ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE 560027 **B.Sc BIOTECHNOLOGY - III SEMESTER** MID SEMESTER TEST - AUGUST 2019

BT318: MOLECULAR BIOLOGY AND BIOPHYSICS

Time: 60 Min

Max Marks: 30

This question paper has THREE sections and TWO printed pages.

1. Answer any SIX of the following questions.

6 X 3 = 18 marks

Write a brief note comparing the relative amounts of non-coding DNA in prokaryotic versus eukaryotic genomes.

Comment on the processivity of the DNA Polymerase enzyme.

- In Griffith's experiment where he proved the presence of the 'transforming principle', suppose that the type R strain used by Griffith was resistant to killing by an antibiotic, while the type S strain lacked this trait. For the experiment where he mixed the R strain with the heat killed S strain and injected mice, would you expect the living type S bacteria found in the dead mouse's blood to be resistant to the antibiotic? Defend your argument.
- Draw a neat diagram of replication fork in E.coli and label the following: Lagging strand, Leading strand, Okazaki fragments, RNA primers on the leading strand, RNA primers on the lagging strand and direction of fork movement.
- The following is a representation of change in DNA sequence in the beta globin gene, which results in sickle cell anaemia. Describe the type of mutation and its effects.

- Describe how thymine dimers can be repaired in prokaryotic and eukaryotic systems.
- To separate which of the following components, you may need to use an ultracentrifuge: chloroplast from plant cells, ribosomes from yeast, cheek cells from saliva, lysosomes from liver cells. Explain your answer based on the formula for sedimentation rate.
- Before going for lunch, your lab teacher asked you to centrifuge mitochondria at a relative centrifugal force of 12,000 g for 15 minutes. Your lab centrifuge does not show any settings for a rcf and has a rotor of radius 12 cm. At what speed will you perform the centrifugation?
- Briefly explain with diagrams: How will you separate glucose-binding proteins from a mixture of cell proteins?
 - II. Answer all parts of any ONE of the following questions.

1X6 = 6 marks

- 10. Answer the following questions about chromatography:
- a. What is the stationary phase used in thin-layer chromatography (TLC). Is it polar or non-polar?
- b. Given a mixture of amino acids, how will you separate polar and non-polar amino acids using TLC. What type of mobile phase will you use? Why?
- c. Will you be able to see the separated amino acids on the TLC plate? If not, what will you do to confirm the separation?

- d. Using your answers for a and b, draw a TLC plate with 2 spots: one with polar amino acids and another with non-polar amino acids.
- e. If you use column chromatography for the same purpose, what will be the advantages?
- 11. Answer the following questions about spectroscopy
- a. Why do sigma bonding orbitals and pi bonding orbitals absorb EM waves of different wavelengths?
- b. If λ_{∞} for molecule X is approx 430 nm, draw an absorption spectrum showing absorption of light by the molecule X at different wavelengths?
- c. The absorbance at 280 nm (A_{200}) of 1 M solution of protein A was 0.5, whereas for 1M solution of protein B, it was 1.2. What may be the difference between the two proteins? Explain your answer in very brief.
- d. Which of the following molecules will absorb the lowest wavelength of light? Why?

- III. Answer all parts of any ONE of the following questions.
- 1 X 6 = 6 marks

Ø

12. The following graph shows data from Hershey and Chase's experiment that conclusively proved that DNA is the genetic material. On the X axis is **Agitation time in the blender**and on the Y axis is **Percentage of isotope in the supernatant**.

- Using a flowchart, describe the Hershey and Chase experiment.
- b. Draw a similar graph with values you would expect to see in the bacterial pellet.
- c. Write inferences based on the graph you draw.
- 13. In bacterial DNA replication, what do you think would be the impact of missense mutations in the following genes:
- a. One of the 13 bp motifs in the ori C.
- b. dna B gene
- c. dna E that codes for the asubunit of the Core Polymerase assembly
- d. dna N gene that codes for the β clamp subassembly
- e. dna Q gene that codes for the ε subunit with the 3'-5' exonuclease activity
- f. one of the terminator sequences