


Table B-1 Critical Values of the t-Distribution

Level of Significance

Degrees of 
Freedom

One-Sided: 10% 
Two-Sided: 20%

5% 
10%

2.5% 
5%

1% 
2%

0.5% 
1%

  1 3.078 6.314 12.706 31.821 63.657
  2 1.886 2.920 4.303 6.965 9.925
  3 1.638 2.353 3.182 4.541 5.841
  4 1.533 2.132 2.776 3.747 4.604
  5 1.476 2.015 2.571 3.365 4.032
  6 1.440 1.943 2.447 3.143 3.707
  7 1.415 1.895 2.365 2.998 3.499
  8 1.397 1.860 2.306 2.896 3.355
  9 1.383 1.833 2.262 2.821 3.250
 10 1.372 1.812 2.228 2.764 3.169
 11 1.363 1.796 2.201 2.718 3.106
 12 1.356 1.782 2.179 2.681 3.055
 13 1.350 1.771 2.160 2.650 3.012
 14 1.345 1.761 2.145 2.624 2.977
 15 1.341 1.753 2.131 2.602 2.947
 16 1.337 1.746 2.120 2.583 2.921
 17 1.333 1.740 2.110 2.567 2.898
 18 1.330 1.734 2.101 2.552 2.878
 19 1.328 1.729 2.093 2.539 2.861
 20 1.325 1.725 2.086 2.528 2.845
 21 1.323 1.721 2.080 2.518 2.831
 22 1.321 1.717 2.074 2.508 2.819
 23 1.319 1.714 2.069 2.500 2.807
 24 1.318 1.711 2.064 2.492 2.797
 25 1.316 1.708 2.060 2.485 2.787
 26 1.315 1.706 2.056 2.479 2.779
 27 1.314 1.703 2.052 2.473 2.771
 28 1.313 1.701 2.048 2.467 2.763
 29 1.311 1.699 2.045 2.462 2.756
 30 1.310 1.697 2.042 2.457 2.750
 40 1.303 1.684 2.021 2.423 2.704
 60 1.296 1.671 2.000 2.390 2.660
120 1.289 1.658 1.980 2.358 2.617

(Normal)
∞ 1.282 1.645 1.960 2.326 2.576

Source: Reprinted from Table IV in Sir Ronald A. Fisher, Statistical Methods for Research 
Workers, 14th ed. (copyright © 1970, University of Adelaide) with permission of Hafner, a 
 division of the Macmillan Publishing Company, Inc.
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PREFACE

Econometric education is a lot like learning to fly a plane; you learn 
more from actually doing it than you learn from reading about it.

Using Econometrics represents an innovative approach to the understand-
ing of elementary econometrics. It covers the topic of single-equation lin-
ear regression analysis in an easily understandable format that emphasizes 
real-world examples and exercises. As the subtitle A Practical Guide implies, 
the book is aimed not only at beginning econometrics students but also at 
regression users looking for a refresher and at experienced practitioners who 
want a convenient reference.

What’s New in the Seventh Edition?

Using Econometrics has been praised as “one of the most important new texts 
of the last 30 years,” so we’ve retained the clarity and practicality of previous 
editions. However, we’re delighted to have made a number of substantial 
improvements in the text.

The most exciting upgrades are:

1. Econometric Labs: These new and innovative learning tools are 
optional appendices that give students hands-on opportunities to bet-
ter understand the econometric principles that they’re reading about 
in the chapters. The labs originally were designed to be assigned in a 
classroom setting, but they also have turned out to be extremely valu-
able for readers who are not in a class or for individual students in 
classes where the labs aren’t assigned. Hints on how best to use these 
econometric labs and answers to the lab questions are available in the 
instructor’s manual on the Using Econometrics Web site.

2. The Use of Stata throughout the Text: In our opinion, Stata has 
become the econometric software package of choice among economic 
researchers. As a result, we have estimated all the text examples and 
exercises with Stata and have included a short appendix to help stu-
dents get started with Stata. Beyond this, we have added a complete 
guide to Using Stata to our Web site. This guide, written by John Perry 
of Centre College, explains in detail all the Stata commands needed to 
replicate the text’s equations and answer the text’s exercises. However, 
even though we use Stata extensively, Using Econometrics is not tied to 

xiii
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Stata or any other econometric software, so the text works well with all 
standard regression packages.

3. Expanded Econometric Content: We have added coverage of a number 
of econometric tests and procedures, for example the Breusch-Pagan 
test and the Prais–Winsten approach to Generalized Least Squares. 
In addition, we have expanded the coverage of even more topics, for 
example the F-test, confidence intervals, the Lagrange Multiplier test, 
and the Dickey–Fuller test. Finally, we have simplified the notation and 
improved the clarity of the explanations in Chapters 12–16, particu-
larly in topics like dynamic equations, dummy dependent variables, 
instrumental variables, and panel data.

4. Answers to Many More Exercises: In response to requests from instruc-
tors and students, we have more than tripled the number of exercises 
that are answered in the text’s appendix. These answers will allow stu-
dents to learn on their own, because students will be able to attempt an 
exercise and then check their answers against those in the back of the 
book without having to involve their professors. In order to continue 
to provide good exercises for professors to include in problem sets and 
exams, we have expanded the number of exercises contained in the 
text’s Web site.

5. Dramatically Improved PowerPoint Slides: We recognize the impor-
tance of PowerPoint slides to instructors with large classes, so we have 
dramatically improved the quality of the text’s PowerPoints. The slides 
replicate each chapter’s main equations and examples, and also pro-
vide chapter summaries and lists of the key concepts in each chapter. 
The PowerPoint slides can be downloaded from the text’s Web site, and 
they’re designed to be easily edited and individualized.

6. An Expanded and Improved Web Site: We believe that this edition’s 
Web site is the best we’ve produced. As you’d expect, the Web site 
includes all the text’s data sets, in easily downloadable Stata, EViews, 
Excel, and ASCII formats, but we have gone far beyond that. We have 
added Using Stata, a complete guide to the Stata commands needed 
to estimate the book’s equations; we have dramatically improved the 
PowerPoint slides; and we have added answers to the new economet-
ric labs and instructions on how best to use these labs in a classroom 
setting. In addition, the Web site also includes an instructor’s manual, 
additional exercises, extra interactive regression learning exercises, and 
additional data sets. But why take our word for it? Take a look for your-
self at http://www.pearsonhighered.com/studenmund

xiv PREFACE
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Features

1. Our approach to the learning of econometrics is simple, intuitive, and 
easy to understand. We do not use matrix algebra, and we relegate 
proofs and calculus to the footnotes or exercises.

2. We include numerous examples and example-based exercises. We feel 
that the best way to get a solid grasp of applied econometrics is through 
an example-oriented approach.

3. Although most of this book is at a simpler level than other economet-
rics texts, Chapters 6 and 7 on specification choice are among the most 
complete in the field. We think that an understanding of specification 
issues is vital for regression users.

4. We use a unique kind of learning tool called an interactive regression 
learning exercise to help students simulate econometric analysis by 
 giving them feedback on various kinds of decisions without relying on 
computer time or much instructor supervision.

5. We’re delighted to introduce a new innovative learning tool called an 
econometric lab. These econometric labs, developed by Bruce Johnson 
of Centre College and tested successfully at two other institutions, 
are optional appendices aimed at giving students hands-on experi-
ence with the econometric procedures they’re reading about. Students 
who complete these econometric labs will be much better prepared to 
undertake econometric research on their own.

The formal prerequisites for using this book are few. Readers are assumed 
to have been exposed to some microeconomic and macroeconomic theory, 
basic mathematical functions, and elementary statistics (even if they have 
forgotten most if it). Students with little statistical background are encour-
aged to begin their study of econometrics by reading Chapter 17, “Statistical 
Principles,” on the text’s Web site.

Because the prerequisites are few and the statistics material is self-contained, 
Using Econometrics can be used not only in undergraduate courses but also in 
MBA-level courses in quantitative methods. We also have been told that the 
book is a helpful supplement for graduate-level econometrics courses.

The Stata and EViews Options

We’re delighted to be able to offer our readers the chance to purchase the 
student version of Stata or EViews at discounted prices when bundled with 
the textbook. Stata and EViews are two of the best econometric software 

xvPREFACE
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programs available, so it’s a real advantage to be able to buy them at sub-
stantial savings.

We urge professors to make these options available to their students 
even if Stata or EViews aren’t used in class. The advantages to students of 
owning their own regression software are many. They can run regressions 
when they’re off-campus, they will add a marketable skill to their résumé 
if they learn Stata or EViews, and they’ll own a software package that will 
allow them to run regressions after the class is over if they choose the 
EViews option.

Acknowledgments

This edition of Using Econometrics has been blessed by superb contribu-
tions from Ron Michener of the University of Virginia and Bruce Johnson of 
 Centre College. Ron was the lead reviewer, and in that role he commented on 
every section and virtually every equation in the book, creating a 132-page 
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his own work of the same name, and Carolyn was the text’s editorial con-
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professional contributors to previous editions were the late Peter  Kennedy, 
Nobel Prize winner Rob Engle of New York University, Gary Smith of 
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group of professional reviewers:
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1

1.1 What Is Econometrics?

1.2 What Is Regression Analysis?

1.3 The Estimated Regression Equation

1.4 A Simple Example of Regression Analysis

1.5 Using Regression to Explain Housing Prices

1.6 Summary and Exercises

1.7 Appendix: Using Stata

An Overview of  
Regression Analysis

1.1  What Is Econometrics?

“ Econometrics is too mathematical; it’s the reason my best friend isn’t 
majoring in economics.”

“ There are two things you are better off not watching in the making: 
sausages and econometric estimates.”1

“ Econometrics may be defined as the quantitative analysis of actual  
economic phenomena.”2

“ It’s my experience that ‘economy-tricks’ is usually nothing more than a 
justification of what the author believed before the research was begun.”

Obviously, econometrics means different things to different people. To 
beginning students, it may seem as if econometrics is an overly complex 
obstacle to an otherwise useful education. To skeptical observers, econometric 

Chapter 1

1. Ed Leamer, “Let’s take the Con out of Econometrics,” American Economic Review, Vol. 73,  
No. 1, p. 37.

2. Paul A. Samuelson, T. C. Koopmans, and J. R. Stone, “Report of the Evaluative Committee for 
Econometrica,” Econometrica, 1954, p. 141.
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2 CHAPTER 1 An Overview Of regressiOn AnAlysis 

results should be trusted only when the steps that produced those results are 
completely known. To professionals in the field, econometrics is a fascinat-
ing set of techniques that allows the measurement and analysis of economic 
phenomena and the prediction of future economic trends.

You’re probably thinking that such diverse points of view sound like the 
statements of blind people trying to describe an elephant based on which 
part they happen to be touching, and you’re partially right. Econometrics 
has both a formal definition and a larger context. Although you can easily 
memorize the formal definition, you’ll get the complete picture only by 
understanding the many uses of and alternative approaches to econometrics.

That said, we need a formal definition. Econometrics—literally, “economic 
measurement”—is the quantitative measurement and analysis of actual 
economic and business phenomena. It attempts to quantify economic 
reality and bridge the gap between the abstract world of economic theory 
and the real world of human activity. To many students, these worlds may 
seem far apart. On the one hand, economists theorize equilibrium prices 
based on carefully conceived marginal costs and marginal revenues; on 
the other, many firms seem to operate as though they have never heard of 
such concepts. Econometrics allows us to examine data and to quantify the 
actions of firms, consumers, and governments. Such measurements have a 
number of different uses, and an examination of these uses is the first step to 
understanding econometrics.

Uses of Econometrics

Econometrics has three major uses:

1. describing economic reality

2. testing hypotheses about economic theory and policy

3. forecasting future economic activity

The simplest use of econometrics is description. We can use econometrics 
to quantify economic activity and measure marginal effects because econo-
metrics allows us to estimate numbers and put them in equations that previ-
ously contained only abstract symbols. For example, consumer demand for 
a particular product often can be thought of as a relationship between the 
quantity demanded 1Q2 and the product’s price 1P2, the price of a substitute 
1Ps2, and disposable income 1Yd2. For most goods, the relationship between 
consumption and disposable income is expected to be positive, because 
an increase in disposable income will be associated with an increase in the 
consumption of the product. Econometrics actually allows us to estimate that 
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relationship based upon past consumption, income, and prices. In other 
words, a general and purely theoretical functional relationship like:

 Q = β0 + β1P + β2PS + β1Yd (1.1)

can become explicit:

 Q = 27.7 - 0.11P + 0.03PS + 0.23Yd (1.2)

This technique gives a much more specific and descriptive picture of the 
function.3 Let’s compare Equations 1.1 and 1.2. Instead of expecting con-
sumption merely to “increase” if there is an increase in disposable income, 
Equation 1.2 allows us to expect an increase of a specific amount (0.23 units 
for each unit of increased disposable income). The number 0.23 is called an 
estimated regression coefficient, and it is the ability to estimate these coeffi-
cients that makes econometrics valuable.

The second use of econometrics is hypothesis testing, the evaluation of 
alternative theories with quantitative evidence. Much of economics involves 
building theoretical models and testing them against evidence, and hypoth-
esis testing is vital to that scientific approach. For example, you could test the 
hypothesis that the product in Equation 1.1 is what economists call a normal 
good (one for which the quantity demanded increases when disposable income 
increases). You could do this by applying various statistical tests to the estimated 
coefficient (0.23) of disposable income (Yd) in Equation 1.2. At first glance, 
the evidence would seem to support this hypothesis, because the coefficient’s 
sign is positive, but the “statistical significance” of that estimate would have to 
be investigated before such a conclusion could be justified. Even though the 
estimated coefficient is positive, as expected, it may not be sufficiently different 
from zero to convince us that the true coefficient is indeed positive.

The third and most difficult use of econometrics is to forecast or predict 
what is likely to happen next quarter, next year, or further into the future, based 
on what has happened in the past. For example, economists use economet-
ric models to make forecasts of variables like sales, profits, Gross Domestic  
Product (GDP), and the inflation rate. The accuracy of such forecasts depends 
in large measure on the degree to which the past is a good guide to the future. 
Business leaders and politicians tend to be especially interested in this use of 

3. It’s of course naïve to build a model of sales (demand) without taking supply into consider-
ation. Unfortunately, it’s very difficult to learn how to estimate a system of simultaneous equa-
tions until you’ve learned how to estimate a single equation. As a result, we will postpone our 
discussion of the econometrics of simultaneous equations until Chapter 14. Until then, you 
should be aware that we sometimes will encounter right-hand-side variables that are not truly 
“independent” from a theoretical point of view.
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econometrics because they need to make decisions about the future, and the 
penalty for being wrong (bankruptcy for the entrepreneur and political defeat 
for the candidate) is high. To the extent that econometrics can shed light on 
the impact of their policies, business and government leaders will be better 
equipped to make decisions. For example, if the president of a company 
that sold the product modeled in Equation 1.1 wanted to decide whether to 
increase prices, forecasts of sales with and without the price increase could be 
calculated and compared to help make such a decision.

Alternative Econometric Approaches

There are many different approaches to quantitative work. For example, the 
fields of biology, psychology, and physics all face quantitative questions simi-
lar to those faced in economics and business. However, these fields tend to use 
somewhat different techniques for analysis because the problems they face 
aren’t the same. For example, economics typically is an observational disci-
pline rather than an experimental one. “We need a special field called econo-
metrics, and textbooks about it, because it is generally accepted that economic 
data possess certain properties that are not considered in standard statistics 
texts or are not sufficiently emphasized there for use by economists.”4

Different approaches also make sense within the field of economics. A 
model built solely for descriptive purposes might be different from a forecast-
ing model, for example.

To get a better picture of these approaches, let’s look at the steps used in 
nonexperimental quantitative research:

1. specifying the models or relationships to be studied

2. collecting the data needed to quantify the models

3. quantifying the models with the data

The specifications used in step 1 and the techniques used in step 3 differ 
widely between and within disciplines. Choosing the best specification for 
a given model is a theory-based skill that is often referred to as the “art” of 
econometrics. There are many alternative approaches to quantifying the same 
equation, and each approach may produce somewhat different results. The 
choice of approach is left to the individual econometrician (the researcher 
using econometrics), but each researcher should be able to justify that choice.

4. Clive Granger, “A Review of Some Recent Textbooks of Econometrics,” Journal of Economic 
Literature, Vol. 32, No. 1, p. 117.
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This book will focus primarily on one particular econometric approach: 
single-equation linear regression analysis. The majority of this book will thus 
concentrate on regression analysis, but it is important for every econometri-
cian to remember that regression is only one of many approaches to econo-
metric quantification.

The importance of critical evaluation cannot be stressed enough; a good 
econometrician can diagnose faults in a particular approach and figure out 
how to repair them. The limitations of the regression analysis approach must 
be fully perceived and appreciated by anyone attempting to use regression 
analysis or its findings. The possibility of missing or inaccurate data, incor-
rectly formulated relationships, poorly chosen estimating techniques, or 
improper statistical testing procedures implies that the results from regres-
sion analyses always should be viewed with some caution.

1.2  What Is Regression Analysis?

Econometricians use regression analysis to make quantitative estimates of 
economic relationships that previously have been completely theoretical in 
nature. After all, anybody can claim that the quantity of iPhones demanded 
will increase if the price of those phones decreases (holding everything else  
constant), but not many people can put specific numbers into an equation and 
estimate by how many iPhones the quantity demanded will increase for each 
dollar that price decreases. To predict the direction of the change, you need a 
knowledge of economic theory and the general characteristics of the product 
in question. To predict the amount of the change, though, you need a sample of 
data, and you need a way to estimate the relationship. The most frequently used 
method to estimate such a relationship in econometrics is regression analysis.

