differential equation $\frac{d y}{d x}=f(x, y)$ is obtained by using the algorithm
(A) $y_{n+1}^{(r+1)}=y_{n}+\frac{h}{2}\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}^{(r)}\right)\right]$
(B) $y_{n+1}^{(r+1)}=y_{n}+h\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}^{(r)}\right)\right]$
(C) $y_{n+1}^{(r+1)}=y_{n}+\frac{h}{2}\left[f\left(x_{n}, y_{n}\right)+2 f\left(x_{n+1}, y_{n+1}^{(r)}\right)\right]$
(D) $y_{n+1}^{(r+1)}=y_{n}+\frac{h}{2}\left[2 f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}^{(r)}\right)\right]$

Where $y_{n+1}^{(r+1)}$ is the $(r+1)^{\text {th }}$ approximation to the value of y at x_{n+1}.
9. If the line element of a space is given
as $\mathrm{ds}^{2}=2 \mathrm{dq}^{2}+4 \mathrm{dq}_{1} \mathrm{dq}_{2}+3 \mathrm{dq}_{2}^{2}$, the metric tensor is given by
(A) $\left(\begin{array}{ll}2 & 4 \\ 4 & 3\end{array}\right)$
(B) $\left(\begin{array}{cc}\sqrt{2} & 2 \\ 2 & \sqrt{3}\end{array}\right)$
(C) $\left(\begin{array}{ll}2 & 2 \\ 2 & 3\end{array}\right)$
(D) $\left(\begin{array}{cc}\sqrt{2} & 4 \\ 4 & \sqrt{3}\end{array}\right)$
13. For what values of α and β is the following transformation canonical?
$Q=q^{\alpha} \cos \beta q$
$\mathbb{P}=q^{\alpha} \sin \beta q$
(A) $\alpha=1 / 2, \beta=2$
(B) $\alpha=2, \beta=1 / 2$
(C) $\alpha=1 / 3, \beta=3$
(D) $\alpha=3, \beta=1 / 3$
14. If $\mathrm{F}=\sum \mathrm{q}_{\mathrm{i}} \mathbb{P}_{\mathrm{i}}$ is the generating function for a canonical transformation, then under the transformation we are lead to
(A) $Q_{i}=q_{i}, \mathbb{P}_{i}=p_{i}$
(B) $Q_{i}=-q_{i}, \mathbb{P}_{i}=-p_{i}$
(C) $Q_{i}=-q_{i}, \mathbb{P}_{i}=p_{i}$
(D) $Q_{i}=q_{i}, \mathbb{P}_{i}=-p_{i}$
15. The number of independent components of a four dimensional second rank symmetric tensor is
(A) 4
(B) 6
(C) 10
(D) 16
18. The Hamilton-Jacobi equation for a mass thrown up vertically from the surface of the earth is given by
(A) $\frac{1}{2 m}\left(\frac{\partial s}{\partial z}\right)^{2}-m g z=\alpha$
(B) $-\frac{1}{2 m}\left(\frac{\partial s}{\partial z}\right)^{2}+m g z=\alpha$
(C) $\frac{1}{2 m}\left(\frac{\partial s}{\partial z}\right)^{2}+m g z=\alpha$
(D) $\frac{1}{2 m}\left(\frac{\partial s}{\partial z}\right)+m g z=\alpha$

Where $\mathrm{m}=$ mass of the object, α is a constant and s is the action. $z=$ height above the ground.
19. The cut-off frequencies of $T E_{\| \mid}$mode in a rectangular metal wave guide with dimensions $2 \mathrm{~cm} \times 1 \mathrm{~cm}$ is
(A) 15.88 GHz
(B) 16.16 GHz
(C) 18.2 GHz
(D) 16.77 GHz
20. The operator

$$
\frac{\partial^{2}}{\partial x_{\mu}^{2}}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}=\bar{\square}^{2},
$$

a four dimensional operator is known as
(A) Laplace operator
(B) Lorentz operator
(C) Hermitian operator
(D) d'Alembertian operator
21. If x_{μ} are four vector co-ordinates then match the correct options from Columns I and II.

