ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 B.Sc. MATHEMATICS – I SEMESTER MID-SEMESTER TEST – AUGUST 2019 MT 118 – MATHEMATICS I

Answer any Six Questions:

(6 x 5 = 30 Marks)

1. For what values of k, the below set of equations have a solution. Solve them completely in each cases.

$$x+y+z=1$$
$$2x+v+4z=k$$

$$4x + y + 10z = k^2.$$

2. Reduce the matrix A to its normal form and hence find its rank, where

$$A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & -1 & 2 & 5 \\ 3 & 1 & 1 & 8 \\ 2 & -2 & 3 & 7 \end{bmatrix}.$$

3. Find the n^{th} derivative of the following:

a)
$$\frac{1}{(x+2)(x+1)}$$
.

b)
$$e^x \sin x \sin 2x$$
.

4. If
$$y = e^{m \sin^{-1} x}$$
, prove that $(1 - x^2) y_{n+2} + (2n+1) x y_{n+1} - (n^2 + m^2) y_n = 0$.

5. If u = u(x, y) is a homogeneous function of degree n, then prove that

a)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$$
.

b) Using (a) prove that
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} - n(n-1)u$$
.

6. If
$$x = \log_e \left(\frac{x^{5/2} + y^{5/2}}{x^{1/2} - y^{1/2}} \right)$$
, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2$.

7. Find the symmetrical form of the line of intersection of the planes 2x+3y+5z-1=0 and 3x+y-z+2=0.

8. Find the bisector of the acute angle between the planes
$$2x-y+2z+3=0$$
 and $3x+2y+6z+8=0$.