ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 MID-SEMESTER TEST - AUGUST 2016 M.Sc. CHEMISTRY: I SEMESTER IVI.3C. CHEIVIISTRY: I SEIVIESTER CH 7415: Spectroscopic methods of analysis - I Time: 1½ hours Max. marks:35 This question paper contains 1 page and 3 parts Useful constants: $h = 6.626 \times 10^{-34} Js; k = 1.381 \times 10^{-23} J/K; c = 3 \times 10^8 ms^{-1}$. Atomic mass of an element = mass number x 1.66 x 10^{-27} kg. ## PART-A Answer any three of the following questions: $3 \times 2 = 6 \text{ marks}$ - 1. How are moments of inertia (I_C , I_B and I_A) related in the following molecules. NH₃ and BCl₃. Mention the class to which they belong. - 2. What is stark effect? Explain using a suitable example. - 3. "The lines on the higher frequency side in the vibration rotational spectra of diatomic molecules become crowded and at very high values, R-branch lines become unresolvable" Explain. - 4. What are classes of operation? How many classes are there in C_{2h} point group? - 5. Identify the highest fold symmetry in i) allene molecule ii) PΓ₅ ## PART-B Answer any *two* of the following questions: $2 \times 12 = 24 \text{ marks}$ - a. Discuss the vibration rotation spectra of diatomic molecules. State the selection rule and obtain an expression for frequencies of lines(cm⁻¹) in the P and Q branches. b. Fundamental absorption and first overtone of ¹⁴N ¹⁶O are centered at 1876.06 cm⁻¹ and 3724.2 cm⁻¹ respectively. Evaluate ω_e(in cm⁻¹), x_e, zero-point energy and dissociation energy of NO in Jmol⁻¹. (h= 6.626 x10⁻³⁴Js; c =3x10¹⁰cm/s). (6+6) - 7. a. Discuss rotational spectra of symmetric top molecules. - b. What are reducible and irreducible representations. Give any four properties of irreducible representations. (6+6) - 8. a. With the help of a flow chart show how molecules can be classified into various symmetry groups. - symmetry groups. b. Write the symmetry elements and fix the point groups of SF₄ and SF₆ molecules (8+4) ## **PART-C** Answer any one of the following $1 \times 5 = 5 \text{ marks}$ 9. Calculate the C = O and C = S bond lengths of OCS molecule from the following data Moments of Inertia ¹⁶O¹²C³²S 1.380 x 10⁻⁴⁵ kg m² ¹⁶O¹²C³⁴S 1.415 x 10⁻⁴⁵ kg m² ¹⁶O¹³C³²S 1.384 x 10⁻⁴⁵ kg m² 10. a. How are the point groups of the chair and boat forms of cyclohexane different? b. A molecule AB_6 belongs to Oh point group. Deduce the point group symmetry if it is changed to i) AB_5X ii) cis- AB_4X_2 and iii) trans AB_4X_2 (2 + 3