

PHYSICAL SCIENCE
 Paper - III

Note: This paper contains seventy-five (75) objective type questions. Each question carries two (2) marks. All questions are compulsory.

1. If A^{μ} and $B \gamma$ are components of contravariant and covariant vectors, what is the nature of the quantity $A^{\mu} B_{r}$?
(A) Zero
(B) An invariant
(C) A contravariant tensor
(D) A mixed tensor of rank 2
2. For the Ricci tensor, $R_{\mu r}$ what is the quantity $g_{\mu r}$ in the summation convention?
(A) A vector
(B) Scalar
(C) A pseudoscalar
(D) Scalar curvature
3. The value of $\int_{0}^{1} \frac{d x}{1+x}$ by Simpon's rule is
(A) 0.96315
(B) 0.63915
(C) 0.69315
(D) 0.69351

Paper III

6. The set of all non-singular square matrices of same order with respect to matrix multiplication is
(A) Quasi-group
(B) Monoid
(C) Group
(D) Abelian group
7. The order of error in the Simpson's rule for numerical integration with a step size h is
(A) h
(B) h^{2}
(C) h^{3}
(D) h^{4}
8. G is a finite group of order $n, a \in G$ and order of a is m, if G is cyclic then
(A) $\mathrm{m}=\mathrm{n}=0$
(B) $m=n$
(C) $m>n$
(D) $\mathrm{m}<\mathrm{n}$
9. Statement (A) : All cyclic groups are abelian.

Statement (B): The order of cyclic group is same as the order of its generator.
(A) (A) and (B) are false
$(B)(A)$ is true, (B) is false
(C) (B) is true, (A) is false
(D) (A) and (B) are true
8. Statement (A) : Every isomorphic image of a cyclic group is cyclic.

Statement (B) : Every homomorphic image of a cyclic group is cyclic.
(A) Both (A) and (B) are true
(B) Both (A) and (B) are false
(C) Only (A) is true
(D) Only (B) is true
9. A one to one mapping of a finite group onto itself is
(A) Isomorphism
(B) Homomorphism
(C) Automorphism
(D) Monomorphism
10. For a changed particle in an electromagnetic field, the canonical momenta are
(A) $m v+q A / c$
(B) $\frac{1}{2 m v^{2}}+\frac{q A}{C}$
(C) $m v-q A / C$
(D) $\frac{1}{2 m v^{2}}-\frac{q A}{C}$
11. A linear transformation of a generalized co-ordinate q and the corresponding momentum p to Q and P is given by $Q=q+p ; q+\alpha p$ is canonical if the value of the constant α is
(A) -1
(B) 0
(C) +1
(D) +2
12. The value of the Poisson bracket $[\overline{\mathrm{a}} \cdot \overline{\mathrm{r}}, \overline{\mathrm{b}} \cdot \overline{\mathrm{p}}]$ where $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are constant vectors, is
(A) $a b$
(B) $a-b$
(C) $a+b$
(D) $a \cdot b$
13. The canonical transformation corresponding to the generating function $F=\sum_{i} q_{i} p_{i}$
(A) Identify transformation
(B) Reflection transformation
(C) Exchange transformation
(D) Reflection exchange transformation
14. Which one of the following is not the generating function of the canonical transformation $\mathrm{P}=\frac{1}{\mathrm{Q}}$ and $\mathrm{q}=\mathrm{PQ}^{2}$
(A)

