

Date: 02-12-2026

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE - 27

B.Sc. CHEMISTRY - V SEMESTER

END-SEMESTER EXAMINATION - November 2020

CH 5218 - CHEMISTRY V

Time: 2 1/2 hours

Maximum marks: 70

Physical constants: $R=8.314JK^{-1}mol^{-1}$, $F=96500~Cmol^{-1}$, $h=6.626x10^{-34}Js$, $c=3x10^8~m~s^{-1}$, $N=6.023x10^{23}~mol^{-1}$

Note: This question paper has three parts and 21 questions. All parts are compulsory.

Part A

Answer any SIX questions from the following.

 $(2 \times 6 = 12 \text{ marks})$

- 1.Define the term: single electrode potential.
- 2.Represent graphically the variation of molar conductance of weak and strong electrolytes with respect to concentration.
- 3.Account for the abnormal ionic mobility of alkali metal ions in water.
- 4. Write any two applications of determining emf of concentration cells.
- 5. What are interfacial angles? How are they represented in two dimensions?
- 6.Define the term: 'number of degrees of freedom'. Write an equation for calculating it.
- 7. State the laws of photochemistry.
- 8. Explain Latimer diagram with a suitable example.

Part B

Answer any EIGHT questions from the following.

 $(6 \times 8 = 48 \text{ marks})$

- 9. Discuss the Debye-Huckel-Onsager theory for aqueous solutions of 1:1 electrolyte. Write its mathematical expression and explain the terms.
- 10. (a) Discuss the factors affecting transport numbers with suitable illustrations.
- (b) Calculate the area of cross section of identical electrodes of a conductivity cell separated by a distance of 0.935 cm, if a decimolar solution of KCI(specific conductance=1.12 ${\rm Sm}^{-1}$) offered a resistance of 55 Ω at 26°C[3 + 3]

11.(a) Calculate the solubility product of ferric hydroxide at 25 °Cfrom following data:

Fe (OH)₃(s) + 3e⁻
$$\rightarrow$$
Fe + 3OH $^{-}$ _(aq)E⁰=-0.77 V

$$Fe^{3+}_{(aq)} + 3e^{-} \rightarrow Fe$$
 $E^{0} = -0.036$

- (b) What is a salt bridge? What type of electrolyte is used in it? (3+3)
- 12.(a)How do you setup a saturated calomel electrode? Write the half cell reaction.
- (b) Calculate the equilibrium constant for the reaction in Daniel cell with emf of 1.10V.

(3+3)

- 13.(a) Explain photostationary state with a suitable example.
 - (b) Calculate Miller indices for the plane which makes intercept of 2,2 and 2 units along x,y and z axes and represent it diagrammatically.(3+3)
- 14. Write briefly the principle, procedure and data analysis involved in the experimental determination of crystal parameters by rotating crystal method.
- 15. Draw and explain the phase diagram of lead –silver system. Illustrate its industrial application for desilverisation of lead.
- 16)What is Frost diagram? Construct Frost diagram of chlorine from the following data in volts (V) at 25°C.(Without the help of graph sheet, draw the Frost diagram).

$$CIO_4$$
 \rightarrow CIO_3 \rightarrow CIO_2 \rightarrow CIO_3 \rightarrow CIO_3

- 17.Explain the origin of radiative and non-radiative transitions using Jablonski diagram. What are the differences between fluorescence and phosphorescence?
- 18.(a) What is Pourbaix diagram? Mention its advantages.
- (b) Draw the phase diagram of water and calculate the degrees of freedom for(i) areas and (ii) the point of intersection of lines. (3+3)
 - , arous and (ii) and point or interest or in-

Answer any TWO questions from the following.

 \therefore (5 x 2 = 10 marks)

19.A conductivity cell filled with pure water, 0.1 M KCl and $6x10^{-5}$ M NH₄OH solutions offers resistances of 1.3, 55.0 and 1 x $10^{5}\Omega$ respectively. The specific conductance of given KCl solution is 1.288 $\Omega^{-1}m^{-1}$.At infinite dilution, molar conductance of ammonium ions and hydroxide ions are $73.4x10^{-4}$ and $198 \times 10^{-4}\Omega^{-1}$ m² mol⁻¹ respectively. Calculate the dissociation constant of NH₄OH.

Part C

20. You are provided with pure iron and aluminium foils and two beakers containing 0.2 M ferrous sulphate and 0.2 M aluminium sulphate solutions.

Given $E^{\circ}_{Fe2+/Fe} = -0.40V$ and $E^{\circ}_{Al3+/Al}=-1.66 V$, construct a galvanic cell

- (i) Write its notation.
- (ii) Identify the anode and the cathode and justify.
- (iii) CalculateE°_{Cell}.
- 21. The photochemical reaction between hydrogen and chlorine has aquantum yield of 10⁵ at a wave length of 600nm of incident radiation. Calculate the amount of energy (in joules) per second to be absorbed toform one mole of the product.

CH5218_A_2020