

Register Number:

DATE: 26-11-2020

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 B.Sc. MATHEMATICS – III SEMESTER SEMESTER EXAMINATION: NOVEMBER 2020 MT318: MATHEMATICS-III

Time- 2 1/2 hrs.

Max Marks-70

This question paper has TWO printed pages and FOUR parts.

I. ANSWER ANY FIVE OF THE FOLLOWING.

(5X2=10)

- 1) Define the order of an element. What is the order of *i* in the multiplicative group of fourth root of unity?
- 2) What are the generators of (Z_6, \oplus_6) ?
- 3) Define group homomorphism. Is $\varphi:(R,+)\to(R,+), \ \varphi(x)=e^x$ a group homomorphism?
- 4) Find all distinct cosets of $H = \{0,2,4\}$ in (Z_6, \oplus_6) .
- 5) Show that the set $\mathbb N$ has no limit point.
- 6) Evaluate $\lim_{x\to 0} \frac{x-\sin x}{x^3}$
- 7) Find the critical points of the function $x^3 + 3xy^2 3x^2 3y^2 + 4$
- 8) Solve $(D^3 3D^2 + 4)y = 0$

II. ANSWER ANY THREE OF THE FOLLOWING.

(3X6=18)

- 9) Prove that $|a^{-1}| = |a|$, $\forall a \in G$ where order of a is finite.
- 10) Let G be a group and H be a subgroup of G then prove that
 - a) aH = bH if and only if $a \in bH$ $\forall a, b \in G$.
 - b) aH = Ha if and only if $aHa^{-1} = H$, $\forall a \in G$.
- 11) Prove that a subgroup H of G is normal in G if and only if $x H x^{-1} \subseteq H$ $\forall x \in G$
- 12) Let φ be a homomorphism from the group (G,.) to $(\overline{G},.)$ and let H be a subgroup of G, then prove the following.
 - a) $\varphi(H) = {\varphi(h)/h \in H}$ is a subgroup of \overline{G} .
 - b) If H is normal in G , then $\varphi(H)$ is normal in $\varphi(G)$.
- 13) State and prove the first theorem of isomorphism.

III. ANSWER ANY FOUR OF THE FOLLOWING.

(4X6=24)

14) Prove that if a function f is continuous on a closed interval [a, b], then it attains its bounds at least once in [a, b].

- 15) State and Prove Cauchy mean value theorem.
- 16) Obtain the expansion of $log(1 + e^x)$ up to term containing x^4 .
- 17) Find the points of maxima and minima of the function $1 + \sin(x^2 + y^2)$.
- 18) A rectangular box open at the top is to have a volume of 32 cubic feet. Find the dimensions of the box requiring least material for its construction using the method of Lagrange multipliers.

IV. ANSWER ANY THREEOF THE FOLLOWING.

(3X6=18)

- 19) Solve the differential equation $\frac{d^3y}{dx^3} \frac{d^2y}{dx^2} \frac{dy}{dx} + y = e^x(1 + \sin x)$.
- 20) Solve the differential equation $x\frac{d^2y}{dx^2} 2(x+1)\frac{dy}{dx} + (x+2)y = (x-2)e^x$, $x \ne 0$ by finding the part of complementary function
- 21) Solve $\frac{d^2y}{dx^2} + 4\csc 2x\frac{dy}{dx} + 2\tan^2 x \ y = e^x \cot x$ by reducing it to normal form.
- 22) Show that the following equation is exact and hence solve

$$(1-x^2)\frac{d^2y}{dx^2} - 3x\frac{dy}{dx} - y = 0$$
, $x \ne 1$, given that $y(0) = 1$, $y'(0) = 0$.

MT 318 - A - 2020