ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

M.Sc. Physics - SEMESTER I

MID-SEMESTER TEST - AUGUST 2016

PH 7215: MATHEMATICAL PHYSICS

Time: 1 hr. 30 min.

Maximum Marks: 35

This question paper has 3 printed pages and 1 part Answer any **SEVEN** questions. Each question carries 5 marks.

1.

- (a) A complex number is represented in polar form as $z=re^{i\theta}$. If we multiply z by $z'=e^{i\varphi}z=re^{i(\theta+\varphi)}$. Since z=x+iy and z'=x'+iy', use these to obtain the transformation equations in terms of the rotation matrix for vector rotation. (2 Marks)
- $|\mathbf{1}\rangle = \begin{pmatrix} 1\\2 \end{pmatrix}$ and $|\mathbf{2}\rangle = \begin{pmatrix} -1\\2 \end{pmatrix}$ (b) Consider two vectors:
 - i. What is the angle between the two vectors $|1\rangle$ and $|2\rangle$? (1 Mark)
 - ii. use the rotation matrix you derived above for vector rotation to rotate the given vectors in real space by an angle of 45° (on your answer sheet plot the vectors before (1 Mark) rotation and after rotation)
 - iii. If $|1'\rangle$ and $|2'\rangle$ are the rotated vectors that you computed above what is the angle (1 Mark) between these vectors?
- 2. Given two equations with two unknowns:

$$a_1X+b_1Y=c_1$$
$$a_2X+b_2Y=c_2$$

Cramer's rule says that the solution to this equation (provided the matrix

Singular) is given as:
$$X = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}$$
 and $Y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$. For rotation of axes, the transformation equations are given as:

 $x' = \cos \theta x + \sin \theta y$ $y' = -\sin\theta x + \cos\theta y$

Use Cramer's rule defined above to find x and y in terms of x' and y'.

(5 Marks)

3. Gram-Schmidt orthogonalization is recursively performed for a given basis vectors set $\{|v_k\rangle\}$. To begin with, $|u_1\rangle=|v_1\rangle$; subsequently in index notation, the normalized set $\{|u_l\rangle\} \ \ \text{is found by:} \ \ |u_j\rangle = |v_j\rangle - \sum_{i;i\neq j}^{j-1} \frac{\langle v_j|u_i\rangle}{\langle u_i|u_i\rangle} |u_i\rangle \ \ . \ \text{Perform the Gram-Schmidt}$

Orthogonalization on the basis: $|v_1\rangle = \begin{pmatrix} 1\\2\\2\\2 \end{pmatrix}$, $|v_2\rangle = \begin{pmatrix} -1\\0\\2 \end{pmatrix}$ and $|v_3\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$. (5 Marks)

 $M = \begin{pmatrix} a & h \\ h & b \end{pmatrix}$, find the 4. For the matrix

(a) eigenvalues

(2 Marks)

(b) in the special case where $h=\sqrt{2}(a-b)$ obtain the eigenvectors.

(3 Marks)

5. Perform the summations (or obtain the expressions) indicated in the following index expressions (all indexes vary from 1 to 3)

(a) $\epsilon_{ijk}v_iv_jv_k$; how many terms are there in this sum?

(2 Marks)

(b) $u_i v_i \delta_{ii} - v_m v_n \delta mn$

(1 Mark)

6. Consider two vectors: $|1\rangle = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $|2\rangle = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

(a) Normalize the two vectors to obtain $|\hat{1}\rangle$ and $|\hat{2}\rangle$

(1 Mark)

(b) Consider a transformation described by $M = \begin{pmatrix} 6 & -2 \\ -2 & 3 \end{pmatrix}$ described in the natural basis. Transform M into the bases described by the normalized vectors: $|\hat{\mathbf{1}}\rangle$ and $|\hat{\mathbf{2}}\rangle$

(4 Marks)

 $[0,\infty)$ for the function domain the Gram-Schmidt process in $\{u_j(x)|j=0,1,2\}=\{1,x,x^2\}$ with a weight function $\omega(x)=e^{-x}$, obtain the first three Laguerre polynomials $L_0(x)=1$ $L_1(x)=x-1$ and $L_2(x)=\frac{1}{2}(x^2-4x+2)$. The Gram-Schmidt procedure following the identifications mentioned above, involves: $\psi_j(x) = u_j(x) - \sum_{i;i\neq j}^{j-1} a_{ji} u_i(x)$ (2) substitute $a_{ji} = -\int_a^b u_j \varphi_i \omega dx$ and (3) normalise $\psi_j(x)$ to obtain $\varphi_j(x)$ i.e. $\varphi_j(x) = \frac{\psi_j(x)}{\sqrt{\int_a^b \psi_j^2 \omega \, dx}}$ where $\omega(x)$ is a weight function. In

this particular problem, you may need the following integral (for the Gamma function): (5 Marks) $\int_0^\infty x^n e^{-x} dx = n!$

8.

(a) A particular similarity transformation yields

$$A' = U A U^{-1}$$
$$A^{\dagger}' = U A^{\dagger} U^{-1}$$

If the adjoint relationship is preserved i.e. ($A^{\dagger\prime}=A^{\prime\dagger}$) and the determinant of U is 1 i.e. det U=1 , show that U is Unitary (3 Marks)

(b) Using index notation show that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$

(2 Marks)

9.

(a) Complex numbers, a+ib, with a and b real, may be represented by 2x2 matrices:

$$a+ib \leftrightarrow \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
 . Show that this matrix representation is valid for

i. addition of two complex numbers (1 Mark)

ii. multiplication of two complex numbers (1 Mark)

(b) Find the matrix corresponding to $(a+ib)^{-1}$ (3 Marks)

10.

(a) Find the real and imaginary parts of the following as functions of x and y

i. w=2z (1 Mark)

ii. $w=z^*$ (1 Mark)

iii. $w=z^2+2z+i$ (1 Mark)

(b)

i. Express $w=z^2+z+1$ in the form of u+iv (1 Mark)

ii. Show that u and v satisfy the Cauchy-Riemann conditions. (1 Mark)