Dependent Variables, Independent Variables, and Causality

Regression analysis is a statistical technique that attempts to “explain” move-
ments in one variable, the dependent variable, as a function of movements in a 
set of other variables, called the independent (or explanatory) variables, through  
the quantification of one or more equations. For example, in Equation 1.1:

 Q = β0 + β1P + β2PS + β1Yd (1.1)

Q is the dependent variable and P, PS, and Yd are the independent variables. 
Regression analysis is a natural tool for economists because most (though 
not all) economic propositions can be stated in such equations. For example, 
the quantity demanded (dependent variable) is a function of price, the prices 
of substitutes, and income (independent variables).
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Much of economics and business is concerned with cause-and-effect 
propositions. If the price of a good increases by one unit, then the quantity 
demanded decreases on average by a certain amount, depending on the 
price elasticity of demand (defined as the percentage change in the quantity 
demanded that is caused by a one percent increase in price). Similarly, if the 
quantity of capital employed increases by one unit, then output increases by 
a certain amount, called the marginal productivity of capital. Propositions 
such as these pose an if-then, or causal, relationship that logically postulates 
that a dependent variable’s movements are determined by movements in a 
number of specific independent variables.

Don’t be deceived by the words “dependent” and “independent,” how-
ever. Although many economic relationships are causal by their very 
nature, a regression result, no matter how statistically significant, cannot 
prove causality. All regression analysis can do is test whether a signifi-
cant quantitative relationship exists. Judgments as to causality must also 
include a healthy dose of economic theory and common sense. For 
example, the fact that the bell on the door of a flower shop rings just be-
fore a customer enters and purchases some flowers by no means implies 
that the bell causes purchases! If events A and B are related statistically, it 
may be that A causes B, that B causes A, that some omitted factor causes 
both, or that a chance correlation exists between the two.

The cause-and-effect relationship often is so subtle that it fools even the 
most prominent economists. For example, in the late nineteenth century, 
English economist Stanley Jevons hypothesized that sunspots caused an 
increase in economic activity. To test this theory, he collected data on national  
output (the dependent variable) and sunspot activity (the independent 
variable) and showed that a significant positive relationship existed. This 
result led him, and some others, to jump to the conclusion that sunspots 
did indeed cause output to rise. Such a conclusion was unjustified because 
regression analysis cannot confirm causality; it can only test the strength and 
direction of the quantitative relationships involved.

Single-Equation Linear Models

The simplest single-equation regression model is:

 Y = β0 + β1X (1.3)
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Equation 1.3 states that Y, the dependent variable, is a single-equation linear 
function of X, the independent variable. The model is a single-equation 
model because it’s the only equation specified. The model is linear because if 
you were to plot Equation 1.3 it would be a straight line rather than a curve.

The βs are the coefficients that determine the coordinates of the straight line 
at any point. β0 is the constant or intercept term; it indicates the value of Y 
when X equals zero. β1 is the slope coefficient, and it indicates the amount that 
Y will change when X increases by one unit. The line in Figure 1.1 illustrates the 
relationship between the coefficients and the graphical meaning of the regres-
sion equation. As can be seen from the diagram, Equation 1.3 is indeed linear.

The slope coefficient, β1, shows the response of Y to a one-unit increase in X. 
Much of the emphasis in regression analysis is on slope coefficients such as β1.  
In Figure 1.1 for example, if X were to increase by one from X1 to X2 1∆X2, 
the value of Y in Equation 1.3 would increase from Y1 to Y2 1∆Y2. For linear 
(i.e., straight-line) regression models, the response in the predicted value of Y 
due to a change in X is constant and equal to the slope coefficient β1:

 
1Y2 - Y12
1X2 - X12 =

∆Y
∆X

= β1

Y

Y2

Intercept = d0

Y1

0 X1

¢X 

¢Y

X2

Y = d0 + d1X

X

¢Y
¢X

Slope = d1 = (Y2 - Y1)
(X2 - X1)

=

Figure 1.1 graphical representation of the coefficients  
of the regression line

The graph of the equation Y = β0 + β1X is linear with a constant slope equal to 
β1 = ∆Y/∆X.
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where ∆ is used to denote a change in the variables. Some readers may recog-
nize this as the “rise” 1∆Y2 divided by the “run” 1∆X2. For a linear model, 
the slope is constant over the entire function.

If linear regression techniques are going to be applied to an equation, that 
equation must be linear. An equation is linear if plotting the function in 
terms of X and Y generates a straight line; for example, Equation 1.3 is linear.5

 Y = β0 + β1X (1.3)

The Stochastic Error Term

Besides the variation in the dependent variable (Y) that is caused by the 
independent variable (X), there is almost always variation that comes from 
other sources as well. This additional variation comes in part from omitted 
explanatory variables (e.g., X2 and X3). However, even if these extra variables 
are added to the equation, there still is going to be some variation in Y that 
simply cannot be explained by the model.6 This variation probably comes 
from sources such as omitted influences, measurement error, incorrect func-
tional form, or purely random and totally unpredictable occurrences. By 
random we mean something that has its value determined entirely by chance.

Econometricians admit the existence of such inherent unexplained varia-
tion (“error”) by explicitly including a stochastic (or random) error term in 
their regression models. A stochastic error term is a term that is added to 
a regression equation to introduce all of the variation in Y that cannot be 
explained by the included Xs. It is, in effect, a symbol of the econometrician’s 
ignorance or inability to model all the movements of the dependent variable. 
The error term (sometimes called a disturbance term) usually is referred to 
with the symbol epsilon 1e2, although other symbols (like u or v) sometimes 
are used.

5. Technically, as you will learn in Chapter 7, this equation is linear in the coefficients β0 and β1 
and linear in the variables Y and X. The application of regression analysis to equations that are 
nonlinear in the variables is covered in Chapter 7. The application of regression techniques to 
equations that are nonlinear in the coefficients, however, is much more difficult.

6. The exception would be the extremely rare case where the data can be explained by some sort 
of physical law and are measured perfectly. Here, continued variation would point to an omitted 
independent variable. A similar kind of problem is often encountered in astronomy, where 
planets can be discovered by noting that the orbits of known planets exhibit variations that can 
be caused only by the gravitational pull of another heavenly body. Absent these kinds of physi-
cal laws, researchers in economics and business would be foolhardy to believe that all variation 
in Y can be explained by a regression model because there are always elements of error in any 
attempt to measure a behavioral relationship.
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The addition of a stochastic error term 1e2 to Equation 1.3 results in a 
typical regression equation:

 Y = β0 + β1X + e (1.4)

Equation 1.4 can be thought of as having two components, the deterministic  
component and the stochastic, or random, component. The expression 
β0 + β1X is called the deterministic component of the regression equation 
because it indicates the value of Y that is determined by a given value  
of X, which is assumed to be nonstochastic. This deterministic component 
can also be thought of as the expected value of Y given X, the mean value 
of the Ys associated with a particular value of X. For example, if the average 
height of all 13-year-old girls is 5 feet, then 5 feet is the expected value of a 
girl’s height given that she is 13. The deterministic part of the equation may 
be written:

 E1Y � X2 = β0 + β1X (1.5)

which states that the expected value of Y given X, denoted as E1Y � X2, is a 
linear function of the independent variable (or variables if there are more 
than one).

Unfortunately, the value of Y observed in the real world is unlikely to be 
exactly equal to the deterministic expected value E1Y � X2. After all, not all 
13-year-old girls are 5 feet tall. As a result, the stochastic element 1e2 must be 
added to the equation:

 Y = E1Y � X2 + e = β0 + β1X + e (1.6)

The stochastic error term must be present in a regression equation 
because there are at least four sources of variation in Y other than the 
variation in the included Xs:

 1.  Many minor influences on Y are omitted from the equation (for 
example, because data are unavailable).

 2.  It is virtually impossible to avoid some sort of measurement error in 
the dependent variable.

 3.  The underlying theoretical equation might have a different functional 
form (or shape) than the one chosen for the regression. For example, 
the underlying equation might be nonlinear.

 4.  All attempts to generalize human behavior must contain at least 
some amount of unpredictable or purely random variation.
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To get a better feeling for these components of the stochastic error term, 
let’s think about a consumption function (aggregate consumption as a func-
tion of aggregate disposable income). First, consumption in a particular year 
may have been less than it would have been because of uncertainty over the 
future course of the economy. Since this uncertainty is hard to measure, there 
might be no variable measuring consumer uncertainty in the equation. In 
such a case, the impact of the omitted variable (consumer uncertainty) would 
likely end up in the stochastic error term. Second, the observed amount of 
consumption may have been different from the actual level of consump-
tion in a particular year due to an error (such as a sampling error) in the 
measurement of consumption in the National Income Accounts. Third, the 
underlying consumption function may be nonlinear, but a linear consump-
tion function might be estimated. (To see how this incorrect functional 
form would cause errors, see Figure 1.2.) Fourth, the consumption function 

Y

0

Errors

“True” Relationship
(nonlinear)

Linear Functional Form

X

g2

g1

g3

Figure 1.2 errors Caused by Using a linear functional form to Model  
a nonlinear relationship

One source of stochastic error is the use of an incorrect functional form. For example,  
if a linear functional form is used when the underlying relationship is nonlinear,  
systematic errors (the es) will occur. These nonlinearities are just one component of the 
stochastic error term. The others are omitted variables, measurement error, and purely 
random variation.
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attempts to portray the behavior of people, and there is always an element of 
unpredictability in human behavior. At any given time, some random event 
might increase or decrease aggregate consumption in a way that might never 
be repeated and couldn’t be anticipated.

These possibilities explain the existence of a difference between the 
observed values of Y and the values expected from the deterministic com-
ponent of the equation, E1Y � X2. These sources of error will be covered in 
more detail in the following chapters, but for now it is enough to recognize 
that in econometric research there will always be some stochastic or random 
element, and, for this reason, an error term must be added to all regression 
equations.

Extending the Notation

Our regression notation needs to be extended to allow the possibility of 
more than one independent variable and to include reference to the number 
of observations. A typical observation (or unit of analysis) is an individual 
person, year, or country. For example, a series of annual observations starting 
in 1985 would have Y1 = Y for 1985, Y2 for 1986, etc. If we include a specific 
reference to the observations, the single-equation linear regression model 
may be written as:

 Yi = β0 + β1Xi + ei  1i = 1, 2, c, N2 (1.7)

where: Yi = the ith observation of the dependent variable
 Xi = the ith observation of the independent variable
 ei = the ith observation of the stochastic error term
 β0, β1 = the regression coefficients
 N = the number of observations

This equation is actually N equations, one for each of the N observations:

  Y1 = β0 + β1X1 + e1

  Y2 = β0 + β1X2 + e2

  Y3 = β0 + β1X3 + e3

 f
 YN = β0 + β1XN + eN

That is, the regression model is assumed to hold for each observation. The 
coefficients do not change from observation to observation, but the values of 
Y, X, and e do.
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A second notational addition allows for more than one independent vari-
able. Since more than one independent variable is likely to have an effect on 
the dependent variable, our notation should allow these additional explana-
tory Xs to be added. If we define:

X1i = the ith observation of the first independent variable
X2i = the ith observation of the second independent variable
X3i = the ith observation of the third independent variable

then all three variables can be expressed as determinants of Y.

The resulting equation is called a multivariate (more than one indepen-
dent variable) linear regression model:

 Yi = β0 + β1X1i + β2X2i + β3X3i + ei (1.8)

The meaning of the regression coefficient β1 in this equation is the impact 
of a one-unit increase in X1 on the dependent variable Y, holding constant 
X2 and X3. Similarly, β2 gives the impact of a one-unit increase in X2 on 
Y, holding X1 and X3 constant.

These multivariate regression coefficients (which are parallel in nature to 
partial derivatives in calculus) serve to isolate the impact on Y of a change in 
one variable from the impact on Y of changes in the other variables. This is 
possible because multivariate regression takes the movements of X2 and X3 
into account when it estimates the coefficient of X1. The result is quite similar 
to what we would obtain if we were capable of conducting controlled labora-
tory experiments in which only one variable at a time was changed.

In the real world, though, it is very difficult to run controlled economic 
experiments,7 because many economic factors change simultaneously, often 
in opposite directions. Thus the ability of regression analysis to measure the 
impact of one variable on the dependent variable, holding constant the influence 
of the other variables in the equation, is a tremendous advantage. Note that if a 
variable is not included in an equation, then its impact is not held constant in 
the estimation of the regression coefficients. This will be discussed further 
in Chapter 6.

7. Such experiments are difficult but not impossible. See Section 16.1.
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This material is pretty abstract, so let’s look at two examples. As a first 
example, consider an equation with only one independent variable, a model 
of a person’s weight as a function of their height. The theory behind this 
equation is that, other things being equal, the taller a person is the more they 
tend to weigh.

The dependent variable in such an equation would be the weight of the 
person, while the independent variable would be that person’s height:

 Weighti = β0 + β1Heighti + ei (1.9)

What exactly do the “i” subscripts mean in Equation 1.9? Each value of i 
refers to a different person in the sample, so another way to think about the 
subscripts is that:

 Weightwoody = β0 + β1Heightwoody + ewoody

 Weightlesley  = β0 + β1Heightlesley + elesley

  Weightbruce  = β0 + β1Heightbruce + ebruce

 Weightmary  = β0 + β1Heightmary + emary

Take a look at these equations. Each person (observation) in the sample 
has their own individual weight and height; that makes sense. But why does 
each person have their own value for e, the stochastic error term? The answer 
is that random events (like those expressed by e) impact people differently, 
so each person needs to have their own value of e in order to reflect these 
differences. In contrast, note that the subscripts of the regression coefficients 
(the βs) don’t change from person to person but instead apply to the entire 
sample. We’ll learn more about this equation in Section 1.4.

As a second example, let’s look at an equation with more than one inde-
pendent variable. Suppose we want to understand how wages are determined 
in a particular field, perhaps because we think that there might be discrimi-
nation in that field. The wage of a worker would be the dependent variable 
(WAGE), but what would be good independent variables? What variables 
would influence a person’s wage in a given field? Well, there are literally doz-
ens of reasonable possibilities, but three of the most common are the work 
experience (EXP), education (EDU), and gender (GEND) of the worker, so 
let’s use these. To create a regression equation with these variables, we’d rede-
fine the variables in Equation 1.8 to meet our definitions:

Y  = WAGE = the wage of the worker
X1 = EXP = the years of work experience of the worker
X2 = EDU = the years of education beyond high school of the worker
X3 = GEND = the gender of the worker (1 = male and 0 = female)
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The last variable, GEND, is unusual in that it can take on only two values, 
0 and 1; this kind of variable is called a dummy variable, and it’s extremely 
useful when we want to quantify a concept that is inherently qualitative (like 
gender). We’ll discuss dummy variables in more depth in Sections 3.3 and 7.4.

If we substitute these definitions into Equation 1.8, we get:

 WAGEi = β0 + β1EXPi + β2EDUi + β3GENDi + ei (1.10)

Equation 1.10 specifies that a worker’s wage is a function of the experience, 
education, and gender of that worker. In such an equation, what would the 
meaning of β1 be? Some readers will guess that β1 measures the amount by 
which the average wage increases for an additional year of experience, but 
such a guess would miss the fact that there are two other independent vari-
ables in the equation that also explain wages. The correct answer is that β1

gives us the impact on wages of a one-year increase in experience, holding con-
stant education and gender. This is a significant difference, because it allows 
researchers to control for specific complicating factors without running con-
trolled experiments.

Before we conclude this section, it’s worth noting that the general multi-
variate regression model with K independent variables is written as:

 Yi = β0 + β1X1i + β2X2i + g + βKXKi + ei (1.11)

where i goes from 1 to N and indicates the observation number.
If the sample consists of a series of years or months (called a time series), 

then the subscript i is usually replaced with a t to denote time.8

1.3  The Estimated Regression Equation

Once a specific equation has been decided upon, it must be quantified. This 
quantified version of the theoretical regression equation is called the esti-
mated regression equation and is obtained from a sample of data for actual 
Xs and Ys. Although the theoretical equation is purely abstract in nature:

 Yi = β0 + β1Xi + ei (1.12)

8. The order of the subscripts doesn’t matter as long as the appropriate definitions are presented. 
We prefer to list the variable number first 1X1i2 because we think it’s easier for a beginning 
econometrician to understand. However, as the reader moves on to matrix algebra and com-
puter spreadsheets, it will become common to list the observation number first, as in Xi1. 
Often the observational subscript is deleted, and the reader is expected to understand that the 
equation holds for each observation in the sample.
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the estimated regression equation has actual numbers in it:

 YN i = 103.40 + 6.38Xi (1.13)

The observed, real-world values of X and Y are used to calculate the coef-
ficient estimates 103.40 and 6.38. These estimates are used to determine YN  
(read as “Y-hat”), the estimated or fitted value of Y.

Let’s look at the differences between a theoretical regression equation and 
an estimated regression equation. First, the theoretical regression coefficients 
β0 and β1 in Equation 1.12 have been replaced with estimates of those coef-
ficients like 103.40 and 6.38 in Equation 1.13. We can’t actually observe the 
values of the true9 regression coefficients, so instead we calculate estimates 
of those coefficients from the data. The estimated regression coefficients, 
more generally denoted by βN 0 and βN 1 (read as “beta-hats”), are empirical best 
guesses of the true regression coefficients and are obtained from data from a 
sample of the Ys and Xs. The expression

 YN i = βN 0 + βN 1Xi (1.14)

is the empirical counterpart of the theoretical regression Equation 1.12. The 
calculated estimates in Equation 1.13 are examples of the estimated regression 
coefficients βN 0 and βN 1. For each sample we calculate a different set of esti-
mated regression coefficients.

YN i is the estimated value of Yi, and it represents the value of Y calculated 
from the estimated regression equation for the ith observation. As such, YN i is 
our prediction of E1Yi � Xi2 from the regression equation. The closer these YN s 
are to the Ys in the sample, the better the fit of the equation. (The word fit 
is used here much as it would be used to describe how well clothes fit.)