(B) $2 \sqrt{q P}$
(C) P / P
(D) Q / P
15. Which of the following statements is false ?
(A) The Poisson bracket of momentum conjugate to a cyclic co-ordinate with Hamiltonian vanishes
(B) Lagrangian bracket is invariant under canonical transformations
(C) Poisson bracket changes sign under commutation of concerned dynamical variables
(D) Lagrangian bracket is commutative with respect to concerned dynamical variables
16. If $(X, H)=0$ and $(Y, H)=0$, the value of $(\mathrm{H}(\mathrm{X}, \mathrm{Y}))$ is
(A) 0
(B) 1
(C) -1
(D) 2
17. The value of $\frac{d}{d t}\left(q_{i} p_{j}\right)$ is
(A) Always zero
(B) Always one
(C) Zero when $\mathrm{i}_{\neq \mathrm{j}}$
(D) Zero when $\mathrm{i}=\mathrm{j}$
18. If the Hamiltonian of a system is $H=\left(p^{2} / 2 m\right)+V(q)$, the value of $(p,(p, H))$ is
(A) Zero
(B) One
(C) $\frac{\partial^{2} v}{\partial q^{2}}$
(D) $\frac{\partial v}{\partial q}$
19. If H is constant of motion, the value of $((p, H), H)$ is
(A) p
(B) \dot{p}
(C) \ddot{p}
(D) $-\ddot{p}$
20. The plasma angular frequency fc if an ionized gas with ion concentration, N is
(A) $9 \sqrt{\mathrm{~N}}$
(B) $\frac{\sqrt{\mathrm{N}}}{9}$
(C) 3 N
(D) $\mathrm{N} / 3$
21. The Lorentz condition satisfied by ϕ and \vec{A} is
(A) $\operatorname{div} \overline{\mathrm{A}}+\frac{1}{\mathrm{C}^{2}} \frac{\mathrm{~d} \phi}{\mathrm{dt}}=0$
(B) $\operatorname{div} \overline{\mathrm{A}}-\frac{1}{\mathrm{C}^{2}} \frac{\mathrm{~d} \phi}{\mathrm{dt}}=0$
(C) $\nabla^{2} \overline{\mathrm{~A}}+\frac{1}{\mathrm{C}^{2}} \frac{\mathrm{~d} \phi}{\mathrm{dt}}=0$
(D) $\nabla^{2} \overline{\mathrm{~A}}-\frac{1}{\mathrm{C}^{2}} \frac{\mathrm{~d} \phi}{\mathrm{dt}}=0$
22. A moving charge can radiate electromagnetic energy if it
(A) Travels with uniform speed
(B) Is accelerated
(C) Is at rest
(D) Is kept in a magnetic field
23. As oscillating electric dipole is equivalent to
(A) An accelerated charge
(B) Static charge
(C) An electrically neutral system
(D) A dielectric
24. A retarded potential represents the
(A) Present value of the potentials due to past position of the charge
(B) Past value of potentials due to present position of the charge
(C) Present value of potentials due to present position of the charge
(D) Past value of the potentials due to past position of the charge
25. A TEM wave is incident obliquely on a dielectric boundary with $\epsilon_{r 1}=2$ and $\epsilon_{\mathrm{r} 2}=1$. The angle of incidence for total internal reflection is
(A) 60°
(B) 30°
(C) 45°
(D) 90°
26. The capacitance per unit length and the characteristic impedance of a loss less transmission line are C and Z_{0}, respectively. The velocity of travelling wave on the transmission line is
(A) $\mathrm{Z}_{0} \mathrm{C}$
(B) $\mathrm{Z}_{0} / \mathrm{C}$
(C) $\frac{1}{\mathrm{Z}_{0} \mathrm{C}}$
(D) $\frac{\mathrm{C}}{\mathrm{Z}_{0}}$
27. The dominant mode in a rectangular wave guide is TE_{0} because this mode has
(A) No attenuation
(B) No cutoff
(C) No magnetic field component
(D) The highest cutoff wavelength
28. Waveguides are used mostly for microwave signals because
(A) They depend on rectilinear propagation which applies to microwaves only
(B) Losses are too heavy at other frequencies
(C) They are not excited at lower frequencies
(D) They would be too bulky at lower frequencies
29. The cutoff wavelength for TE_{20} mode for a standard rectangular waveguide is
(A) $2 / a$
(B) 2 a
(C) a
(D) $2 \mathrm{a}^{2}$

