St. Joseph's College [Autonomous], Bengaluru Mid-Semester Test - August 2019 **B.Sc. Chemistry - V Semester**

CH 5218: Physical Chemistry

Max Marks: 30 Time: 1 hour

Note: The question paper has THREE parts and 11 questions. All parts are compulsory.

PART - A

 $[2 \times 4 = 8]$ Answer any **FOUR** of the following questions. Each question carries **2** marks.

1. Define ionic mobility.

- 2. Give two advantages of conductometric titrations.
- 3. Explain the abnormal transport number of cadmium in cadmium iodide solution at higher concentrations.
- 4. Mention any two differences between Raman and IR spectroscopy.
- 5. What are the gross and quantum selection rules for a molecule to be IR active?

PART - B

Answer any **THREE** of the following questions. Each question carries **6** marks.

 $[3 \times 6 = 18]$

6. a) State and explain Kohlrausch's law of independent migration of ions.

[2+2+2]

- b) Define molar conductance.
- c] Molar conductances at infinite dilution of:

Sodium hydroxide (NaOH) = $247.8 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$

Sodium chloride (NaCl)

 $= 126.5 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$

Ammonium chloride (NH₄Cl) = $149.7 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$

Find the molar conductance at infinite dilution of Ammonium hydroxide (NH₄OH).

7. a] Explain (i) asymmetry effect (ii) electrophoretic effect.

b] Write the mathematical expression of Debye-Huckel-Onsager equation.

[4+2]

8. a] Give the mathematical expression of Born-Oppenheimer approximation.

[2+2+2]

- b] Write the expression for Zero Point Energy and explain the terms in it.
- c] Give the pictorial representation of the fundamental vibrations of CO₂ molecule and indicate the IR active modes.
- 9. Using the energy level expression and selection rules, draw an energy level diagram and the spectral transitions for the microwave (pure rotational) spectrum of a rigid diatomic rotor. Depict the spectrum and explain the spacing between the spectral lines.

PART - C

Answer any **ONE** of the following questions. Each question carries **4** marks.

 $[4 \times 1 = 4]$

- 10. Discuss the titration curves obtained in the estimation of
 - (i) a strong base using a strong acid
 - (ii) a weak base using a strong acid,

when the alkali is taken in the conductivity cell and the acid in the burette.

11. The fundamental vibrational frequency of HCl is 2890 cm⁻¹. Calculate the force constant of this molecule.

[Atomic masses: ${}^{1}H = 1.673 \times 10^{-27} \text{ kg}$, ${}^{35}CI = 58.06 \times 10^{-27} \text{ kg}$; $c = 3 \times 10^{8} \text{ ms}^{-1}$]

.....