The difference between the estimated value of the dependent variable 1YN i2  
and the actual value of the dependent variable 1Yi2 is defined as the  
residual 1ei2:

9. Our use of the word “true” throughout the text should be taken with a grain of salt. Many 
philosophers argue that the concept of truth is useful only relative to the scientific research 
program in question. Many economists agree, pointing out that what is true for one genera-
tion may well be false for another. To us, the true coefficient is the one that you’d obtain if you 
could run a regression on the entire relevant population. Thus, readers who so desire can substi-
tute the phrase “population coefficient” for “true coefficient” with no loss in meaning.

 ei = Yi - YN i (1.15)
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Note the distinction between the residual in Equation 1.15 and the error 
term:

 ei = Yi - E1Yi � Xi2 (1.16)

The residual is the difference between the observed Y and the estimated regres-
sion line 1YN 2, while the error term is the difference between the observed 
Y and the true regression equation (the expected value of Y). Note that the 
error term is a theoretical concept that can never be observed, but the residual 
is a real-world value that is calculated for each observation every time a 
regression is run. The residual can be thought of as an estimate of the error 
term, and e could have been denoted as eN. Most regression techniques not 
only calculate the residuals but also attempt to compute values of βN 0 and βN 1 
that keep the residuals as low as possible. The smaller the residuals, the better 
the fit, and the closer the YN s will be to the Ys.

All these concepts are shown in Figure 1.3. The 1X, Y2 pairs are shown 
as points on the diagram, and both the true regression equation (which 

g6

Y

Y6

0 X6

Yi = d0 + d1Xi
(Estimated Line)

E(Yi|Xi) = d0 + d1Xi
(True Line)

X

d0

Y6

e6
e6

 d0

N

N

N N N

Figure 1.3 true and estimated regression lines

The true relationship between X and Y (the solid line) typically cannot be observed, but 
the estimated regression line (the dashed line) can. The difference between an observed 
data point (for example, i = 6) and the true line is the value of the stochastic error  
term 1e62. The difference between the observed Y6 and the estimated value from the  
regression line 1YN62 is the value of the residual for this observation, e6.
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17 A simple exAmple Of regressiOn AnAlysis

cannot be seen in real applications) and an estimated regression equation are 
included. Notice that the estimated equation is close to but not equivalent to 
the true line. This is a typical result.

In Figure 1.3, YN6, the computed value of Y for the sixth observation, lies on 
the estimated (dashed) line, and it differs from Y6, the actual observed value 
of Y for the sixth observation. The difference between the observed and esti-
mated values is the residual, denoted by e6. In addition, although we usually 
would not be able to see an observation of the error term, we have drawn the 
assumed true regression line here (the solid line) to see the sixth observation 
of the error term, e6, which is the difference between the true line and the 
observed value of Y, Y6.

The following table summarizes the notation used in the true and esti-
mated regression equations:

True Regression Equation Estimated Regression Equation

β0 βN 0

β1 βN 1
ei ei

The estimated regression model can be extended to more than one inde-
pendent variable by adding the additional Xs to the right side of the equation. 
The multivariate estimated regression counterpart of Equation 1.14 is:

 YN i = βN 0 + βN 1X1i + βN 2X2i + g+  βN KXKi (1.17)

Diagrams of such multivariate equations, by the way, are not possible for 
more than two independent variables and are quite awkward for exactly two 
independent variables.

1.4  A Simple Example of Regression Analysis

Let’s look at a fairly simple example of regression analysis. Suppose you’ve 
accepted a summer job as a weight guesser at the local amusement park, 
Magic Hill. Customers pay two dollars each, which you get to keep if you 
guess their weight within 10 pounds. If you miss by more than 10 pounds, 
then you have to return the two dollars and give the customer a small prize 
that you buy from Magic Hill for three dollars each. Luckily, the friendly 
managers of Magic Hill have arranged a number of marks on the wall 
behind the customer so that you are capable of measuring the customer’s 
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height accurately. Unfortunately, there is a five-foot wall between you and 
the customer, so you can tell little about the person except for height and 
(usually) gender.

On your first day on the job, you do so poorly that you work all day and 
somehow manage to lose two dollars, so on the second day you decide to 
collect data to run a regression to estimate the relationship between weight 
and height. Since most of the participants are male, you decide to limit your 
sample to males. You hypothesize the following theoretical relationship:

 +
 Yi = β0 + β1Xi + ei (1.18)

where: Yi  = the weight (in pounds) of the ith customer
 Xi = the height (in inches above 5 feet) of the ith customer
 ei  = the value of the stochastic error term for the ith customer

In this case, the sign of the theoretical relationship between height and 
weight is believed to be positive (signified by the positive sign above β1 in 
the general theoretical equation), but you must quantify that relationship in 
order to estimate weights when given heights. To do this, you need to collect 
a data set, and you need to apply regression analysis to the data.

The next day you collect the data summarized in Table 1.1 and run your 
regression on the Magic Hill computer, obtaining the following estimates:

 βN 0 = 103.40  βN 1 = 6.38

This means that the equation

Estimated weight = 103.40 + 6.38 # Height (inches above five feet) (1.19)

is worth trying as an alternative to just guessing the weights of your customers. 
Such an equation estimates weight with a constant base of 103.40 pounds 
and adds 6.38 pounds for every inch of height over 5 feet. Note that the sign 
of βN 1 is positive, as you expected.

How well does the equation work? To answer this question, you need to 
calculate the residuals (Yi minus YN i) from Equation 1.19 to see how many 
were greater than ten. As can be seen in the last column in Table 1.1, if you 
had applied the equation to these 20 people, you wouldn’t exactly have got-
ten rich, but at least you would have earned $25.00 instead of losing $2.00. 
Figure 1.4 shows not only Equation 1.19 but also the weight and height data 
for all 20 customers used as the sample. With a different group of people, the 
results would of course be different.

Equation 1.19 would probably help a beginning weight guesser, but it 
could be improved by adding other variables or by collecting a larger sample. 
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Such an equation is realistic, though, because it’s likely that every successful 
weight guesser uses an equation like this without consciously thinking about 
that concept.

Our goal with this equation was to quantify the theoretical weight/height 
equation, Equation 1.18, by collecting data (Table 1.1) and calculating an 
estimated regression, Equation 1.19. Although the true equation, like obser-
vations of the stochastic error term, can never be known, we were able to 
come up with an estimated equation that had the sign we expected for βN 1 
and that helped us in our job. Before you decide to quit school or your job 
and try to make your living guessing weights at Magic Hill, there is quite a bit 
more to learn about regression analysis, so we’d better move on.

Table 1.1 data for and results of the weight-guessing equation

Observation 
i  

(1)

Height  
Above 5′ Xi

(2)

Weight  
Yi  
(3)

Predicted  
Weight YNi  

(4)

Residual  
ei 
(5)

$ Gain or 
Loss  

(6)

 1  5.0 140.0 135.3 4.7 +2.00
 2  9.0 157.0 160.8 -3.8 +2.00
 3 13.0 205.0 186.3 18.7 -3.00
 4 12.0 198.0 179.9 18.1 -3.00
 5 10.0 162.0 167.2 -5.2 +2.00
 6 11.0 174.0 173.6 0.4 +2.00
 7  8.0 150.0 154.4 -4.4 +2.00
 8  9.0 165.0 160.8 4.2 +2.00
 9 10.0 170.0 167.2 2.8 +2.00
10 12.0 180.0 179.9 0.1 +2.00
11 11.0 170.0 173.6 -3.6 +2.00
12  9.0 162.0 160.8 1.2 +2.00
13 10.0 165.0 167.2 -2.2 +2.00
14 12.0 180.0 179.9 0.1 +2.00
15  8.0 160.0 154.4 5.6 +2.00
16  9.0 155.0 160.8 -5.8 +2.00
17 10.0 165.0 167.2 -2.2 +2.00
18 15.0 190.0 199.1 -9.1 +2.00
19 13.0 185.0 186.3 -1.3 +2.00
20 11.0 155.0 173.6 -18.6 -3.00

tOtAl = $25.00

note: this data set, and every other data set in the text, is available on the text’s website in  
four formats. datafile = htwt1
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1.5  Using Regression to Explain Housing Prices

As much fun as guessing weights at an amusement park might be, it’s hardly 
a typical example of the use of regression analysis. For every regression run on 
such an off-the-wall topic, there are literally hundreds run to describe the reac-
tion of GDP to an increase in the money supply, to test an economic theory 
with new data, or to forecast the effect of a price change on a firm’s sales.

As a more realistic example, let’s look at a model of housing prices. The 
purchase of a house is probably the most important financial decision in an 
individual’s life, and one of the key elements in that decision is an appraisal of 
the house’s value. If you overvalue the house, you can lose thousands of dollars 
by paying too much; if you undervalue the house, someone might outbid you.

All this wouldn’t be much of a problem if houses were homogeneous 
products, like corn or gold, that have generally known market prices with 
which to compare a particular asking price. Such is hardly the case in the 
real estate market. Consequently, an important element of every housing 
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Figure 1.4 A weight-guessing equation

If we plot the data from the weight-guessing example and include the estimated regres-
sion line, we can see that the estimated Yns come fairly close to the observed Ys for all 
but three observations. Find a male friend’s height and weight on the graph. How well 
does the regression equation work?
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purchase is an appraisal of the market value of the house, and many real 
estate appraisers use regression analysis to help them in their work.

Suppose your family is about to buy a house, but you’re convinced that 
the owner is asking too much money. The owner says that the asking price 
of $230,000 is fair because a larger house next door sold for $230,000 about 
a year ago. You’re not sure it’s reasonable to compare the prices of different-
sized houses that were purchased at different times. What can you do to help 
decide whether to pay the $230,000?

Since you’re taking an econometrics class, you decide to collect data on all 
local houses that were sold within the last few weeks and to build a regres-
sion model of the sales prices of the houses as a function of their sizes.10 Such 
a data set is called cross-sectional because all of the observations are from 
the same point in time and represent different individual economic entities 
(like countries or, in this case, houses) from that same point in time.

To measure the impact of size on price, you include the size of the house 
as an independent variable in a regression equation that has the price of that 
house as the dependent variable. You expect a positive sign for the coefficient 
of size, since big houses cost more to build and tend to be more desirable 
than small ones. Thus the theoretical model is:

 +
 PRICEi = β0 + β1SIZEi + ei (1.20)

where: PRICEi = the price (in thousands of $) of the ith house
 SIZEi   = the size (in square feet) of that house
 ei         = the value of the stochastic error term for that house

You collect the records of all recent real estate transactions, find that 43 
local houses were sold within the last 4 weeks, and estimate the following 
regression of those 43 observations:

 PRICEi = 40.0 + 0.138SIZEi (1.21)

What do these estimated coefficients mean? The most important coefficient 
is βN 1 = 0.138, since the reason for the regression is to find out the impact of 
size on price. This coefficient means that if size increases by 1 square foot, 

h

10. It’s unusual for an economist to build a model of price without including some measure of 
quantity on the right-hand side. Such models of the price of a good as a function of the attributes 
of that good are called hedonic models and will be discussed in greater depth in Section 11.8. 
The interested reader is encouraged to skim the first few paragraphs of that section before con-
tinuing on with this example.
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price will increase by 0.138 thousand dollars ($138). βN 1 thus measures the 
change in PRICEi associated with a one-unit increase in SIZEi. It’s the slope of 
the regression line in a graph like Figure 1.5.

What does βN 0 = 40.0 mean? βN 0 is the estimate of the constant or intercept 
term. In our equation, it means that price equals 40.0 when size equals zero. 
As can be seen in Figure 1.5, the estimated regression line intersects the price 
axis at 40.0. While it might be tempting to say that the average price of a 
vacant lot is $40,000, such a conclusion would be unjustified for a number 
of reasons, which will be discussed in Section 7.1. It’s much safer either to 
interpret βN 0 = 40.0 as nothing more than the value of the estimated regres-
sion when Si = 0, or to not interpret βN 0 at all.

What does βN 1 = 0.138 mean? βN 1 is the estimate of the coefficient of SIZE 
in Equation 1.20, and as such it’s also an estimate of the slope of the line in 
Figure 1.5. It implies that an increase in the size of a house by one square 
foot will cause the estimated price of the house to go up by 0.138 thousand 
dollars or $138. It’s a good habit to analyze estimated slope coefficients to 
see whether they make sense. The positive sign of βN 1 certainly is what we 
expected, but what about the magnitude of the coefficient? Whenever you 
interpret a coefficient, be sure to take the units of measurement into consid-
eration. In this case, is $138 per square foot a plausible number? Well, it’s 

PRICEi

0
Size of the house (square feet)

Slope = .138
Intercept = 40.0

PRICE
(thousands of $)

PRICEi = 40.0 + 0.138SIZEi

SIZEi

Figure 1.5 A cross-sectional model of housing prices

A regression equation that has the price of a house as a function of the size of that 
house has an intercept of 40.0 and a slope of 0.138, using Equation 1.21.
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hard to know for sure, but it certainly is a lot more reasonable than $1.38 per 
square foot or $13,800 per square foot!

How can you use this estimated regression to help decide whether to pay 
$230,000 for the house? If you calculate a YN  (predicted price) for a house that 
is the same size (1,600 square feet) as the one you’re thinking of buying, you 
can then compare this YN  with the asking price of $230,000. To do this, substi-
tute 1600 for SIZEi in Equation 1.21, obtaining:

 PRICEi = 40.0 + 0.138116002 = 40.0 + 220.8 = 260.8

The house seems to be a good deal. The owner is asking “only” $230,000 
for a house when the size implies a price of $260,800! Perhaps your original 
feeling that the price was too high was a reaction to steep housing prices in 
general and not a reflection of this specific price.

On the other hand, perhaps the price of a house is influenced by more 
than just the size of the house. Such multivariate models are the heart of 
econometrics, and we’ll add more independent variables to Equation 1.21 
when we return to this housing price example in Section 11.8.

1.6  Summary

 1. Econometrics—literally, “economic measurement”—is a branch of 
economics that attempts to quantify theoretical relationships. Regres-
sion analysis is only one of the techniques used in econometrics, but 
it is by far the most frequently used.

 2. The major uses of econometrics are description, hypothesis testing, 
and forecasting. The specific econometric techniques employed may 
vary depending on the use of the research.

 3. While regression analysis specifies that a dependent variable is a func-
tion of one or more independent variables, regression analysis alone 
cannot prove or even imply causality.

 4. A stochastic error term must be added to all regression equations 
to account for variations in the dependent variable that are not  
explained completely by the independent variables. The components 
of this error term include:
a. omitted or left-out variables
b. measurement errors in the data
c. an underlying theoretical equation that has a different functional 

form (shape) than the regression equation
d. purely random and unpredictable events

h
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ExErcisEs

 5. An estimated regression equation is an approximation of the true 
equation that is obtained by using data from a sample of actual Ys 
and Xs. Since we can never know the true equation, econometric anal-
ysis focuses on this estimated regression equation and the estimates 
of the regression coefficients. The difference between a particular ob-
servation of the dependent variable and the value estimated from the 
regression equation is called the residual.

(The answers to the even-numbered exercises are in Appendix A.)

 1. Write the meaning of each of the following terms without referring to 
the book (or your notes), and compare your definition with the ver-
sion in the text for each:
a. constant or intercept (p. 7)
b. cross-sectional (p. 21)
c. dependent variable (p. 5)
d. estimated regression equation (p. 14)
e. expected value (p. 9)
f. independent (or explanatory) variable (p. 5)
g. linear (p. 8)
h. multivariate regression model (p. 12)
i. regression analysis (p. 5)
j. residual (p. 15)
k. slope coefficient (p. 7)
l. stochastic error term (p. 8)

 2. Use your own computer’s regression software and the weight (Y) 
and height (X) data from Table 1.1 to see if you can reproduce the 
estimates in Equation 1.19. There are two ways to load the data: You 
can type in the data yourself or you can download datafile HTWT1 
(in Stata, EViews, Excel, or ASCII formats) from the text’s website:  
http://www.pearsonhighered.com/studenmund. Once the datafile is 
loaded, run Y = f1X2, and your results should match Equation 1.19. 
Different programs require different commands to run a regression. 
For help in how to do this with Stata or EViews, either see the answer 
to this question in Appendix A or read Appendix 1.7.
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 3. Not all regression coefficients have positive expected signs. For 
example, a Sports Illustrated article by Jaime Diaz reported on a study 
of golfing putts of various lengths on the Professional Golfers’ 
Association (PGA) Tour.11 The article included data on the percentage 
of putts made 1Pi2 as a function of the length of the putt in feet 1Li2. 
Since the longer the putt, the less likely even a professional is to make 
it, we’d expect Li to have a negative coefficient in an equation explain-
ing Pi. Sure enough, if you estimate an equation on the data in the 
article, you obtain:

 PN i = 83.6 - 4.1Li (1.22)

a. Carefully write out the exact meaning of the coefficient of Li.
b. Suppose someone else took the data from the article and estimated:

 Pi = 83.6 - 4.1Li + ei

 Is this the same result as that of Equation 1.22? If so, what definition 
do you need to use to convert this equation back to Equation 1.22?

c. Use Equation 1.22 to determine the percent of the time you’d expect 
a PGA golfer to make a 10-foot putt. Does this seem realistic? How 
about a 1-foot putt or a 25-foot putt? Do these seem as realistic?

d. Your answer to part c should suggest that there’s a problem in  
applying a linear regression to these data. What is that problem?