Paper III

30. During scattering of a particle by a spherically symmetric potential, the conserved quantities are
(A) E only
(B) L^{2} only
(C) E, L_{z} and L^{2}
(D) L_{z} only
31. Scattering is always accompanied by
(A) Phase shift
(B) Reaction
(C) Absorption
(D) New particle creation
32. The optical theorem is mathematically stated as
(A) $\sigma=\frac{4 \pi}{k} \operatorname{Ref}(0)$
(B) $\sigma=\frac{4 \pi}{k} \operatorname{lmf}(0)$
(C) $\sigma=\frac{k}{4 \pi} \operatorname{lmf}(0)$
(D) $\sigma=\frac{k}{4 \pi} \operatorname{Ref}(0)$
33. Born approximation is applicable for scattering by
(A) Low Z targets at high energy
(B) Low Z targets at low energy
(C) High Z targets at high energy
(D) High Z targets at low energy
34. The dancing motion of a Dirac electron is called
(A) Bremsstrahlung
(B) Zwitterbewegung
(C) Helicity
(D) Oscillation
35. The Dirac matrices are
(A) Zero trace unit square (4×4) matrices
(B) Unit trace zero square (4×4) matrices
(C) Zero trace unit square (2×2) matrices
(D) Unit trace zero square (2×2) matrices
36. The vectors of dual space are called
(A) Ket vectors
(B) Bra vectors
(C) Dirac vectors
(D) Poisson vectors
37. A bra and a ket vector an orthogonal if
(A) Their vector product is zero
(B) Their scalar product is zero
(C) Their scalar sum is zero
(D) All the above are valid
38. The Klein-Gordon equation generates a
(A) Non-negative probability density
(B) Negative probability density
(C) No probability density
(D) Only positive probability density
39. The notion of antiparticles is based on the solutions of
(A) Klein-Gordon equation
(B) Dirac equation
(C) Schwinger equation
(D) Schrodinger equation
40. A second order phase transition is characterized by
(A) A latent heat
(B) A change in volume
(C) A discontinuous change in its specific heat
(D) Irreversible behaviour during warming and cooling
41. In the process of phase transition
(A) Gibb's function remains constant
(B) Only entropy remains constant
(C) Only volume remains constant
(D) Only temperature remains constant
42. Which of the following is an example of a first order phase transition ?
(A) A liquid-gas phase transition at the critical point
(B) A liquid-gas phase transition away from the critical point
(C) A normal metal-super conductor transition
(D) Normal liquid Helium to super fluid helium transition

Paper III

43. The transition of $\mathrm{He}-4$ from the normal liquid state to a superfluid state is known as
(A) Beta transition
(B) Lamda transition
(C) Bose-Einstein condensation
(D) Zeeman effect
44. The phenomenon of diffusion occurs in
(A) Gases only
(B) Liquids only
(C) Solids only
(D) Solids, liquids and gases
45. The temperature transducers exhibit non-linear behaviour. The order in which they exhibit non-linearity (highest to lowest) is
(A) Thermocouple, RTDs, thermistors
(B) Thermistor, thermocouples, RTDs
(C) RTDs, thermocouples, thermistor
(D) Thermistor, RTDs, thermocouples
46. A certain Op-Amp has an open loop gain of 10^{5}. If the feedback factor is 0.1 , the closed loop gain is around
(A) 10000
(B) 10
(C) 1000
(D) 100
47. Which of the following devices is used for the measurement of low pressure below atmospheric pressure?
(A) Ionization gauge
(B) Strain gauge
(C) Compound gauge
(D) Pirani gauge
48. The gauge factor is defined as
(A) $\frac{\Delta \mathrm{L} / \mathrm{L}}{\Delta \mathrm{R} / \mathrm{R}}$
(B) $\frac{\Delta \mathrm{R} / \mathrm{R}}{\Delta \mathrm{L} / \mathrm{L}}$
(C) $\frac{\Delta R / R}{\Delta D / D}$
(D) $\frac{\Delta R / R}{\Delta \rho / \rho}$
49. A linear displacement transducer (digital) normally uses
(A) Straight-Binary code
(B) BCD
(C) Gray code
(D) Hexadecimal code

K-2513

50. The GM counter is
(A) Energy selective
(B) Non-energy selective
(C) A scintillation detector
(D) Semiconductor detector
51. A random noise generator produces a signal
(A) Whose amplitude varies randomly
(B) Which has no periodic frequency
(C) Has an unpredictable power spectrum
(D) All of the above
52. If $P<0.05$, the level of significance is
(A) 5%
(B) 50%
(C) 0.05%
(D) 0.5%
53. The mean and variance of a χ^{2} distribution with 8 degrees of freedom are
(A) 8,16
(B) 8,12
(C) 4,8
(D) 16, 32

Paper III

56. $\psi_{k+g}(r)=\psi_{k}(r) ; E_{k+g}=E_{k}$ describes
(A) The periodic nature of Block functions and their eigen values in a reciprocal lattice, respectively
(B) The periodic nature of Block functions and their eigen values in a direct lattice, respectively
(C) The orthogonality nature of Block functions and their eigen values
(D) The ortho-normality nature of Block functions and their eigen values
57. In the BCS theory of super conductivity the super conducting state formed from pairs of electrons act as
(A) Bosons
(B) Fermions
(C) Protons
(D) Electrons
58. The value of 'flux on' in a superconductor in SI unit is
(A) $2.0678 \times 10^{-18} \mathrm{Tesla} \mathrm{m}^{-2}$
(B) 2.0678×10^{-7} gauss cm^{-2}
(C) 2.0678×10^{-15} Tesla m ${ }^{2}$
(D) $2.0678 \times 10^{-15} \mathrm{Tesla} \mathrm{m}^{-2}$
59. The schematic arrangement shown in figure is for measuring one of the followings:

