ST.JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 MID SEMESTER TEST- AUGUST 2016 M.Sc. MATHEMATICS-III SEMESTER MT 9115 - COMPUTATIONAL LINEAR ALGEBRA

TIME: 1 1/2 HOURS

MAX. MARKS: 35

Answer any FIVE of the following questions.

5 X 7 = 35

- 1. Prove that if A is an algebra, with unit element over F, then A is isomorphic to a subalgebra of A(V) for some vector space V over F.
- 2. Prove that if V is finite dimensional vector space over F, then $T \in A(V)$ is regular if and only if T maps V onto itself.
- 3. Prove that if $\lambda \in F$ is characteristic root of T and $T \in A(V)$, then for any polynomial $q(x) \in F[x]$, $q(\lambda)$ is a characteristic root of q(T).
- 4. a) Prove that if V is finite dimensional vector space over F, then $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0.
 - b) Show that $(2,-5,3) \in V_3(R) \notin L[S]$, where $S = \{(1,-3,2), (2,-4,-1), (1,-5,7)\}$.
- 5. a) Define matrices of a linear transformation.
 - b) Find the matrix of the liner transformation corresponding to $(1,1+x,1+x^2,....,1+x^{n-1})$
- 6. If V is n-dimensional vector space over F and if $T \in A(V)$ has the matrix $m_1(T)$ in the basis v_1, v_2, \ldots, v_n and the matrix $m_2(T)$ in the basis w_1, w_2, \ldots, w_n of V over F, then prove that there is an element $C \in F_n$ such that $m_2(T) = Cm_1(T)C^{-1}$.
- 7. If V is a vector space over a field F , then prove that the double dual of V is isomorphic to V .