 4. Return to the housing price model of Section 1.5 and consider the 
following equation:

 SIZEi = -290 + 3.62 PRICEi (1.23)

  where: SIZEi   = the size (in square feet) of the ith house
   PRICEi = the price (in thousands of $) of that house

a. Carefully explain the meaning of each of the estimated regression 
coefficients.

b. Suppose you’re told that this equation explains a significant por-
tion (more than 80 percent) of the variation in the size of a house. 
Have we shown that high housing prices cause houses to be large? 
If not, what have we shown?

c. What do you think would happen to the estimated coefficients of 
this equation if we had measured the price variable in dollars in-
stead of in thousands of dollars? Be specific.

h

11. Jaime Diaz, “Perils of Putting,” Sports Illustrated, April 3, 1989, pp. 76–79.
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 5. If an equation has more than one independent variable, we have to 
be careful when we interpret the regression coefficients of that equa-
tion. Think, for example, about how you might build an equation to 
explain the amount of money that different states spend per pupil on 
public education. The more income a state has, the more they prob-
ably spend on public schools, but the faster enrollment is growing, 
the less there would be to spend on each pupil. Thus, a reasonable 
equation for per pupil spending would include at least two variables: 
income and enrollment growth:

 Si = β0 + β1Yi + β2Gi + ei (1.24)

  where:  Si  =  educational dollars spent per public school student 
in the ith state

   Yi  = per capita income in the ith state (in dollars)
   Gi =  the percent growth of public school enrollment in 

the ith state

a. State the economic meaning of the coefficients of Y and G. (Hint: 
Remember to hold the impact of the other variable constant.)

b. If we were to estimate Equation 1.24, what signs would you expect 
the coefficients of Y and G to have? Why?

c. Silva and Sonstelie estimated a cross-sectional model of per student 
spending by state that is very similar to Equation 1.24:12

 SN i = -183 + 0.1422Yi - 5926Gi (1.25)
 N = 49

 Do these estimated coefficients correspond to your expectations? 
Explain Equation 1.25 in common sense terms.

d. The authors measured G as a decimal, so if a state had a 10 percent 
growth in enrollment, then G equaled .10. What would Equation 
1.25 have looked like if the authors had measured G in percentage 
points, so that if a state had 10 percent growth, then G would have 
equaled 10? (Hint: Write out the actual numbers for the estimated 
coefficients.)

 6. Your friend has an on-campus job making telephone calls to alumni 
asking for donations to your college’s annual fund, and she wonders 

12. Fabio Silva and Jon Sonstelie, “Did Serrano Cause a Decline in School Spending?” National 
Tax Review, Vol. 48, No. 2, pp. 199–215. The authors also included the tax price for spending per 
pupil in the ith state as a variable.
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whether her calling is making any difference. In an attempt to mea-
sure the impact of student calls on fund raising, she collects data from 
50 alums and estimates the following equation:

 GIFTi = 2.29 + 0.001INCOMEi + 4.62CALLSi (1.26)

  where:  GIFTi =  the 2016 annual fund donation (in dollars) 
from the ith alum

   INCOMEi =  the 2016 estimated income (in dollars) of the 
ith alum

   CALLSi =  the # of calls to the ith alum asking for a 
donation in 2016

a. Carefully explain the meaning of each estimated coefficient. Are 
the estimated signs what you expected?

b. Why is the left-hand variable in your friend’s equation GIFTi and 
not GIFTi?

c. Your friend didn’t include the stochastic error term in the estimated 
equation. Was this a mistake? Why or why not?

d. Suppose that your friend decides to change the units of INCOME 
from “dollars” to “thousands of dollars.” What will happen to the 
estimated coefficients of the equation? Be specific.

e. If you could add one more variable to this equation, what would it 
be? Explain.

 7. Let’s return to the wage determination example of Section 1.2. In that 
example, we built a model of the wage of the ith worker in a particu-
lar field as a function of the work experience, education, and gender 
of that worker:

 WAGEi = β0 + β1EXPi + β2EDUi + β3GENDi + ei (1.10)

  where: Yi   = WAGEi = the wage of the ith worker
    X1i = EXPi = the years of work experience of the ith worker
    X2i = EDUi = the years of education beyond high school 
     of the ith worker
    X3i = GENDi =  the gender of the ith worker (1 = male and
     0 = female)

a. What is the real-world meaning of β2? (Hint: If you’re unsure where 
to start, review Section 1.2.)

b. What is the real-world meaning of β3? (Hint: Remember that GEND 
is a dummy variable.)

h

h
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c. Suppose that you wanted to add a variable to this equation to mea-
sure whether there might be discrimination against people of color. 
How would you define such a variable? Be specific.

d. Suppose that you had the opportunity to add another variable to 
the equation. Which of the following possibilities would seem 
best? Explain your answer.

 i. the age of the ith worker
 ii. the number of jobs in this field
 iii. the average wage in this field
 iv.  the number of “employee of the month” awards won by the ith 

worker
 v. the number of children of the ith worker

 8. Have you heard of “RateMyProfessors.com”? On this website, students 
evaluate a professor’s overall teaching ability and a variety of other 
attributes. The website then summarizes these student-submitted 
ratings for the benefit of any student considering taking a class from 
the professor.

   Two of the most interesting attributes that the website tracks are how 
“easy” the professor is (in terms of workload and grading), and how 
“hot” the professor is (presumably in terms of physical attractiveness). 
An article by Otto and colleagues13 indicates that being “hot” improves 
a professor’s rating more than being “easy.” To investigate these ideas 
ourselves, we created the following equation for RateMyProfessors.com:

 RATINGi = β0 + β1EASEi + β2HOTi + ei (1.27)

  where: RATINGi = the overall rating (5 = best) of the ith professor
    EASEi  =  the easiness rating (5 = easiest) of the ith 

professor
    HOTi   =  1 if the ith professor is considered “hot,” 0 

otherwise

  To estimate Equation 1.27, we need data, and Table 1.2 contains 
data for these variables from 25 randomly chosen professors on 
RateMyProfessors.com. If we estimate Equation 1.27 with the data in 
Table 1.2, we obtain:

 RATINGi = 3.23 + 0.01EASEi + 0.59HOTi (1.28)

®

13. James Otto, Douglas Sanford, and Douglas Ross, “Does RateMyProfessors.com Really Rate 
My Professor?” Assessment and Evaluation in Higher Education, August 2008, pp. 355–368.
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29exercises

a. Take a look at Equation 1.28. Do the estimated coefficients support 
our expectations? Explain.

b. See if you can reproduce the results in Equation 1.28 on your 
own. To do this, take the data in Table 1.2 and use Stata or your 
own regression program to estimate the coefficients from these 
data. If you do everything correctly, you should be able to verify 
the estimates in Equation 1.28. (If you’re not sure how to get 
started on this question, either take a look at the answer to Exer-
cise 2 in Appendix A or read Appendix 1.7.)

Table 1.2 ratemyprofessors.com ratings

Observation RATING EASE HOT

 1 2.8 3.7 0
 2 4.3 4.1 1
 3 4.0 2.8 1
 4 3.0 3.0 0
 5 4.3 2.4 0
 6 2.7 2.7 0
 7 3.0 3.3 0
 8 3.7 2.7 0
 9 3.9 3.0 1
10 2.7 3.2 0
11 4.2 1.9 1
12 1.9 4.8 0
13 3.5 2.4 1
14 2.1 2.5 0
15 2.0 2.7 1
16 3.8 1.6 0
17 4.1 2.4 0
18 5.0 3.1 1
19 1.2 1.6 0
20 3.7 3.1 0
21 3.6 3.0 0
22 3.3 2.1 0
23 3.2 2.5 0
24 4.8 3.3 0
25 4.6 3.0 0

datafile = rAte1
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c. This model includes two independent variables. Does it make 
sense to think that the teaching rating of a professor depends on 
just these two variables? What other variable(s) do you think might 
be important?

d. Suppose that you were able to add your suggested variable(s) to 
Equation 1.28. What do you think would happen to the coeffi-
cients of EASE and HOT when you added the variable(s)? Would 
you expect them to change? Would you expect them to remain the 
same? Explain.

e. (optional) Go to the RateMyProfessors.com website, choose 25 obser-
vations at random, and estimate your own version of Equation 1.27. 
Now compare your regression results to those in Equation 1.28.  
Do your estimated coefficients have the same signs as those in 
Equation 1.28? Are your estimated coefficients exactly the same as 
those in Equation 1.28? Why or why not?

1.7  appendix: Using Stata

Using Econometrics is about, well, using econometrics, and it doesn’t take long 
to realize that using econometrics requires software. The powerful and user-
friendly econometric software package referred to in the text is Stata14, and 
the purpose of this appendix15 is to give you a brief introduction to Stata.

For most people (including me!), learning new computer software 
involves some pain. Our goal in this Appendix is to take away as much of 
that pain as possible. We hope to give you a head start with Stata and also 
convince you that it’s worth your time to check out the complete “Using 
Stata” document found online at the Using Econometrics student companion 
website (http://www.pearsonhighered.com/studenmund). That free docu-
ment (yes, free!) is designed to get you up and running in Stata with as little 
pain as possible. It shows in plain English and clear pictures how to use all 
the econometric techniques you’ll encounter in the text (and more!)

How do you get Stata? There are a number of ways. Your college or uni-
versity may provide Stata access in official computer labs. If it doesn’t (or if 
you want a personal copy), you can buy and download Stata directly (http://
www.stata.com). Fortunately, reasonable student pricing is available.

14. Other econometric software programs that you might encounter include EViews, SAS, R, 
and SPSS. 

15. Written by John Perry, Centre College. Used with permission.
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With access to Stata, go ahead and “open” it as you would any program on 
your computer (like Word, Excel, etc.). When you open Stata on a PC, you 
should see something like this:

Stata also runs on a Mac, and while it looks slightly different, the com-
mands and functionality are almost the same as on a PC.

Let’s talk about what you see. There are five “windows” within Stata. The 
biggest one, squarely in the middle of the screen, is the “Results” window. 
Nicely, it shows you the results of what you tell Stata to do.

At the top left is the “Review” window. This window shows a history of all 
the commands you have given Stata. The top right is where the variables in 
your dataset will show up and the bottom right is where you’ll see properties 
of the variables.

The bottom, center window is the “Command” window. As the name sug-
gests, this is where you tell Stata what to do, where you actually “program.” 
(Don’t panic! You can work in Stata by typing commands one at a time or 
you can roll all your comments up into a single program—called in Stata 
language a “do-file.” The full “Using Stata” document covers do-files.)
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With Stata open, we should move along and open a dataset. In Section 1.4, 
you met a dataset from Magic Hill amusement park named HTWT1.dta (“.dta” 
is the format of a Stata dataset much like “docx” is the format for a Microsoft 
Word document). It contained the height and weight of 20 people where:

Yi  = weight (in pounds) of the ith customer
Xi = height (in inches above 5 feet) of the ith customer

You can (and should at this point) download and save the dataset to your 
computer from the student companion website. After doing that, to open the 
dataset, go to the top left in Stata and click on the folder icon. Next, you’ll be 
guided to find where you saved HTWT1.dta. Highlight it and click “open.” This 
is similar to how you’d open a file in any other software (like Word, Excel, etc.). 
You should see something like this (this time we used Stata on a Mac):

1

2

3

Notice that what you commanded Stata to do—to open HTWT1.dta—is 
recorded in the Results window (indicated by arrow 1). In Stata, “use” means 
open. The “use” statement is followed by the pathname (in quotes) where 
the file is saved on your computer (in my case “/Volumes/ECONOMICS/
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Econometrics/HTWT1.dta”). This command is also recorded in the Review 
window and indicated by arrow 2.

At the top right, signaled by arrow 3, you see that you have two variables 
in your Variables window (X and Y). This means you now have data in Stata.

Things are about to get exciting! With our data open in Stata we’re now 
in a position to replicate Equation 1.19. To do so, type “reg Y X” into the 
Command window in Stata and hit enter.

The “reg” command, which is short for “regress,” tells Stata to perform a 
regression. Directly after “reg,” insert the dependent variable (Y in our case). 
The dependent variable is followed by the model’s independent variables. 
Equation 1.19 has one independent variable named X. Note that Stata is case 
sensitive. If you type “y” when the variable’s name is “Y,” Stata will yell.

After giving the “reg Y X” command, you should see something like this:

4

5

6

What you see in the Results window above could easily overwhelm a 
person. For now, focus on where the three arrows direct. Arrow 4 points to 
the command that had Stata produce the estimation. Arrow 5 points to the 
column that lists the variables in the regression: Y, X, and something called 
“_cons”. That “something” is the model’s intercept term, otherwise known  
as β0.
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Arrow 6 points to the “Coef.” column, which reports the estimated coef-
ficients. The first number in the Coef. column is 6.377093. That is βN 1, the 
coefficient estimate for X, and matches the 6.38 (rounded) of Equation 1.19. 
Moving down the Coef. column and next to the _cons is 103.3971. That is βN 0, 
the estimate of the intercept, which rounds to 103.40.

And with that, you’ve estimated your first regression in Stata! Keep in 
mind, however, that this short appendix is meant only to help get you started 
in Stata. The full “Using Stata” document will show you much more—while 
trying to minimize the pain.
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2.1 Estimating Single-Independent-Variable Models with OLS

2.2 Estimating Multivariate Regression Models with OLS

2.3 Evaluating the Quality of a Regression Equation

2.4 Describing the Overall Fit of the Estimated Model

2.5 An Example of the Misuse of R  

2

2.6 Summary and Exercises

2.7 Appendix: Econometric Lab #1

Ordinary Least Squares

The bread and butter of regression analysis is the estimation of the coef-
ficients of econometric models using a technique called Ordinary Least 
Squares (OLS). The first two sections of this chapter summarize the reason-
ing behind and the mechanics of OLS. Regression users rely on computers 
to do the actual OLS calculations, so the emphasis here is on understanding 
what OLS attempts to do and how it goes about doing it.

How can you tell a good equation from a bad one once it has been esti-
mated? There are a number of useful criteria, including the extent to which 
the estimated equation fits the actual data. A focus on fit is not without per-
ils, however, so we share an example of the misuse of this criterion.

The chapter concludes with a new kind of learning tool that we call an 
econometric lab.

2.1   Estimating Single-Independent-Variable  
Models with OLS

The purpose of regression analysis is to take a purely theoretical equation like:

 Yi = β0 + β1Xi + ei (2.1)

Chapter 2
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and use a set of data to create an estimated equation like:

 Yni = βn 0 + βn 1Xi (2.2)

where each “hat” indicates a sample estimate of the true population value. 
(In the case of Y, the “true population value” is E3Y ƒ  X4.) The purpose of the 
estimation technique is to obtain numerical values for the coefficients of an 
otherwise completely theoretical regression equation.

The most widely used method of obtaining these estimates is Ordinary Least 
Squares (OLS), which has become so standard that its estimates are presented 
as a point of reference even when results from other estimation techniques are 
used. Ordinary Least Squares (OLS) is a regression estimation technique 
that calculates the βns so as to minimize the sum of the squared residuals, thus:1

 OLS minimizes aN
i = 1

e 

2
i  1i = 1, 2, . . . , N2 (2.3)

Since these residuals (eis) are the differences between the actual Ys and the 
estimated Ys produced by the regression (the Yns in Equation 2.2), Equation 2.3 
is equivalent to saying that OLS minimizes a 1Yi - Yni22.

Why Use Ordinary Least Squares?

Although OLS is the most-used regression estimation technique, it’s not the 
only one. Indeed, econometricians have developed what seem like zillions of 
different estimation techniques, a number of which we’ll discuss later in this 
text.

There are at least three important reasons for using OLS to estimate 
regression models:

1. OLS is relatively easy to use.

2. The goal of minimizing a e 2
i is quite appropriate from a theoretical 

point of view.

3. OLS estimates have a number of useful characteristics.

1. The summation symbol, a , indicates that all terms to its right should be added (or summed)  
over the range of the i values attached to the bottom and top of the symbol. In Equation 2.3, for 
example, this would mean adding up e2

i  for all integer values between 1 and N:

aN
i = 1

e2
i = e2

1 + e2
2 + g + e2

N

Often the a  notation is simply written as a 

i
, and it is assumed that the summation is over all 

observations from i = 1 to i = N. Sometimes, the i is omitted entirely and the same assump-
tion is made implicitly.
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The first reason for using OLS is that it’s the simplest of all econometric 
estimation techniques. Most other techniques involve complicated nonlin-
ear formulas or iterative procedures, many of which are extensions of OLS 
itself. In contrast, OLS estimates are simple enough that, if you had to, you 
could calculate them without using a computer or a calculator (for a single-
independent-variable model). Indeed, in the “dark ages” before computers 
and calculators, econometricians calculated OLS estimates by hand!

The second reason for using OLS is that minimizing the summed, squared 
residuals is a reasonable goal for an estimation technique. To see this, recall 
that the residual measures how close the estimated regression equation 
comes to the actual observed data:

 ei = Yi - Yni  1i = 1, 2, . . ., N2 (1.15)

Since it’s reasonable to want our estimated regression equation to be as close 
as possible to the observed data, you might think that you’d want to mini-
mize these residuals. The main problem with simply totaling the residuals is 
that ei can be negative as well as positive. Thus, negative and positive residu-
als might cancel each other out, allowing a wildly inaccurate equation to 
have a very low a ei. For example, if Y = 100,000 for two consecutive obser-
vations and if your equation predicts 1.1 million and -900,000, respectively, 
your residuals will be +1 million and -1 million, which add up to zero!

We could get around this problem by minimizing the sum of the abso-
lute values of the residuals, but absolute values are difficult to work with 
mathematically. Luckily, minimizing the summed squared residuals does the 
job. Squared functions pose no unusual mathematical difficulties in terms 
of manipulations, and the technique avoids canceling positive and negative 
residuals because squared terms are always positive.

The final reason for using OLS is that its estimates have at least two useful 
properties:2

1. The sum of the residuals is exactly zero.

2. OLS can be shown to be the “best” estimator possible under a set of 
specific assumptions. We’ll define “best” in Chapter 4.