Column I

Column II

$\left(a_{1}\right) x_{\mu}$
$\left(b_{1}\right) x_{\mu}+x_{\mu}$
$\left(\mathrm{a}_{2}\right)$ Square of length
$\left(b_{2}\right) x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4}$ of four vector s^{2}

$$
\begin{aligned}
& \left(b_{3}\right) x_{1}, x_{2}, x_{3}, x_{4} \\
& \left(b_{4}\right) x_{\mu} x_{\mu}
\end{aligned}
$$

(A) $\mathrm{a}_{1} \rightarrow \mathrm{~b}_{1} ; \mathrm{a}_{2} \rightarrow \mathrm{~b}_{2}$
(B) $\mathrm{a}_{1} \rightarrow \mathrm{~b}_{3} ; \mathrm{a}_{2} \rightarrow \mathrm{~b}_{4}$
(C) $\mathrm{a}_{1} \rightarrow \mathrm{~b}_{3} ; \mathrm{a}_{2} \rightarrow \mathrm{~b}_{1}$
(D) $\mathrm{a}_{1} \rightarrow \mathrm{~b}_{4} ; \mathrm{a}_{2} \rightarrow \mathrm{~b}_{1}$
25. In a rectangular wave guide, for dominant mode propagation
(A) The operating frequency must be 2 times the cut-off frequency of the guide
(B) The operating frequency must be same as cut-off frequency of the guide
(C) The cut-off frequency must be reciprocal of the operating frequency of the guide
(D) The cut-off frequency must be 2 times the operating frequency of the guide
26. In a wave guide with conducting walls, let $\mathrm{E}_{\| \mid}$and $\mathrm{B}_{\| \mid}$be the components of the electric and magnetic fields parallel to the inner walls while E_{\perp} and B_{\perp} be the components normal to the inner walls. Then the correct boundary conditions are
(A) $\mathrm{E}_{\|}$and $\mathrm{B}_{\| \mid}$are both zero
(B) $E_{\| I}=0$ and $B_{\perp}=0$
(C) $\mathrm{E}_{\perp}=0$ and $\mathrm{B}_{\|}=0$
(D) $E_{\perp}=0$ and $B_{\perp}=0$
27. The Poynting vector of an electric dipole oscillating along z -axis is proportional to
(A) $\left(\cos ^{2} \theta\right) \hat{r}$
(B) $\hat{r} \sin ^{2} \theta$
(C) $2 \hat{r} \sin \theta \cos \theta$
(D) $\hat{r} \sin ^{2} \theta \cos ^{2} \theta$

Where \hat{r} is a unit vector along the radial direction. The dipole is located at the origin.
28. In the dipole approximation, the induced transition rate between two quantum states $|n\rangle$ and $|m\rangle$ is proportional to
(A) $\langle m| \vec{r}|n\rangle$
(B) $|\langle m| \vec{r}| n\rangle \mid$
(C) $|\langle m| \vec{r}| n\rangle\left.\right|^{2}$
(D) $|\langle m| \vec{r}| n\rangle\left.\right|^{3 / 2}$
29. The scattering amplitude in quantum mechanics has the dimension of
(A) Length
(B) Area
(C) $(\text { Length })^{1 / 2}$
(D) Dimensionless
30. In partial waves method, the total cross section is given by
(A) $\sigma=\frac{4 \pi}{\mathrm{~K}^{2}} \sum_{l=0}^{\infty}(2 l+1) \sin ^{2} \delta_{l}$
(B) $\sigma=\frac{4 \pi}{\mathrm{~K}^{2}} \sum_{l=0}^{\infty}(2 l+1) \cos ^{2} \delta_{l}$
(C) $\sigma=\frac{4 \pi}{\mathrm{~K}^{2}} \sum_{l=0}^{\infty}(2 l+3) \sin ^{2} \delta_{l}$
(D) $\sigma=\frac{4 \pi}{\mathrm{~K}^{2}} \sum_{l=0}^{\infty}(l+1 / 2) \sin \delta_{l} \cos \delta_{l}$
31. The Dirac Hamiltonian is represented as
(A) $\hat{H}=C(\hat{\alpha} \cdot \hat{p})+\hat{\beta} m_{0} C^{2}$
(B) $\hat{H}=C(\hat{\alpha} \cdot \hat{p})-\hat{\beta} m_{0} C^{2}$
(C) $\hat{H}=C^{2}(\hat{\alpha} \cdot \hat{p})+\hat{\beta} C$
(D) $\hat{H}=C^{2}(\hat{\beta} \cdot \hat{p})+\hat{\alpha} m_{0} C^{2}$