(Temperature $\mathrm{T}_{1} \neq \mathrm{T}_{2} \neq \mathrm{T}_{0}$]
(A) Joule effect
(B) Peltier effect
(C) Thomson effect
(D) Seebeck effect
60. Superfluidity is a state of matter in which the matter behaves like a fluid with
(A) Infinite viscosity
(B) Zero viscosity
(C) High viscosity
(D) Low viscosity
61. According to Lorentz model, the Hall Coefficient $\left(R_{H}\right)$ of metals is given by
(A) $\mathrm{R}_{\mathrm{H}}=-\left(\frac{3 \pi}{8}\right) \frac{1}{\mathrm{ne}}$
(B) $R_{H}=-\frac{1}{n e}$
(C) $\mathrm{R}_{\mathrm{H}}=\frac{1}{\mathrm{ne}}$
(D) $\mathrm{R}_{\mathrm{H}}=\left(\frac{3 \pi}{8}\right) \frac{1}{\mathrm{ne}}$
62. The frequency of the AC current produced when a DC voltage of 15 $\mu \mathrm{V}$ is applied across the Josephson junction is
(A) 16.2 MHz
(B) 2.41 GHz
(C) 2.41 KHz
(D) 2.41 THz
63. The nearest neighbor distance (2r) in a body centred cube (bcc) is
(A) $\frac{a \sqrt{3}}{4}$
(B) a
(C) $\frac{a \sqrt{3}}{2}$
(D) $\frac{a}{\sqrt{2}}$
64. A free electron is placed in a magnetic field of strength 1.0 Tesla. The resonance frequency $[g=2.0023$ and $\left.\mu_{\mathrm{B}}=9.274 \times 10^{-24} \mathrm{JT}^{-1}\right]$ is
(A) 28.02 GHz
(B) 2.802 GHz
(C) 28.02 MHz
(D) 28.02 KHz
65. A nucleus has a mass number 216. Its radius is
(A) 0.78 fermi
(B) 0.078 fermi
(C) 78 fermi
(D) 7.8 fermi
66. According to liquid drop model, the surface correction term is proportional to
(A) A
(B) $A^{1 / 3}$
(C) $A^{2 / 3}$
(D) $\mathrm{A}^{-2 / 3}$
67. Parity is violated during
(A) Strong interaction
(B) Weak interaction
(C) Electromagnetic interaction
(D) Gravitational interaction
68. The binding energy of two nuclei ${ }^{n} P$ and ${ }^{2 n} Q$ are x Joule and y Joule, respectively. If $2 x>y$, then the energy released in the reaction ${ }^{n} P+{ }^{m P}={ }^{2 n} Q$ is
(A) $x y$
(B) $2 x+y$
(C) $2 x-y$
(D) $x+y$
69. Beta decay involves the interaction of
(A) Leptons with baryonic field
(B) Baryons with the leptonic field
(C) Baryons with the electromagnetic field
(D) Photons with the baryonic field
70. The nucleons prefer to spend most of their time
(A) Inside the deuteron boundary
(B) At the origin of the deuteron boundary
(C) At the surface of the deuteron
(D) Outside the deuteron boundary
71. The ground state spin of even-even nuclei is
(A) Zero
(B) Half integral
(C) Negative only
(D) Positive only
72. According to the collective rotational model the spin-parity of the lowest energy state is
(A) 1^{+}
(B) 2^{+}
(C) 4^{+}
(D) 0^{+}
73. A nucleus undergoes beta decay from $0^{+} \rightarrow 1^{+}$state, the type of transition is
(A) Pure Fermi allowed
(B) Pure GT allowed
(C) Mixed
(D) Pseudo scalar
74. The quark composition of a proton and neutron, respectively is
(A) ddu and uud
(B) duu and ddu
(C) ddd and ddu
(D) uuu and duu
75. In a typical current-voltage characteristic measurement, the output of a Lock-in amplifier when the input signal is of frequence w, is
(A) D.C. part of the signal
(B) $d^{2} 1 / d v^{2}$
(C) $\mathrm{dl} / \mathrm{dv}$
(D) $d^{3} 1 / d v^{3}$
[^0][^1][^2]
[^0]: Space for Rough Work

[^1]: Space for Rough Work

[^2]: Space for Rough Work