An estimator is a mathematical technique that is applied to a sample 
of data to produce a real-world numerical estimate of the true population 
regression coefficient (or other parameters). Thus, OLS is an estimator, and a 
βn  produced by OLS is an estimate.

2. These properties, and indeed all the properties of OLS that we discuss in this book, are true as 
long as a constant term is included in the regression equation. For more on this, see Section 7.1.
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how Does OLS Work?

How would OLS estimate a single-independent-variable regression model 
like Equation 2.1?

 Yi = β0 + β1Xi + ei (2.1)

OLS selects those estimates of β0 and β1 that minimize the squared residuals, 
summed over all the sample data points.

For an equation with just one independent variable, these coefficients are:3

 βn 1 =
aN
i = 1

31Xi - X2 1Yi - Y24

aN
i = 1

1Xi - X22

 (2.4)

and, given this estimate of β1,

 βn0 = Y - βn 1X (2.5)

where X = the mean of X, or aXi/N, and Y = the mean of Y, or aYi/N. 
Note that for each different data set, we’ll get different estimates of β1 and β0, 
depending on the sample.

3. Since

aN
i = 1

e2
i = aN

i = 1
 1Yi - Yni22

and Yni = βn0 + βnX1i, OLS actually minimizes

a
i

e2
i = a

i
 1Yi - βn0 - βn1Xi22

by choosing the βns that do so. For those with a moderate grasp of calculus and algebra, the 
derivation of these equations is informative.
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An Illustration of OLS Estimation

The equations for calculating regression coefficients might seem a little for-
bidding, but it’s not hard to apply them yourself to data sets that have only 
a few observations and independent variables. Although you’ll usually want 
to use regression software packages to do your estimation, you’ll understand 
OLS better if you work through the following illustration.

To keep things simple, let’s attempt to estimate the regression coefficients 
of the height and weight data given in Section 1.4. For your convenience in 
following this illustration, the original data are reproduced in Table 2.1. As 
was noted previously, the formulas for OLS estimation for a regression equa-
tion with one independent variable are Equations 2.4 and 2.5:

 βn 1 =
aN
i = 1

31Xi - X2 1Yi - Y24

aN
i = 1

 1Xi - X22

 (2.4)

  βn 0 = Y - βn 1X (2.5)

If we undertake the calculations outlined in Table 2.1 and substitute them 
into Equations 2.4 and 2.5, we obtain these values:

βn 1 =
590.20
92.50

= 6.38

βn0 = 169.4 - 16.38 #  10.352 = 103.4

or

 Yni = 103.4 + 6.38Xi (2.6)

If you compare these estimates, you’ll find that the manually calculated coef-
ficient estimates are the same as the computer regression results summarized 
in Section 1.4.

As can be seen in Table 2.1, the sum of the Yns (column 8) equals the sum 
of the Ys (column 2), so the sum of the residuals (column 9) does indeed 
equal zero (except for rounding errors).
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2.2   Estimating Multivariate Regression Models  
with OLS

Let’s face it: only a few dependent variables can be explained fully by a single 
independent variable. A person’s weight, for example, is influenced by more 
than just that person’s height. What about bone structure, percent body fat, 
exercise habits, or diet?

As important as additional explanatory variables might seem to the 
height/weight example, there’s even more reason to include a variety of inde-
pendent variables in economic and business applications. Although the per 
capita quantity consumed of a product is certainly affected by price, that’s not 

Table 2.1  the Calculation of estimated regression Coefficients  
for the weight/height example

Raw Data Required Intermediate Calculations

i 
(1)

Yi 
(2)

Xi 
(3)

1Yi − Y 2  
(4)

1Xi − X 2  
(5)

1Xi − X 22 
(6)

1Xi − X 2  1Yi − Y 2  
(7)

Yni 
(8)

ei = Yi − Yni 
(9)

  1  140  5 -29.40 -5.35 28.62 157.29  135.3    4.7
  2  157  9 -12.40 -1.35  1.82  16.74  160.8  -3.8
  3  205  13  35.60   2.65  7.02  94.34  186.3   18.7
  4  198  12  28.60   1.65  2.72  47.19  179.9   18.1
  5  162  10   -7.40 -0.35  0.12  2.59  167.2  -5.2
  6  174  11    4.60   0.65  0.42  2.99  173.5    0.5
  7  150  8 -19.40 -2.35  5.52  45.59  154.4  -4.4
  8  165  9  -4.40 -1.35  1.82  5.94  160.8    4.2
  9  170  10    0.60 -0.35  0.12 -0.21  167.2    2.8
10  180  12  10.60   1.65  2.72  17.49  179.9    0.1
11  170  11    0.60   0.65  0.42  0.39  173.5  -3.5
12  162  9   -7.40 -1.35  1.82  9.99  160.8    1.2
13  165  10   -4.40 -0.35  0.12  1.54  167.2  -2.2
14  180  12  10.60   1.65  2.72  17.49  179.9    0.1
15  160  8   -9.40 -2.35  5.52  22.09  154.4    5.6
16  155  9 -14.40 -1.35  1.82  19.44  160.8  -5.8
17  165  10   -4.40 -0.35  0.12  1.54  167.2  -2.2
18  190  15    20.60   4.65 21.62  95.79  199.1  -9.1
19  185  13    15.60   2.65  7.02  41.34  186.3  -1.3
20  155  11 -14.40   0.65  0.42  -9.36  173.5 -18.5

sum 3388 207   0.0   0.0 92.50 590.20 3388.0  -0.0
mean 169.4 10.35   0.0   0.0  169.4    0.0
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the whole story. Advertising, per capita income, the prices of substitutes, the 
influence of foreign markets, the quality of customer service, possible fads, 
and changing tastes all are important in real-world models. As a result, it’s 
vital to move from single-independent-variable regressions to multivariate 
regression models, or equations with more than one independent variable.

the Meaning of Multivariate Regression Coefficients

The general multivariate regression model with K independent variables can 
be represented by Equation 1.11:

 Yi = β0 + β1X1i + β2X2i + g + βKXKi + ei (1.11)

where i, as before, goes from 1 to N and indicates the observation number. 
Thus, X1i indicates the ith observation of independent variable X1, while X2i 
indicates the ith observation of another independent variable, X2.

The biggest difference between a single-independent-variable regression 
model and a multivariate regression model is in the interpretation of the 
latter’s slope coefficients. These coefficients, often called partial regression 
coefficients, are defined to allow a researcher to distinguish the impact of one 
variable from that of other independent variables.

Specifically, a multivariate regression coefficient indicates the change 
in the dependent variable associated with a one-unit increase in the 
independent variable in question, holding constant the other independent 
variables in the equation.

This last italicized phrase is a key to understanding multiple regression 
(as multivariate regression is often called). The coefficient β1 measures the 
impact on Y of a one-unit increase in X1, holding constant X2, X3, . . . and 
XK but not holding constant any relevant variables that might have been 
omitted from the equation (e.g., XK + 1). The coefficient β0 is the value of Y 
when all the Xs and the error term equal zero. As you’ll learn in Section 7.1, 
you should always include a constant term in a regression equation, but you 
should not rely on estimates of β0 for inference.

As an example, let’s consider the following annual model of the per capita 
consumption of beef in the United States:

 CBt = 37.54 - 0.88Pt + 11.9Ydt (2.7)

9
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where: CBt =  the per capita consumption of beef in year t (in pounds per 
person)

Pt  = the price of beef in year t (in cents per pound)
Ydt  =  the per capita disposable income in year t (in thousands of 

dollars)

The estimated coefficient of income, 11.9, tells us that beef consumption will 
increase by 11.9 pounds per person if per capita disposable income goes up 
by $1,000, holding constant the price of beef. The ability to hold price con-
stant is crucial because we’d expect such a large increase in per capita income 
to stimulate demand, therefore pushing up prices and making it hard to dis-
tinguish the effect of the income increase from the effect of the price increase. 
The multivariate regression estimate allows us to focus on the impact of the 
income variable by holding the price variable constant. Note, however, that 
the equation does not hold constant other possible variables (like the price 
of a substitute) because these variables are not included in Equation 2.7.

Before we move on to the next section, let’s take the time to analyze the 
estimated coefficients of Equation 2.7 in a bit more depth. First, the coef-
ficient of P tells us the impact of a one-cent increase in the price of beef on 
the per capita consumption of beef, holding constant per capita income. 
Do you agree that the estimated coefficient has the sign that economic 
theory would predict? Second, think about how the estimated coefficients 
would change if we were to change the units of disposable income from 
“thousands of dollars” to “dollars.” The estimated equation would remain 
the same except that the coefficient of Yd would decrease from 11.9 to 
0.0119.

OLS Estimation of Multivariate Regression Models

The application of OLS to an equation with more than one independent 
variable is quite similar to its application to a single-independent-variable 
model. To see this, consider the estimation of the simplest possible multivari-
ate model, one with just two independent variables:

 Yi = β0 + β1X1i + β2X2i + ei (2.8)

The goal of OLS is to choose those βns that minimize the summed squared 
residuals. These residuals are now from a multivariate model, but they can be 
minimized using the same mathematical approach used in Section 2.1. Thus 
the OLS estimation of multivariate models is identical in general approach 
to the OLS estimation of models with just one independent variable. The 
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equations themselves are more cumbersome,4 but the underlying principle 
of estimating βns that minimize the summed squared residuals remains the 
same.

Luckily, user-friendly computer packages can calculate estimates with these 
unwieldy equations in less than a second of computer time. Indeed, only some-
one lost in time or stranded on a desert island would bother estimating a multi-
variate regression model without a computer. The rest of us will use Stata, EViews, 
SPSS, SAS, or any of the other commercially available regression packages.

An Example of a Multivariate Regression Model

As an example of multivariate regression, let’s take a look at a model of 
financial aid awards at a liberal arts college. The dependent variable in such a 
study would be the amount, in dollars, awarded to a particular financial aid 
applicant:

FINAIDi =  the financial aid (measured in dollars of grant per year) 
awarded to the ith applicant

What kinds of independent variables might influence the amount of finan-
cial aid received by a given student? Well, most aid is either need-based or 
merit-based, so it makes sense to consider a model that includes at least these 
two attributes:

 FINAIDi = β0 + β
-

1PARENTi + β
+

2HSRANKi + ei (2.9)

where:  PARENTi =  the amount (in dollars per year) that the parents 
of the ith student are judged able to contribute to 
college expenses

     HSRANKi =  the ith student’s GPA rank in high school, measured 
as a percentage (ranging from a low of 0 to a high 
of 100)

4. For Equation 2.8, the estimated coefficients are:

βn1 =
1a yx121a x2

22 - 1a yx221a x1x22
1a x2

121a x2
22 - 1a x1x222

 βn2 =
1a yx221a x2

12 - 1a yx121a x1x22
1a x2

121a x2
22 - 1a x1x222

 βn0 = Y - βn1X1 - βn2X2

where lowercase variables indicate deviations from the mean, as in y = Yi - Y; x1 = X1i - X1; 
and x2 = X2i - X2.
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Note from the signs over the coefficients in Equation 2.9 that we anticipate 
that the more parents can contribute to their child’s education, the less the 
financial aid award will be. Similarly, we expect that the higher the student’s 
rank in high school, the higher the financial aid award will be. Do you agree 
with these expectations?

If we estimate Equation 2.9 using OLS and the data5 in Table 2.2, we get:

 FINAIDi = 8927 - 0.36PARENTi + 87.4HSRANKi (2.10)

What do these coefficients mean? Well, the –0.36 means that the model 
implies that the ith student’s financial aid grant will fall by $0.36 for every 
dollar increase in his or her parents’ ability to pay, holding constant high 
school rank. Does the sign of the estimated coefficient meet our expecta-
tions? Yes. Does the size of the coefficient make sense? Yes.

To be sure that you understand this concept, take the time to write down the 
meaning of the coefficient of HSRANK in Equation 2.10. Do you agree that the 
model implies that the ith student’s financial aid grant will increase by $87.40 
for each percentage point increase in high school rank, holding constant par-
ents’ ability to pay? Does this estimated coefficient seem reasonable?

Let’s analyze Equation 2.10. Suppose someone told you that they believed 
that HSRANK is the most important variable in the model because its coef-
ficient, 87.4, is much larger than the coefficient of FINAID. Would you agree? 
Before you answer, consider what Equation 2.10 would look like if the units 
of measurement of PARENT had been thousands of dollars instead of dollars:

 FINAID = 8927 - 357PARENT + 87.4HSRANK (2.11)

Whoops! That puts things in a different light. Now the coefficient of PARENT 
is much larger than the coefficient of HSRANK. Since the size of a coefficient 
clearly depends on the units of measurement of the variable, we can’t use 
coefficient size alone to make judgments about the importance of a variable. 
For more on this issue, see Section 5.4.

Take a look at Figures 2.1 and 2.2. These figures contain two different views 
of Equation 2.10. Figure 2.1 is a diagram of the effect of PARENT on FINAID, 
holding HSRANK constant, and Figure 2.2 shows the effect of HSRANK on 
FINAID, holding PARENT constant. These two figures are graphical represen-
tations of multivariate regression coefficients, since they measure the impact 

i
i

5. These data are from an unpublished analysis of financial aid awards at Occidental  College. 
The fourth variable in Table 2.2 is MALEi, which equals 1 if the ith student is male and 0 
 otherwise. 
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0 PARENTi

FINAIDi 

Slope = -0.36 = d1 (holding HSRANKi constant)N

Figure 2.1 Financial aid as a Function of parents’ ability to pay

In Equation 2.10, an increase of one dollar in the parents’ ability to pay decreases the 
financial aid award by $0.36, holding constant high school rank.

0 HSRANKi

FINAIDi

Slope = 87.40 = d2 (holding PARENTi constant)N

Figure 2.2 Financial aid as a Function of high school rank

In Equation 2.10, an increase of one percentage point in high school rank increases the 
financial aid award by $87.40, holding constant parents’ ability to pay.
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Table 2.2 data for the Financial aid example

   i FINAID pARENt hSRANK MALE
 1 19,640      0 92 0
 2  8,325  9,147 44 1
 3 12,950  7,063 89 0
 4    700 33,344 97 1
 5  7,000 20,497 95 1
 6 11,325 10,487 96 0
 7 19,165    519 98 1
 8  7,000 31,758 70 0
 9  7,925 16,358 49 0
10 11,475 10,495 80 0
11 18,790      0 90 0
12  8,890 18,304 75 1
13 17,590  2,059 91 1
14 17,765      0 81 0
15 14,100 15,602 98 0
16 18,965      0 80 0
17  4,500 22,259 90 1
18  7,950  5,014 82 1
19  7,000 34,266 98 1
20  7,275 11,569 50 0
21  8,000 30,260 98 1
22  4,290 19,617 40 1
23  8,175 12,934 49 1
24 11,350  8,349 91 0
25 15,325  5,392 82 1
26 22,148      0 98 0
27 17,420  3,207 99 0
28 18,990      0 90 0
29 11,175 10,894 97 0
30 14,100  5,010 59 0
31  7,000 24,718 97 1
32  7,850  9,715 84 1
33      0 64,305 84 0
34  7,000 31,947 98 1
35 16,100  8,683 95 1
36  8,000 24,817 99 0
37  8,500  8,720 20 1
38  7,575 12,750 89 1
39 13,750  2,417 41 1
40   7,000 26,846 92 1
41 11,200  7,013 86 1
42 14,450  6,300 87 0
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on the dependent variable of a given independent variable, holding constant 
the other variables in the equation.

total, Explained, and Residual Sums of Squares

Before going on, let’s pause to develop some measures of how much of the 
variation of the dependent variable is explained by the estimated regression 
equation. Such comparison of the estimated values with the actual values can 
help a researcher judge the adequacy of an estimated regression.

Econometricians use the squared variations of Y around its mean as a 
measure of the amount of variation to be explained by the regression. This 
computed quantity is usually called the total sum of squares, or TSS, and is 
written as:

 TSS = aN
i = 1

 1Yi - Y22 (2.12)

For Ordinary Least Squares, the total sum of squares has two components, 
variation that can be explained by the regression and variation that cannot:

 a
i

 1Yi - Y22 = a
i

 1Yni - Y22  + a
i

 e2
i  (2.13)

Total Sum   =    Explained   +    Residual
 of Sum of Sum of
 Squares Squares Squares
 (TSS) (ESS) (RSS)

This is usually called the decomposition of variance.

   i FINAID pARENt hSRANK MALE
43 15,265  3,909 84 0
44 20,470  2,027 99 1
45  9,550 12,592 89 0
46 15,970      0 57 0
47 12,190  6,249 84 0
48 11,800  6,237 81 0
49 21,640      0 99 0
50  9,200 10,535 68 0

   datafile = Finaid2

Table 2.2 (continued)
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Figure 2.3 illustrates the decomposition of variance for a simple regres-
sion model. The estimated values of Yi lie on the estimated regression line 
Yni = βn 0 + βn 1Xi. The variation of Y around its mean 1Yi - Y2 can be decom-
posed into two parts: (1) 1Yni - Y2, the difference between the estimated 
value of Y 1Yn 2 and the mean value of Y 1Y2; and (2) 1Yi - Yni2, the difference 
between the actual value of Y and the estimated value of Y.

The first component of Equation 2.13 measures the amount of the 
squared deviation of Yi from its mean that is explained by the regression 
line. This component of the total sum of the squared deviations, called the 
explained sum of squares, or ESS, is attributable to the fitted regression 
line. The unexplained portion of TSS (that is, unexplained in an empirical 
sense by the estimated regression equation), is called the residual sum of 
squares, or RSS.6

Y

0 XiX

= Yi - Yi

Yi - Y

X

 d0

ei

Y

(Xi, Yi)

(Xi, Yi)

Yi - Y

Yi = + diXi
N N N

N

N

N

Figure 2.3 decomposition of the Variance in y

The variation of Y around its mean 1Y - Y2 can be decomposed into two parts:  
(1) 1Yni - Y2, the difference between the estimated value of Y1Yn 2 and the mean value of 
Y 1Y2; and (2) 1Yi - Yni2, the difference between the actual value of Y and the estimated 
value of Y.