Where $\hat{\alpha}$ and $\hat{\beta}$ are Dirac matrics.
32. Consider scattering of neutrons by a nuclear potential of range 1.2 fm . If the energy of the neutron beam is 100 MeV , the partial waves that will contribute to scattering cross-section are
(A) $l=0$ (s-wave)
(B) $l=0,1$ (s and p waves)
(C) $l=0,1,2$ (s, p and d-waves)
(D) $l=0,1,2,3$ (s, p, d and f waves)
33. In scattering experiments, the differential cross-section for spherically symmetric potential $V(r)$ using Born approximation is given by
(A) $\frac{d \sigma(\theta)}{d \Omega}=\left(\frac{2 \mu}{\hbar^{2}}\right)^{2}\left|\int_{0}^{\infty} V(r)\left[\frac{\operatorname{sinqr}}{q r}\right] r^{2} d r\right|^{2}$
(B) $\frac{d \sigma(\theta)}{d \Omega}=\left(\frac{2 \mu}{\hbar^{2}}\right)^{2}\left|\int_{0}^{\infty} \mathrm{V}(\mathrm{r})\left[\frac{\cos q \mathrm{r}}{\mathrm{qr}}\right] \mathrm{r}^{2} \mathrm{dr}\right|^{2}$
(C) $\frac{d \sigma(\theta)}{d \Omega}=\left(\frac{2 \mu}{\hbar^{2}}\right)^{2}\left|\int_{0}^{\infty} V(r)\left[\frac{1}{q r}\right] r^{2} d r\right|^{2}$
(D) $\frac{\mathrm{d} \sigma(\theta)}{\mathrm{d} \Omega}=\left.\left(\frac{2 \mu}{\hbar^{2}}\right)^{2}\left|\int_{0}^{\infty} \mathrm{V}(\mathrm{r}) \mathrm{r}^{2} \mathrm{dr}\right|^{\prime}\right|^{2}$
36. The transition rate between two quantum states $|\mathrm{m}\rangle$ and $|\mathrm{n}\rangle$ due to spontaneous emission is proportional to
(A) $\left.W_{m n}^{3}|\langle m| \vec{r}| n\right\rangle\left.\right|^{2}$
(B) $\left.W_{m n}^{2}|\langle m| \vec{r}| n\right\rangle\left.\right|^{2}$
(C) $\left.W_{m n}|\langle m| \vec{r}| n\right\rangle\left.\right|^{2}$
(D) $\left.\frac{1}{W_{m n}^{2}}|\langle m| \vec{r}| n\right\rangle\left.\right|^{2}$