6. Note that some authors reverse the definitions of RSS and ESS (defining ESS as a e 

2
i ), and 

other authors reverse the order of the letters, as in SSR.
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We can see from Equation 2.13 that the smaller the RSS is relative to the 
TSS, the better the estimated regression line fits the data. OLS is the estimat-
ing technique that minimizes the RSS and therefore maximizes the ESS for a 
given TSS.

2.3  Evaluating the Quality of a Regression Equation

If the bread and butter of regression analysis is OLS estimation, then the 
heart and soul of econometrics is figuring out how good these OLS estimates 
are.

Many beginning econometricians have a tendency to accept regression 
estimates as they come out of a computer, or as they are published in an arti-
cle, without thinking about the meaning or validity of those estimates. Such 
blind faith makes as much sense as buying an entire wardrobe of clothes 
without trying them on. Some of the clothes will fit just fine, but many others 
will turn out to be big (or small) mistakes.

Instead, the job of an econometrician is to carefully think about and eval-
uate every aspect of the equation, from the underlying theory to the quality 
of the data, before accepting a regression result as valid. In fact, most good 
econometricians spend quite a bit of time thinking about what to expect 
from an equation before they estimate that equation.

Once the computer estimates have been produced, however, it’s time to 
evaluate the regression results. The list of questions that should be asked dur-
ing such an evaluation is long. For example:

1. Is the equation supported by sound theory?

2. How well does the estimated regression fit the data?

3. Is the data set reasonably large and accurate?

4. Is OLS the best estimator to be used for this equation?

5. How well do the estimated coefficients correspond to the expectations 
developed by the researcher before the data were collected?

6. Are all the obviously important variables included in the equation?

7. Has the most theoretically logical functional form been used?

8. Does the regression appear to be free of major econometric problems?

The goal of this text is to help you develop the ability to ask and appropri-
ately answer these kinds of questions. In fact, the number in front of each 
question above roughly corresponds to the chapter in which we’ll address the 
issues raised by that question. Since this is Chapter 2, it’ll come as no surprise 
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to you to hear that the rest of the chapter will be devoted to the second of 
these topics—the overall fit of the estimated model.

2.4  Describing the Overall Fit of the Estimated Model

Let’s face it: we expect that a good estimated regression equation will explain 
the variation of the dependent variable in the sample fairly accurately. If it 
does, we say that the estimated model fits the data well.

Looking at the overall fit of an estimated model is useful not only for 
evaluating the quality of the regression, but also for comparing models that 
have different data sets or combinations of independent variables. We can 
never be sure that one estimated model represents the truth any more than 
another, but evaluating the quality of the fit of the equation is one ingredient 
in a choice between different formulations of a regression model. Be careful, 
however! The quality of the fit is a minor ingredient in this choice, and many 
beginning researchers allow themselves to be overly influenced by it.

R2

The simplest commonly used measure of fit is R2, or the coefficient of deter-
mination. R2 is the ratio of the explained sum of squares to the total sum of 
squares:

 R2 =
ESS
TSS

= 1 -
RSS
TSS

= 1 - a e 

2
i

a 1Yi - Y22 (2.14)

The higher R2 is, the closer the estimated regression equation fits the sample 
data. Measures of this type are called “goodness of fit” measures. R2 measures 
the percentage of the variation of Y around Y that is explained by the regres-
sion equation. Since OLS selects the coefficient estimates that minimize RSS, 
OLS provides the largest possible R2, given a linear model. Since TSS, RSS, 
and ESS are all nonnegative (being squared deviations), and since ESS … TSS,  
then R2 must lie in the interval 0 … R2 … 1. A value of R2 close to one shows 
an excellent overall fit, whereas a value near zero shows a failure of the esti-
mated regression equation to explain the values of Yi better than could be 
explained by the sample mean Y.

Figures 2.4 through 2.6 demonstrate some extremes. Figure 2.4 shows an 
X and Y that are unrelated. The fitted regression line might as well be Yn = Y, 
the same value it would have if X were omitted. As a result, the estimated 
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linear regression is no better than the sample mean as an estimate of Yi. The 
explained portion, ESS, = 0, and the unexplained portion, RSS, equals the 
total squared deviations TSS; thus, R2 = 0.

Figure 2.5 shows a relationship between X and Y that can be “explained” 
quite well by a linear regression equation: the value of R2 is .95. This kind of 
result is typical of a time-series regression with a good fit. Most of the varia-
tion has been explained, but there still remains a portion of the variation that 
is essentially random or unexplained by the model.

Goodness of fit is relative to the topic being studied. In time series data, we 
often get a very high R2 because there can be significant time trends on both 

Y

Y

0 X

Regression Line

R2 = 0

Figure 2.4  

X and Y are not related; in such a case, R2 would be 0.

Y

0 X

R2 = .95

Figure 2.5  

A set of data for X and Y that can be “explained” quite well with a regression line  
(R2 = .95).
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sides of the equation. In cross-sectional data, we often get low R2s because the 
observations (say, countries) differ in ways that are not easily quantified. In 
such a situation, an R2 of .50 might be considered a good fit, and research-
ers would tend to focus on identifying the variables that have a substantive 
impact on the dependent variable, not on R2. In other words, there is no sim-
ple method of determining how high R2 must be for the fit to be considered 
satisfactory. Instead, knowing when R2 is relatively large or small is a matter 
of experience. It should be noted that a high R2 does not imply that changes 
in X lead to changes in Y, as there may be an underlying variable whose 
changes lead to changes in both X and Y simultaneously.

Figure 2.6 shows a perfect fit of R2 = 1. Such a fit implies that no estima-
tion is required. The relationship is completely deterministic, and the slope 
and intercept can be calculated from the coordinates of any two points. 
In fact, reported equations with R2s equal to (or very near) one should be 
viewed with suspicion; they very likely do not explain the movements of 
the dependent variable Y in terms of the causal proposition advanced, even 
though they explain them empirically. This caution applies to economic 
applications, but not necessarily to those in fields like physics or chemistry.

R  

2, the Adjusted R2

A major problem with R2 is that adding another independent variable to a 
particular equation can never decrease R2. That is, if you compare two equa-
tions that are identical (same dependent variable and independent vari-
ables), except that one has an additional independent variable, the equation 

Y

0 X

R2 = 1

Figure 2.6 

A perfect fit: all the data points are on the regression line, and the resulting R2 is 1.
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with the greater number of independent variables will always have a better 
(or equal) fit as measured by R2.

To see this, recall the equation for R2, Equation 2.14.

 R2 =
ESS
TSS

= 1 -
RSS
TSS

= 1 - a e 

2
i

a 1Yi - Y22 (2.14)

What will happen to R2 if we add a variable to the equation? Adding a vari-
able can’t change TSS (can you figure out why?), but in most cases the added 
variable will reduce RSS, so R2 will rise. You know that RSS will never increase 
because the OLS program could always set the coefficient of the added vari-
able equal to zero, thus giving the same fit as the previous equation. The 
coefficient of the newly added variable being zero is the only circumstance 
in which R2 will stay the same when a variable is added. Otherwise, R2 will 
always increase when a variable is added to an equation.

Perhaps an example will make this clear. Let’s return to our weight guess-
ing regression, Equation 1.19:

Estimated weight = 103.40 + 6.38 Height 1over five feet2
The R2 for this equation is .74. If we now add a completely nonsensical 

variable to the equation (say, the campus post office box number of each 
individual in question), then it turns out that the results become:

Estimated weight = 102.35 + 6.36 1Height 7 five feet2 + 0.02 1Box#2
but the R2 for this equation is .75! Thus, an individual using R2 alone as the 
measure of the quality of the fit of the regression would choose the second 
version as better fitting.

The inclusion of the campus post office box variable not only adds a 
nonsensical variable to the equation, but it also requires the estimation of 
another coefficient. This lessens the degrees of freedom, or the excess of 
the number of observations (N) over the number of coefficients (including 
the intercept) estimated (K + 1). For instance, when the campus box number 
variable is added to the weight/height example, the number of observations 
stays constant at 20, but the number of estimated coefficients increases from 
2 to 3, so the number of degrees of freedom falls from 18 to 17. This decrease 
has a cost, since the lower the degrees of freedom, the less reliable the esti-
mates are likely to be. Thus, the increase in the quality of the fit caused by the 
addition of a variable needs to be compared to the decrease in the degrees of 
freedom before a decision can be made with respect to the statistical impact 
of the added variable.

To sum, R2 is of little help if we’re trying to decide whether adding a 
variable to an equation improves our ability to meaningfully explain the 
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dependent variable. Because of this problem, econometricians have developed 
another measure of the quality of the fit of an equation. That measure is R  

2 
(pronounced R-bar-squared), which is R2 adjusted for degrees of freedom:

 R 

2 = 1 - a e 

2
i /1N - K - 12

a  1Yi - Y22/1N - 12  (2.15)

R 

2 measures the percentage of the variation of Y around its mean that is 
explained by the regression equation, adjusted for degrees of freedom.

R 

2 can be used to compare the fits of equations with the same depen-
dent variable and different numbers of independent variables. Because 
of this property, most researchers automatically use R 

2 instead of R2 
when evaluating the fit of their estimated regression equations. Note, how-
ever, that R 

2 is not as useful when comparing the fits of two equations 
that have different dependent variables or dependent variables that are 
measured differently.

R 

2 will increase, decrease, or stay the same when a variable is added to an 
equation, depending on whether the improvement in fit caused by the 
 addition of the new variable outweighs the loss of the degree of freedom. An 
increase in R 

2 indicates that the marginal benefit of adding a variable exceeds 
the cost, while a decrease in R 

2 indicates that the marginal cost exceeds the 
benefit. Indeed, the R 

2 for the weight-guessing equation decreases to .72 when 
the mail box variable is added. The mail box variable, since it has no theoreti-
cal relation to weight, should never have been included in the equation, and 
the R 

2 measure supports this conclusion.
The highest possible R 

2 is 1.00, the same as for R2. The lowest possible R 

2, 
however, is not .00; if R2 is extremely low, R 

2 can be slightly negative.

Finally, a warning is in order. Always remember that the quality of fit of an 
estimated equation is only one measure of the overall quality of that regres-
sion. As mentioned previously, the degree to which the estimated coefficients 
conform to economic theory and the researcher’s previous expectations 
about those coefficients are just as important as the fit itself. For instance, an 
estimated equation with a good fit but with an implausible sign for an esti-
mated coefficient might give implausible predictions and thus not be a very 
useful equation. Other factors, such as theoretical relevance and usefulness, 
also come into play. Let’s look at an example of these factors.
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2.5  An Example of the Misuse of R2

Section 2.4 implies that the higher the overall fit of a given equation, the 
better. Unfortunately, many beginning researchers assume that if a high R 

2 
is good, then maximizing R 

2 is the best way to maximize the quality of an 
equation. Such an assumption is dangerous because a good overall fit is only 
one measure of the quality of an equation.

Perhaps the best way to visualize the dangers inherent in maximizing R 

2 
without regard to the economic meaning or statistical significance of an 
equation is to look at an example of such misuse. This is important because 
it is one thing for a researcher to agree in theory that “R 

2 maximizing” is bad, 
and it is another thing entirely for that researcher to avoid subconsciously 
maximizing R 

2 on projects. It is easy to agree that the goal of regression is not 
to maximize R 

2, but many researchers find it hard to resist that temptation.
As an example, suppose you decide to combine your love of pizza with your 

love of economics, and think it might be a good idea to estimate a model of the 
determinants of mozzarella cheese consumption. You do some research and 
learn that mozzarella is a normal good, so you include income in your model. 
You collect a small sample, estimate the equation, and get the following results:

 MOZZARELLAt = -0.85 + 0.378INCOMEt (2.16)

 N = 10  R2 = .88

where: MOZZARELLAt = U.S. per capita consumption of mozzarella cheese 
(in pounds) in year t

INCOMEt  = U.S. real disposable per capita income 
(in thousands of dollars) in year t

You think, “What a great fit!” But like many budding econometricians, you 
wonder . . . could you do even better by adding another independent vari-
able? You find some interesting data and, on a hunch, add a variable to the 
model and re-run the regression:7

MOZZARELLAt = 3.33 + 0.248INCOMEt - 0.046DROWNINGSt (2.17)

 N = 10        R2 = .97

where: DROWNINGSt = U.S. deaths due to drowning after falling out of 
 a fishing boat in year t

7. This equation was created by Bruce Johnson of Centre College for the years 2000–2009. The 
data from MOZZARELLA and DROWNINGS come from tylervigen.com, while the data for 
 INCOME are from the 2011 Economic Report of the President, Table B-31. For more examples of 
this type, see Tyler Vigen, Spurious Correlation (New York: Hachette Books, 2015).
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The second equation has a much higher R 

2 than the first one, which you 
chose on the basis of theory. Does this mean your second model is better? 
Before you answer, reread the warning at the bottom of page 54 about the 
quality of fit 1R 

22 being only one measure of the overall quality of a regression.
Did you read it? OK, then you probably know that the answer is . . . NO! 

Equation 2.17 has a better fit, but it’s preposterous to think that the number 
of drownings belongs in an equation for per capita mozzarella cheese con-
sumption. No reasonable economic theory could link drownings to cheese 
consumption! What happened here is that in this small sample, DROWNINGS 
is highly correlated with MOZZARELLA. For no particular reason other than 
coincidence, drowning deaths from falling out of fishing boats went steadily 
down from 2000 to 2009, while per capita consumption of mozzarella cheese 
went up, so adding DROWNINGS boosted R 

2. This increased fit, however, 
doesn’t mean that the equation is better. Such a meaningless result is called a 
spurious regression8 and it should be ignored. In all honesty, Equation 2.17 never 
should have been run in the first place. It’s too fishy an idea to take seriously.

Thus, a researcher who uses R 

2 as the sole measure of the quality of an 
equation (at the expense of economic theory or statistical significance) 
increases the chances of having unrepresentative or misleading results. This 
practice should be avoided at all costs. No simple rule of econometric esti-
mation is likely to work in all cases. Instead, a combination of technical 
competence, theoretical judgment, and common sense makes for a good 
econometrician.

To help avoid the natural urge to maximize R 

2 without regard to the rest of 
the equation, you might find it useful to imagine the following conversation:

You: Sometimes, it seems like the best way to choose between two models 
is to pick the one that gives the highest R 

2.
Your Conscience: But that would be wrong.
You: I know that the goal of regression analysis is to obtain the best pos-

sible estimates of the true population coefficients and not to get a high R 

2, 
but my results “look better” if my fit is good.

Your Conscience: Look better to whom? It’s not at all unusual to get a high 
R 

2, but then find that some of the regression coefficients have signs or magni-
tudes that are contrary to theoretical expectations.

You: Well, I guess I should be more concerned with the logical relevance of 
the explanatory variables than with the fit, huh?

Your Conscience: Right! If in this process we obtain a high R 

2, well and 
good, but if R 

2 is high, it doesn’t mean that the model is good.

8. For more on spurious regression and spurious correlation, see Section 12.5.
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2.6  Summary

1. Ordinary Least Squares (OLS) is the most frequently used method of 
obtaining estimates of the regression coefficients from a set of data. 
OLS chooses those βns that minimize the summed squared residuals 
1a e2

i 2 for a particular sample.

2. R-bar-squared 1R 

22 measures the percentage of the variation of Y 
around its mean that has been explained by a particular regression 
equation, adjusted for degrees of freedom. R 

2 increases when a vari-
able is added to an equation only if the improvement in fit caused 
by the addition of the new variable more than offsets the loss of the 
degree of freedom that is used up in estimating the coefficient of the 
new variable. As a result, most researchers will automatically use R 

2 
when evaluating the fit of their estimated regression equations.

3. Always remember that the fit of an estimated equation is only one 
of the measures of the overall quality of that regression. A number of 
other criteria, including the degree to which the estimated coefficients 
conform to economic theory and expectations (developed by the re-
searcher before the data were collected) are more important than the 
size of R 

2.

ExErcisEs

(The answers to the even-numbered exercises are in Appendix A.)

 1. Write the meaning of each of the following terms without referring to 
the book (or your notes), and compare your definition with the ver-
sion in the text for each:
a. degrees of freedom (p. 53)
b. estimate (p. 37)
c. estimator (p. 37)
d. multivariate regression coefficient (p. 41)
e. Ordinary Least Squares (OLS) (p. 36)
f. R 

2 (p. 50)
g. R 

2 (p. 54) 
h. total, explained, and residual sums of squares (pp. 47, 48)

 2. Just as you are about to estimate a regression (due tomorrow), 
massive sunspots cause magnetic interference that ruins all electri-
cally powered machines (e.g., computers). Instead of giving up and 
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flunking, you decide to calculate estimates from your data (on per cap-
ita income in thousands of U.S. dollars as a function of the percent of 
the labor force in agriculture in 10 developed countries) using methods 
like those used in Section 2.1 without a computer. Your data are:

Country A B C D E F G H I J

Per Capita Income 6 8 8 7 7 12 9 8 9 10

% in Agriculture 9 10 8 7 10 4 5 5 6 7

a. Calculate βn0 and βn1.
b. Calculate R2 and R 

2.
c. If the percent of the labor force in agriculture in another developed 

country was 8 percent, what level of per capita income (in thou-
sands of U.S. dollars) would you guess that country had?

 3. Consider the following two least-squares estimates of the relationship 
between interest rates and the federal budget deficit in the United 
States:

Model A: Yn1 = 0.103 - 0.079X1  R2 = .00

where: Y1  = the interest rate on Aaa corporate bonds
X1 = the federal budget deficit as a percentage of GNP 

(quarterly model: N = 56)

Model T: Yn2 = 0.089 + 0.369X2 + 0.887X3  R2 = .40

where: Y2  = the interest rate on 3-month Treasury bills
X2 = the federal budget deficit in billions of dollars
X3 = the rate of inflation (in percent) 

(quarterly model: N = 38)

a. What does “least-squares estimates” mean? What is being estimated? 
What is being squared? In what sense are the squares “least”?

b. What does it mean to have an R2 of .00? Is it possible for an R2 to be 
negative?

c. Based on economic theory, what signs would you have expected for 
the estimated slope coefficients of the two models?

d. Compare the two equations. Which model has estimated signs that 
correspond to your prior expectations? Is Model T automatically 
better because it has a higher R2? If not, which model do you prefer 
and why?
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 4. Let’s return to the height-weight example on page 53 and recall what 
happened when we added a nonsensical variable that measured the 
student’s campus post office box number (MAIL) to the equation. The 
estimated equation changed from:

WEIGHT = 103.40 + 6.38HEIGHT

  to:

WEIGHT = 102.35 + 6.36HEIGHT + 0.02MAIL 

a. The estimated coefficient of HEIGHT changed when we added 
MAIL to the equation. Does that make sense? Why?

b. In theory, someone’s weight has nothing to do with their campus 
mail box number, yet R2 went up from .74 to .75 when MAIL was 
added to the equation! How is it possible that adding a nonsensi-
cal variable to an equation can increase R2?

c. Adding the nonsensical variable to the equation decreased R 

2 from 
.73 to .72. Explain how it’s possible that R 

2 can go down at the 
same time that R2 goes up.

d. If a person’s campus mail box number truly is unrelated to their 
weight, shouldn’t the estimated coefficient of that variable equal 
exactly 0.00? How is it possible for a nonsensical variable to get a 
nonzero estimated coefficient?

 5. Suppose that you have been asked to estimate a regression model to 
explain the number of people jogging a mile or more on the school 
track to help decide whether to build a second track to handle all the 
joggers. You collect data by living in a press box for the spring semes-
ter, and you run two possible explanatory equations:

A: Yn = 125.0 - 15.0X1 - 1.0X2 + 1.5X3  R 

2 = .75

B: Yn = 123.0 - 14.0X1 + 5.5X2 - 3.7X4    R 

2 = .73

where: Y  = the number of joggers on a given day
X1 = inches of rain that day
X2 = hours of sunshine that day
X3 = the high temperature for that day (in degrees F)
X4 = the number of classes with term papers due the 

next day

a. Which of the two (admittedly hypothetical) equations do you 
 prefer? Why?
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b. How is it possible to get different estimated signs for the coefficient 
of the same variable using the same data?

 6. What’s wrong with the following kind of thinking: “I understand that 
R2 is not a perfect measure of the quality of a regression equation 
because it always increases when a variable is added to the equation. 
Once we adjust for degrees of freedom by using R 

2, though, it seems 
to me that the higher the R 

2, the better the equation.”

 7. Suppose that you work in the admissions office of a college that 
doesn’t allow prospective students to apply by using the Common 
Application.9 How might you go about estimating the number of 
extra applications that your college would receive if it allowed the 
use of the Common Application? An econometric approach to this 
question would be to build the best possible model of the number of 
college applications and then to examine the estimated coefficient of 
a dummy variable that equaled one if the college in question allowed 
the use of the “common app” (and zero otherwise).

   For example, if we estimate an equation using the data in Table 2.3 
for high-quality coed national liberal arts colleges, we get:

APPLICATIONi = 523.3 + 2.15SIZEi - 32.1RANKi

 + 1222COMMONAPPi (2.18)

 N = 49  R2 = .724  R 

2 = .705

where: APPLICATIONi =  the number of applications received  
by the ith college in 2007

 SIZEi =  the total number of undergraduate  
students at the ith college in 2006

 RANKi =  the U.S. News10 rank of the ith college  
(1 = best) in 2006

COMMONAPPi =  a dummy variable equal to 1 if the ith 
college allowed the use of the Common 
Application in 2007 and 0 otherwise.

9. The Common Application is a computerized application form that allows high school stu-
dents to apply to a number of different colleges and universities using the same basic data. For 
more information, go to www.commonap.org.

10. U.S. News and World Report Staff, U.S. News Ultimate College Guide. Naperville, Illinois: 
Sourcebooks, Inc., 2006–2008.
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Table 2.3 data for the College application example

COLLEGE AppLICAtION COMMONApp RANK SIZE
amherst College 6680 1  2 1648
bard College 4980 1 36 1641
bates College 4434 1 23 1744
bowdoin College 5961 1  7 1726
bucknell university 8934 1 29 3529
Carleton College 4840 1  6 1966
Centre College 2159 1 44 1144
Claremont mcKenna 
 College

 
4140

 
1

 
12

 
1152

Colby College 4679 1 20 1865
Colgate university 8759 1 16 2754
College of the holy 
 Cross

 
7066

 
1

 
32

 
2790

Colorado College 4826 1 26 1939
Connecticut College 4742 1 39 1802
davidson College 3992 1 10 1667
denison university 5196 1 48 2234
depauw university 3624 1 48 2294
dickinson College 5844 1 41 2372
Franklin and marshall 
 College

 
5018

 
1

 
41

 
1984

Furman university 3879 1 41 2648
gettysburg College 6126 1 45 2511
grinnell College 3077 1 14 1556
hamilton College 4962 1 17 1802
harvey mudd College 2493 1 14 729
haverford College 3492 1  9 1168
Kenyon College 4626 1 32 1630
Lafayette College 6364 1 30 2322
Lawrence university 2599 1 53 1409
macalester College 4967 1 24 1884
middlebury College 7180 1  5 2363
Oberlin College 7014 1 22 2744
Occidental College 5275 1 36 1783
pitzer College 3748 1 51 918
pomona College 5907 1  7 1545
reed College 3365 1 53 1365
rhodes College 3709 1 45 1662
sewanee-university 
 of the south

 
2424

 
0

 
34

 
1498

skidmore College 6768 1 48 2537
st. Lawrence university 4645 0 57 2148

(continued)
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a. Take a look at the signs of each of the three estimated regression 
coefficients. Are they what you would have expected? Explain.

b. Carefully state the real-world meaning of the coefficients of SIZE 
and RANK. Does the fact that the coefficient of RANK is 15 times 
bigger (in absolute value) than the coefficient of SIZE mean that 
the ranking of a college is 15 times more important than the size 
of that college in terms of explaining the number of applications to 
that college? Why or why not?

c. Now carefully state the real-world meaning of the coefficient of 
COMMONAPP. Does this prove that 1,222 more students would 
apply if your college decided to allow the Common Application? 
Explain. (Hint: There are at least two good answers to this question. 
Can you get them both?)

d. To get some experience with your computer’s regression software, 
use the data in Table 2.3 to estimate Equation 2.18. Do you get the 
same results?

e. Now use the same data and estimate Equation 2.18 again without the 
COMMONAPP variable. What is the new R 

2? Does R 

2 go up or down 
when you drop the variable? What, if anything, does this change tell 
you about whether COMMONAPP belongs in the equation?

COLLEGE AppLICAtION COMMONApp RANK SIZE
st. Olaf College 4058 0 55 2984
swarthmore College 5242 1  3 1477
trinity College 5950 1 30 2183
union College 4837 1 39 2178
university of richmond 6649 1 34 2804
Vassar College 6393 1 12 2382
washington and Lee  
 university

 
3719

 
1

 
17

 
1749

wesleyan university 7750 1 10 2798
wheaton College 2160 1 55 1548
whitman College 2892 1 36 1406
williams College 6478 1  1 2820

sources: u.s. news & world report staff, U.S. News Ultimate College Guide,  naperville,  
iL: sourcebooks, inc. 2006–2008.

datafile = COLLege2 (note that some colleges tied for the same rank.)

Table 2.3 (continued)
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2.7  appendix: econometric Lab #1

Throughout the text, you’ll encounter “econometric labs” aimed at helping 
you get experience with the chapter topics.11 We urge you to complete these 
labs, even if they aren’t assigned as homework by your professor. Working 
through the labs on your own will make future econometric work much 
easier to understand and complete.

Our first lab is an exercise in simple regression analysis. You will collect a 
data set and then calculate regression coefficients and goodness of fit mea-
sures on your own (using Stata or another econometric software package 
to run the regression). Your goal is to estimate the relationship between the 
dependent variable WEIGHT and the independent variable HEIGHT, using 
your own sample, not the sample from the book.

Step 1: Gather the Data

Ask five students of your gender how tall they are, in inches, and how much 
they weigh, in pounds. Also report your own height and weight. Do not 
include names in the data. Record the variable HEIGHT in inches above five 
feet and the variable WEIGHT in pounds. Enter the data in an Excel spread-
sheet (or directly into Stata) according to the following instructions. In the 
first row, type the first person’s height in inches above five feet, the first per-
son’s weight in pounds, and the first person’s gender—1 if male, 0 if female.

For the data, be sure to enter only numbers, not words such as pounds, 
inches, or male. Otherwise, Stata will get irritated and refuse to run the regres-
sion! In the height column, enter the height in inches above five feet. Enter 
the weight in pounds. If the observation is male, enter 1 in the MALE col-
umn. If female, enter 0.

After you enter all the data, your file might look like this:

HEIGHT WEIGHT MALE

4 127 0

9 152 0

6 130 0

2 130 0

6 112 0

3 119 0

11. These labs are simplified versions of labs designed by Bruce Johnson for use at Centre  College. 
Instructors should consult the instructor’s manual at http://www.pearson.com/studenmund for 
the  answers to the labs and for suggestions on how best to use these labs in a classroom setting.

M02_STUD2742_07_SE_C02.indd   63 19/01/16   4:50 PM

http://www.pearson.com/studenmund


64 Chapter 2 Ordinary Least squares

Now carry out the following tasks and answer the questions in order, using 
the data you collected.

Step 2: Calculate Summary Statistics

Use Stata to compute the summary statistics. What is the mean? Also look at 
the minimum, the maximum, and the sample size.

Step 3: run the regression

Run the regression in Stata. Can you find the estimated βs? Print the regression 
results if you are doing this lab as a class assignment.

Step 4: Interpret the estimated Coefficients

State the precise meaning of the slope coefficient. Now compare your esti-
mated coefficients with those in Equation 2.6. Are your results the same? If 
not, do you understand why they’re different?

Step 5: Interpret r  

2

Can you find R 

2 in your results? What is it? State precisely the meaning of the 
R 

2 statistic.

Step 6: estimate a Second equation

Now add MALE to your equation as a second independent variable and esti-
mate it again. Do you see a problem? Explain. Does this imply that gender 
has no relationship to weight?
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3.1 Steps in Applied Regression Analysis

3.2 Using Regression Analysis to Pick Restaurant Locations

3.3 Dummy Variables

3.4 Summary and Exercises

3.5 Appendix: Econometric Lab #2

Learning to Use 
 Regression Analysis

From a quick reading of Chapter 2, it’d be easy to conclude that regression 
analysis is little more than the mechanical application of a set of equations 
to a sample of data. Such a notion would be similar to deciding that all that 
matters in golf is hitting the ball well. Golfers will tell you that it does little 
good to hit the ball well if you have used the wrong club or have hit the ball 
toward a trap, tree, or pond. Similarly, experienced econometricians spend 
much less time thinking about the OLS estimation of an equation than they 
do about a number of other factors. Our goal in this chapter is to introduce 
some of these “real-world” concerns.

The first section, an overview of the six steps typically taken in applied 
regression analysis, is the most important in the chapter. We believe that 
the ability to learn and understand a specific topic, like OLS estimation, is 
enhanced if the reader has a clear vision of the role that the specific topic 
plays in the overall framework of regression analysis. In addition, the six 
steps make it hard to miss the crucial function of theory in the development 
of sound econometric research.

This is followed by a complete example of how to use the six steps in 
applied regression: a location analysis for the “Woody’s” restaurant chain 
that is based on actual company data and to which we will return in future 
chapters to apply new ideas and tests. The chapter concludes with a discus-
sion of dummy variables and econometric lab #2.

Chapter 3
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3.1  Steps in Applied Regression Analysis

Although there are no hard and fast rules for conducting econometric 
research, most investigators commonly follow a standard method for applied 
regression analysis. The relative emphasis and effort expended on each step 
will vary, but normally all the steps are necessary for successful research. Note 
that we don’t discuss the selection of the dependent variable; this choice is 
determined by the purpose of the research. We’ll cover choosing a dependent 
variable in Chapter 11. Once a dependent variable is chosen, however, it’s 
logical to follow these six steps in applied regression analysis.

 1. Review the literature and develop the theoretical model.

 2.  Specify the model: Select the independent variables and the  
functional form.

 3. Hypothesize the expected signs of the coefficients.

 4. Collect the data. Inspect and clean the data.

 5. Estimate and evaluate the equation.

 6. Document the results.

The purpose of suggesting these steps is not to discourage the use of innova-
tive or unusual approaches but rather to develop in the reader a sense of how 
regression ordinarily is done by professional economists and business analysts.

Step 1:  Review the Literature and Develop the theoretical Model

The first step in any applied research is to get a good theoretical grasp of the 
topic to be studied. That’s right: the best data analysts don’t start with data, but 
with theory! This is because many econometric decisions, ranging from which 
variables to include to which functional form to employ, are determined by the 
underlying theoretical model. It’s virtually impossible to build a good econo-
metric model without a solid understanding of the topic you’re studying.

For most topics, this means that it’s smart to review the scholarly literature 
before doing anything else. If a professor has investigated the theory behind 
your topic, you want to know about it. If other researchers have estimated 
equations for your dependent variable, you might want to apply one of 
their models to your data set. On the other hand, if you disagree with the 
approach of previous authors, you might want to head off in a new direction. 
In either case, you shouldn’t have to “reinvent the wheel.” You should start 
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your investigation where earlier researchers left off. Any academic paper on 
an empirical topic should begin with a summary of the extent and quality of 
previous research.

The most convenient approaches to reviewing the literature are to obtain 
several recent issues of the Journal of Economic Literature or a business-oriented 
publication of abstracts, or to run an Internet search or an EconLit search1 on 
your topic. Using these resources, find and read several recent articles on your 
topic. Pay attention to the bibliographies of these articles. If an older article is 
cited by a number of current authors, or if its title hits your topic on the head, 
trace back through the literature and find this article as well. We’ll have more 
advice on reviewing the literature in Chapter 11.

In some cases, a topic will be so new or so obscure that you won’t be able 
to find any articles on it. What then? We recommend two possible strategies. 
First, try to transfer theory from a similar topic to yours. For example, if you’re 
trying to build a model of the demand for a new product, read articles that 
analyze the demand for similar, existing products. Second, if all else fails, 
contact someone who works in the field you’re investigating. For example, 
if you’re building a model of housing in an unfamiliar city, call a real estate 
agent who works there.

Step 2: Specify the Model: Select the Independent Variables  
and the Functional Form

The most important step in applied regression analysis is the specification of 
the theoretical regression model. After selecting the dependent variable, the 
specification of a model involves choosing the following components:

1. the independent variables and how they should be measured,

2. the functional (mathematical) form of the variables, and

3. the properties of the stochastic error term.

A regression equation is specified when each of these elements has been 
treated appropriately. We’ll discuss the details of these specification decisions 
in Chapters 6, 7, and 4, respectively.

Each of the elements of specification is determined primarily on the 
basis of economic theory. A mistake in any of the three elements results in a 

1. EconLit is an electronic bibliography of economics literature. EconLit contains abstracts,  
reviews, indexing, and links to full-text articles in economics journals. In addition, it abstracts 
books and indexes articles in books, working papers series, and dissertations. EconLit is  available 
at libraries and on university websites throughout the world. For more, go to www. EconLit.org.
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specification error. Of all the kinds of mistakes that can be made in applied 
regression analysis, specification error is usually the most disastrous to the 
validity of the estimated equation. Thus, the more attention paid to eco-
nomic theory at the beginning of a project, the more satisfying the regression 
results are likely to be.

The emphasis in this text is on estimating behavioral equations, those 
that describe the behavior of economic entities. We focus on selecting inde-
pendent variables based on the economic theory concerning that behavior. 
An explanatory variable is chosen because it is a theoretical determinant of 
the dependent variable; it is expected to explain at least part of the varia-
tion in the dependent variable. Recall that regression gives evidence but does 
not prove economic causality. Just as an example does not prove the rule, a 
regression result does not prove the theory.

There are dangers in specifying the wrong independent variables. Our 
goal should be to specify only relevant explanatory variables, those expected 
theoretically to assert a substantive influence on the dependent variable. Vari-
ables suspected of having little effect should be excluded unless their possible 
impact on the dependent variable is of some particular (e.g., policy) interest.

For example, an equation that explains the quantity demanded of a con-
sumption good might use the price of the product and consumer income or 
wealth as likely variables. Theory also indicates that complementary and sub-
stitute goods are important. Therefore, you might decide to include the prices 
of complements and substitutes, but which complements and substitutes? 
Of course, selection of the closest complements and/or substitutes is appro-
priate, but how far should you go? The choice must be based on theoretical 
judgment, and such judgments are often quite subjective.

When researchers decide, for example, that the prices of only two other 
goods need to be included, they are said to impose their priors (i.e., previous 
theoretical belief) or their working hypotheses on the regression equation. 
Imposition of such priors is a common practice that determines the number 
and kind of hypotheses that the regression equation has to test. The danger 
is that a prior may be wrong and could diminish the usefulness of the esti-
mated regression equation. Each of the priors therefore should be explained 
and justified in detail.