Where $W_{m n}=\left(E_{m}-E_{n}\right) / \hbar$
37. The ratio of Einstein coefficients A and B for laser is proportional to
(A) γ
(B) γ^{2}
(C) γ^{3}
(D) γ^{4}
38. The energy separation between two consecutive stokes lines in Raman scattering depends on
(A) Energy separation between vibrational levels in the excited state
(B) Wavelength of the incident light
(C) Energy separation between vibrational levels in the ground state
(D) Intensity of the incident light
39. Which of the following molecules does not exhibit a rotational spectrum ?
(A) H
(B) CO
(C) HCl
(D) HBr
40. Wavelength of $\lambda=1.064 \mu \mathrm{~m}$ is emitted by
(A) He - Ne laser
(B) CO_{2} laser
(C) Ruby laser
(D) Nd-YAG laser
41. The typical energy of the rotational modes in a polyatomic molecule like NH_{3} is
(A) $10^{6} \mathrm{eV}$
(B) $10^{-3} \mathrm{eV}$
(C) $10^{-1} \mathrm{eV}$
(D) 1 eV
46. The proton and neutron have almost same mass because
(A) Up and down quarks have the same spin
(B) Masses of the up and down quarks are similar
(C) Both are colorless
(D) Both are part of nucleus
47. If two nuclei of masses m_{1} and m_{2} are fused to form a nucleus of mass m and some energy is released, then
(A) $\left(m_{1}+m_{2}\right)>m$
(B) $\left(m_{1}+m_{2}\right)<m$
(C) $\left(m_{1}+m_{2}\right)=m$
(D) $m_{1}-m_{2}=m$
48. The property of "strangeness" was proposed by
(A) Gamow and Teller
(B) Weisskopf
(C) Wigner
(D) Gellmann and Nishijima
49. If the mass of the exchanged particle is m, then the range of the force is approximately equal to
(A) $\frac{\hbar c}{m}$
(B) $\frac{\hbar}{\mathrm{mc}}$
(C) $\frac{\hbar m}{c}$
(D) $\hbar \mathrm{mc}$
50. The following reaction is not allowed by strong interaction :
$\mathrm{d}+\mathrm{d} \rightarrow{ }^{4} \mathrm{He}+\pi^{\circ}$
That is because, in the reaction
(A) Parity is not conserved
(B) Angular momentum is not conserved
(C) Isospin is not conserved
(D) Strangeness is not conserved
51. In the shell model with harmonic oscillator potential, closed shells occur for N or Z equal to
(A) $\sum_{l}(2 l+1)$
(B) $\sum_{l} 2(2 l+1)$
(C) $\sum_{l} 2(l+1)$
(D) $\sum 2(2 l+1)^{2}$

Where $l=0,1,2, \ldots$.
52. The ratio of the cross sections $\frac{\sigma\left(\mathrm{n}+\mathrm{p} \rightarrow \pi^{\circ}+\mathrm{d}\right)}{\sigma\left(\mathrm{p}+\mathrm{p} \rightarrow \pi^{+}+\mathrm{d}\right)}$ is equal to
(A) 1
(B) $3 / 4$
(C) $1 / 2$
(D) $1 / 4$
53. Which of the following is not a moderator in an atomic pile?
(A) Heavy water
(B) Graphite
(C) Beryllium
(D) Boron
54. Match the quark-antiquark composition of the following particles.

Particle

Quark-antiquark composition

1. $\mathrm{K}^{+} \quad$ a. $u \bar{d}$
2. K°
b. $u \bar{s}$
3. π^{+}
c. $\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d})$
4. π°
d. $\mathrm{d} \overline{\mathrm{s}}$
(A) 1 -b, 2-a, 3-c, 4-d
(B) 1 - d, $2-\mathrm{c}, 3-\mathrm{a}, 4-\mathrm{b}$
(C) $1-\mathrm{b}, 2-\mathrm{d}, 3-\mathrm{a}, 4-\mathrm{c}$
(D) 1 - $\mathrm{c}, 2-\mathrm{b}, 3-\mathrm{d}, 4-\mathrm{a}$
5. The orientational polarizability per molecule in a polyatomic gas is given by
(A) $\frac{\mu_{m}}{3 k_{B} T}$
(B) $\frac{\mu_{m}^{2}}{3 k_{B} T}$
(C) $\frac{\mu_{m}^{3}}{3 k_{B} T}$
(D) $\frac{\mu_{m}^{2}}{3 k_{B} T^{2}}$
6. In an allowed band of semiconductor, the effective mass m^{*} of the electron is infinite
(A) at the bottom of energy band
(B) at the top of the energy band
(C) in the middle of the energy band
(D) never
7. The Fermi level of an n-type semiconductor is
(A) Close to the valence band
(B) At the middle of the band gap
(C) Inside the conduction band
(D) Close to the conduction band
8. Magnetic susceptibility of a perfect diamagnet in CGS units is
(A) 0
(B) $\frac{+1}{4 \pi}$
(C) $\frac{-1}{4 \pi}$
(D) Infinity
9. In Bose-Einstein condensation at critical temperature, the de Broglie wavelength of particles constituting the medium should be equal to
(A) Average particles distance
(B) Critical volume of particles
(C) Planck's constant
(D) Chemical potential
10. Bose-Einstein condensation temperature T_{c} refers to the temperature below which
(A) An assembly of Bose gas condenses to the liquid state
(B) There is an appreciable occupation of the ground state in an electron system
(C) There is a significantly large occupancy of the ground state in a system of bosons
(D) The bosons essentially behave like fermions

Paper III
61. The total number of $\left(\mathrm{Na}^{+}+\mathrm{Cl}^{-}\right)$ions per unit cell is
(A) 2
(B) 4
(C) 6
(D) 8
62. Dielectric function $\in(w)$ at frequency w for free electron gas is equal to
(A) $1-\frac{4 \pi n e^{2}}{m w^{2}}$
(B) $1+\frac{4 \pi n e^{2}}{m w^{2}}$
(C) $\sqrt{\frac{4 \pi n e^{2}}{m w^{2}}}$
(D) $\sqrt{\frac{m w^{2}}{4 \pi n e^{2}}}$
63. Which of the following gauge can measure the pressure in the range of 10^{-3} to 10^{-10} Torr. ?
(A) McLeod Gauge
(B) Pirani Gauge
(C) Penning Gauge
(D) Ionization Gauge
64. An analog transducer has range of $0-10 \mathrm{~V}$. How many bits of A / D converter is required to get the resolution of 5 mV ?
(A) 10
(B) 9
(C) 11
(D) 8
65. Which of the following radiation detectors has poor energy resolution?
(A) G. M. Counter
(B) Scintillation detector
(C) $\mathrm{Si}(\mathrm{Li}) / \mathrm{Ge}(\mathrm{Li})$
(D) Si at room temperature
66. The Johnson Noise in resistor R is given by
(A) $\overline{\mathrm{v}}_{\mathrm{rms}}^{2}=(4 \mathrm{KTR} \Delta \mathrm{f})$
(B) $\bar{v}_{m}=(2 q I \Delta f)^{1 / 2} R$
(C) $\overline{\mathrm{V}}_{\mathrm{rms}}=\mathrm{A} / \mathrm{f}^{2}$
(D) $\bar{v}_{\text {rms }}=\mathrm{A} / \mathrm{f}$
67. Floating voltage signals should be amplified by
(A) OP-AMP in inverting configuration
(B) OP-AMP in non-inverting configuration
(C) Instrumentation amplifier
(D) Buffer amplifier
68. A certain op-amp has an open loop gain of 200000 and a common mode gain of 2. The common mode rejection ratio (CMMR) of the op-amp is
(A) 20 dB
(B) 40 dB
(C) 60 dB
(D) 100 dB
69. Which of the following amplifier is used to extract signal one million times smaller than noise component?
(A) Instrumentation amplifier
(B) Buffer amplifier
(C) Pre-amplifier
(D) Lock-in-amplifier
70. The number of atoms per unit cell of the reciprocal of bcc structure is
(A) 1
(B) 2
(C) 3
(D) 4
71. Einstein's relation connecting the coefficient of diffusion with mobility is
(A) $\frac{\mathrm{KT}}{\mathrm{e}} \mu$
(B) $\frac{K P}{e} \mu$
(C) $\frac{\mathrm{eT}}{\mathrm{K}} \mu$
(D) $\frac{\mathrm{KT}^{2}}{\mathrm{e}} \mu$
72. Which of the following radiation has the most penetrating power?
(A) α particles
(B) β particles
(C) γ rays
(D) Neutrons
73. A transient response of a control system can be checked by using
(A) Sinusoidal wave form
(B) Square wave form
(C) Triangular wave form
(D) Ramp wave form
74. To eliminate noise due to building vibrations, one of the following filters is used. Tick the right answer.
(A) Low pass filter
(B) High pass filter
(C) Band pass filter
(D) Band stop filter
75. The crystal unit cell with parameters $a=3.1 \AA, b=3.1 \AA, c=5.2 \AA$ and $\alpha=\beta=\gamma=90^{\circ}$ belongs to
(A) Cubic
(B) Triclinic
(C) Monoclinic
(D) Tetragonal

Space for Rough Work

Space for Rough Work