Step 3: hypothesize the Expected Signs of the Coefficients

Once the variables have been selected, it’s important to hypothesize the 
expected signs of the slope coefficients before you collect any data. In many 
cases, the basic theory is general knowledge, so you don’t need to discuss the 
reasons for the expected sign. However, if any doubt surrounds the choice of 
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an expected sign, then you should document the opposing theories and your 
reasons for hypothesizing a positive or a negative slope2 coefficient.

For example, suppose that you’re interested in the impact of class size on 
student learning at the elementary level in the United States. A reasonable 
dependent variable 1Y2 might be the student score on a test of grammar, 
math, and science. Likely independent variables would include the income 
level of the student’s family 1X12 and the size (in students per teacher) of the 
student’s class 1X22.

   +   -  
 Y = β0 + β1X1 + β2X2 + e (3.1)

The signs above the coefficients in Equation 3.1 indicate the hypothesized 
sign of that particular coefficient. Take another look at the equation. Do you 
agree with the hypothesized signs? The expectation that higher income will 
improve test scores (holding constant class size) seems reasonable because of 
the extra learning opportunities that the money might allow, but the hypoth-
esized sign for β2 is a little trickier. Do you agree that it should be negative?

Step 4:  Collect the Data. Inspect and Clean the Data

Obtaining an original data set and properly preparing it for regression is a 
surprisingly difficult task. This step entails more than a mechanical recording 
of data, because the type and size of the sample also must be chosen.

A general rule regarding sample size is “the more observations the better,” 
as long as the observations are from the same general population. Ordinarily, 
researchers take all the roughly comparable observations that are readily 
available. In regression analysis, all the variables must have the same number 
of observations. They also should have the same frequency (monthly, quar-
terly, annual, etc.) and time period. Often, the frequency selected is deter-
mined by the availability of data.

The reason there should be as many observations as possible concerns 
the statistical concept of degrees of freedom first mentioned in Section 2.4. 
Consider fitting a straight line to two points on an X, Y coordinate system 
as in Figure 3.1. Such an exercise can be done mathematically without error. 
Both points lie on the line, so there is no estimation of the coefficients 
involved. The two points determine the two parameters, the intercept and the 
slope, precisely. Estimation takes place only when a straight line is fitted to 

2. Note that while we hypothesize signs for the slope coefficients, we don’t hypothesize an 
expected sign for the intercept. We’ll explain why in Section 7.1.
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three or more points that were generated by some process that is not exact. 
The excess of the number of observations (three) over the number of coeffi-
cients to be estimated (in this case two, the intercept and slope) is the degrees 
of freedom.3 All that is necessary for estimation is a single degree of freedom, 
as in Figure 3.2, but the more degrees of freedom there are, the better. This is 
because when the number of degrees of freedom is large, every positive error 
is likely to be balanced by a negative error. When degrees of freedom are low, 
the random element is likely to fail to provide such offsetting observations. 
For example, the more a coin is flipped, the more likely it is that the observed 
proportion of heads will reflect the true probability of 0.5.

Another area of concern has to do with the units of measurement of the 
variables. Does it matter if a variable is measured in dollars or thousands of 
dollars? Does it matter if the measured variable differs consistently from the 
true variable by 10 units? Interestingly, such changes don’t matter in terms 
of regression analysis except in interpreting the scale of the coefficients. All 
conclusions about signs, significance, and economic theory are independent 
of units of measurement. For example, it makes little difference whether an 
independent variable is measured in dollars or thousands of dollars. The 

3. Throughout the text, we will calculate the number of degrees of freedom (d.f.) in a regres-
sion equation as d.f. = (N - K - 1), where K is the number of independent variables in the 
equation. Equivalently, some authors will set K′ = K + 1 and define d.f. = (N - K′). Since 
K′ equals the number of independent variables plus 1 (for the constant), it equals the number 
of coefficients to be estimated in the regression.

Y

0 X

Figure 3.1 Mathematical Fit of a Line to two points

If there are only two points in a data set, as in Figure 3.1, a straight line can be fitted to 
those points mathematically without error, because two points completely determine a 
straight line.
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constant term and measures of overall fit remain unchanged. Such a multipli-
cative factor does change the slope coefficient, but only by the exact amount 
necessary to compensate for the change in the units of measurement of the 
independent variable. Similarly, a constant factor added to a variable alters 
only the intercept term without changing the slope coefficient itself.

The final step before estimating your equation is to inspect and clean the 
data. You should make it a point always to look over your data set to see if 
you can find any errors. The reason is obvious: why bother using sophisti-
cated regression analysis if your data are incorrect?

To inspect the data, obtain a plot (graph) of the data and look for outliers. 
An outlier is an observation that lies outside the range of the rest of the observa-
tions, and looking for outliers is an easy way to find data entry errors. In addi-
tion, it’s a good habit to look at the mean, maximum, and minimum of each 
variable and then think about possible inconsistencies in the data. Are any 
observations impossible or unrealistic? Did GDP double in one year? Does a 
student have a 7.0 GPA on a 4.0 scale? Is consumption negative?

Typically, the data can be cleaned of these errors by replacing an incorrect 
number with the correct one. In extremely rare circumstances, an observation 
can be dropped from the sample, but only if the correct number can’t be found 
or if that particular observation clearly isn’t from the same population as the rest 
of the sample. Be careful! The mere existence of an outlier is not a justification 
for dropping that observation from the sample. A regression needs to be able 
to explain all the observations in a sample, not just the well-behaved ones. For 
more on the details of data collection, see Sections 11.2 and 11.3. For more on 
generating your own data through an economic experiment, see Section 16.1.

Y

0 X

Figure 3.2 statistical Fit of a Line to three points

If there are three (or more) points in a data set, as in Figure 3.2, then the line must almost 
always be fitted to the points statistically, using the estimation procedures of  Section 2.1.
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Step 5:  Estimate and Evaluate the Equation

Believe it or not, it can take months to complete steps 1–4 for a regression 
equation, but a computer program like Stata or EViews can estimate that equa-
tion in less than a second! Typically, estimation is done using OLS, as discussed 
in Section 2.1, but if another estimation technique is used, the reasons for that 
alternative technique should be carefully explained and evaluated.

You might think that once your equation has been estimated, your work is 
finished, but that’s hardly the case. Instead, you need to evaluate your results 
in a variety of ways. How well did the equation fit the data? Were the signs 
and magnitudes of the estimated coefficients what you expected? Most of the 
rest of this book is concerned with the evaluation of estimated econometric 
equations, and beginning researchers should be prepared to spend a consid-
erable amount of time doing this evaluation.

Once this evaluation is complete, don’t automatically go to step 6. Regres-
sion results are rarely what one expects, and additional model development 
often is required. For example, an evaluation of your results might indicate 
that your equation is missing an important variable. In such a case, you’d 
go back to step 1 to review the literature and add the appropriate variable 
to your equation. You’d then go through each of the steps in order until you 
had estimated your new specification in step 5. You’d move on to step 6 only 
if you were satisfied with your estimated equation. Don’t be too quick to 
make such adjustments, however, because we don’t want to adjust the theory 
merely to fit the data. A researcher has to walk a fine line between making 
appropriate changes and avoiding inappropriate ones, and making these 
choices is one of the artistic elements of applied econometrics.

Finally, it’s often worthwhile to estimate additional specifications of an 
equation in order to see how stable your observed results are. This approach, 
called sensitivity analysis, will be discussed in Section 6.4.

Step 6:  Document the Results

A standard format usually is used to present estimated regression results:

 Yni = 103.40 + 6.38Xi 
  (0.88) (3.2)
  t = 7.22 
        N = 20 R 

2 = .73 

The number in parentheses is the estimated standard error of the estimated 
coefficient, and the t-value is the one used to test the hypothesis that the 
true value of the coefficient is different from zero. These and other measures 
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of the quality of the regression will be discussed in later chapters.4 What is 
important to note is that the documentation of regression results using an 
easily understood format is considered part of the analysis itself. For time-
series data sets, the documentation also includes the frequency (e.g., quarterly 
or annual) and the time period of the data.

One of the important parts of the documentation is the explanation of the 
model, the assumptions, and the procedures and data used. The written doc-
umentation must contain enough information so that the entire study could 
be replicated by others.5 Unless the variables have been defined in a glossary 
or table, short definitions should be presented along with the equations. If 
there is a series of estimated regression equations, then tables should provide 
the relevant information for each equation. All data manipulations as well 
as data sources should be documented fully. When there is much to explain, 
this documentation usually is relegated to a data appendix. If the data are not 
available generally or are available only after computation, the data set itself 
might be included in this appendix.

3.2   Using Regression Analysis to Pick 
Restaurant  Locations

To solidify your understanding of the six basic steps of applied regression 
analysis, let’s work through a complete regression example. Suppose that 
you’ve been hired to determine the best location for the next Woody’s res-
taurant, where Woody’s is a moderately priced, 24-hour, family restaurant 
chain.6 You decide to build a regression model to explain the gross sales vol-
ume at each of the restaurants in the chain as a function of various descrip-
tors of the location of that branch. If you can come up with a sound equation 
to explain gross sales as a function of location, then you can use this equa-
tion to help Woody’s decide where to build their newest eatery. Given data on 

4. The standard error of the coefficient is discussed in more detail in Section 4.2; the t-value 
is developed in Section 5.2. 
5. For example, the Journal of Money, Credit, and Banking and the American Economic Review have 
requested authors to submit their actual data sets so that regression results can be verified. See 
W. G. Dewald et al., “Replication in Empirical Economics,” American Economic Review, Vol. 76, 
No. 4, pp. 587–603 and Daniel S. Hamermesh, “Replication in Economics,” NBER Working 
Paper 13026, April 2007.
6. The data in this example are real (they’re from a sample of 33 Denny’s restaurants in Southern 
California), but the number of independent variables considered is much smaller than was 
used in the actual research. Datafile = WOODY3.
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land costs, building costs, and local building and restaurant municipal codes, 
the owners of Woody’s will be able to make an informed decision.

1. Review the literature and develop the theoretical model. You do some reading 
about the restaurant industry, but your review of the literature consists 
mainly of talking to various experts within the firm. They give you some 
good ideas about the attributes of a successful Woody’s location. The ex-
perts tell you that all of the chain’s restaurants are identical (indeed, this 
is sometimes a criticism of the chain) and that all the locations are in 
what might be called “suburban, retail, or residential” environments (as 
distinguished from central cities or rural areas, for example). Because of 
this, you realize that many of the reasons that might help explain differ-
ences in sales volume in other chains do not apply in this case because 
all the Woody’s locations are similar. (If you were comparing Woody’s to 
another chain, such variables might be appropriate.)

In addition, discussions with the people in the Woody’s strategic plan-
ning department convince you that price differentials and consumption 
differences between locations are not as important as the number of cus-
tomers a particular location attracts. This causes you concern for a while 
because the variable you had planned to study originally, gross sales vol-
ume, would vary as prices changed between locations. Since your com-
pany controls these prices, you feel that you would rather have an esti-
mate of the “potential” for such sales. As a result, you decide to specify 
your dependent variable as the number of customers served (measured 
by the number of checks or bills that the servers handed out) in a given 
location in the most recent year for which complete data are available.

2. Specify the model: Select the independent variables and the functional form. 
Your discussions lead to a number of suggested variables. After a while, 
you realize that there are three major determinants of sales (customers) 
on which virtually everyone agrees. These are the number of people 
who live near the location, the general income level of the location, 
and the number of direct competitors close to the location. In addi-
tion, there are two other good suggestions for potential explanatory 
variables. These are the number of cars passing the location per day and 
the number of months that the particular restaurant has been open. 
After some serious consideration of your alternatives, you decide not 
to include the last possibilities. All the locations have been open long 
enough to have achieved a stable clientele. In addition, it would be very 
expensive to collect data on the number of passing cars for all the loca-
tions. Should population prove to be a poor measure of the available 
customers in a location, you’ll have to decide whether to ask your boss 
for the money to collect complete traffic data.
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The exact definitions of the independent variables you decide to 
include are:

N = Competition:  the number of direct market competitors within a 
two-mile radius of the Woody’s location

P = Population:  the number of people living within a three-mile 
radius of the Woody’s location

I  = Income:  the average household income of the population 
measured in variable P

Since we have yet to develop any functional forms other than a linear  
functional form and a typical stochastic error term, that’s what you  
decide to use.

3. Hypothesize the expected signs of the coefficients. After thinking about 
which variables to include, you expect hypothesizing signs will be easy. 
For two of the variables, you’re right. Everyone expects that the more 
competition there is, the fewer customers (holding constant the popu-
lation and income of an area) there will be, and also that the more 
people there are who live near a particular restaurant, the more cus-
tomers (holding constant the competition and income) the restaurant 
will have. You expect that the greater the income is in a particular area, 
the more people will choose to eat in a family restaurant. However, 
people in especially high-income areas might want to eat in a restau-
rant that has more “atmosphere” than a family restaurant like Woody’s. 
As a result, you worry that the income variable might be only weakly 
positive in its impact. To sum, you expect:

        -         +        +?
 Yi = β0 + βNNi + βPPi + βIIi + ei (3.3)

where the signs above the coefficients indicate the expected impact of 
that particular independent variable on the dependent variable, hold-
ing constant the other two explanatory variables, and ei is a typical sto-
chastic error term.

4. Collect the data. Inspect and clean the data. You want to include every 
local restaurant in the Woody’s chain in your study, and, after some 
effort, you come up with data for your dependent variable and your 
independent variables for all 33 locations. You inspect the data, and 
you’re confident that the quality of your data is excellent for three rea-
sons: each manager measured each variable identically, you’ve included 
each restaurant in the sample, and all the information is from the same 
year. [The data set is included in this section, along with a sample com-
puter output for the regression estimated by Stata (Tables 3.1 and 3.2).]
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Table 3.1  data for the Woody’s restaurant example (Using the stata program)

y n p i

1. 107919 3 65044 13240
2. 118866 5 101376 22554
3. 98579 7 124989 16916
4. 122015 2 55249 20967
5. 152827 3 73775 19576

6. 91259 5 48484 15039
7. 123550 8 138809 21857
8. 160931 2 50244 26435
9. 98496 6 104300 24024

10. 108052 2 37852 14987

11. 144788 3 66921 30902
12. 164571 4 166332 31573
13. 105564 3 61951 19001
14. 102568 5 100441 20058
15. 103342 2 39462 16194

16. 127030 5 139900 21384
17. 166755 6 171740 18800
18. 125343 6 149894 15289
19. 121886 3 57386 16702
20. 134594 6 185105 19093

21. 152937 3 114520 26502
22. 109622 3 52933 18760
23. 149884 5 203500 33242
24. 98388 4 39334 14988
25. 140791 3 95120 18505

26. 101260 3 49200 16839
27. 139517 4 113566 28915
28. 115236 9 194125 19033
29. 136749 7 233844 19200
30. 105067 7 83416 22833

31. 136872 6 183953 14409
32. 117146 3 60457 20307
33. 163538 2 65065 20111

(obs=33)

y n p i

y 1.0000
n -0.1442 1.0000
p 0.3926 0.7263 1.0000
i 0.5370 -0.0315 0.2452 1.0000
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Table 3.2 actual computer output (Using the stata program)

number of obs = 33
F(   3,   29) = 15.65
prob 7 F = 0.0000
r–squared = 0.6182
adj r–squared = 0.5787
root Mse = 14543

y coef. std. err. t p 7 � t � [95% conf. interval]

n -9074.674 2052.674 -4.42 0.000 -13272.86 -4876.485
p .3546684 .0726808 4.88 0.000 .2060195 .5033172
i 1.287923 .5432938 2.37 0.025 .1767628 2.399084

_cons 102192.4 12799.83 7.98 0.000 76013.84 128371

source ss df Ms

Model 9.9289e + 09 3 3.3096e + 09
residual 6.1333e + 09 29 211492485

total 1.6062e + 10 32 501943246

y yhat residuals

1. 107919 115089.6 -7170.56
2. 118866 121821.7 -2955.74
3. 98579 104785.9 -6206.864
4. 122015 130642 -8627.041
5. 152827 126346.5 26480.55

6. 91259 93383.88 -2124.877
7. 123550 106976.3 16573.66
8. 160931 135909.3 25021.71
9. 98496 115677.4 -17181.36

10. 108052 116770.1 -8718.094

11. 144788 138502.6 6285.425
12. 164571 165550 -979.0342
13. 105564 121412.3 -15848.3
14. 102568 118275.5 -15707.47
15. 103342 118895.6 -15553.63

16. 127030 133978.1 -6948.114
17. 166755 132868.1 33886.91
18. 125343 120598.1 4744.898
19. 121886 116832.3 5053.7
20. 134594 137985.6 -3391.591

21. 152937 149717.6 3219.428
22. 109622 117903.5 -8281.508
23. 149884 171807.2 -21923.22
24. 98388 99147.65 -759.6514
25. 140791 132537.5 8253.518

26. 101260 114105.4 -12845.43
27. 139517 143412.3 -3895.303
28. 115236 113883.4 1352.599
29. 136749 146334.9 -9585.905
30. 105067 97661.88 7405.122

31. 136872 131544.4 5327.621
32. 117146 122564.5 -5418.45
33. 163538 133021 30517
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5. Estimate and evaluate the equation. You take the data set and enter it into 
the computer. You then run an OLS regression on the data, but you do 
so only after thinking through your model once again to see if there are 
hints that you’ve made theoretical mistakes. You end up admitting that 
although you cannot be sure you are right, you’ve done the best you 
can, so you estimate the equation, obtaining:

 Yni = 102,192 - 9075Ni +  0.355Pi +  1.288Ii (3.4)
              (2053)    (0.073)   (0.543)
                    t = -4.42        4.88          2.37
       N = 33 R 

2 = .579

This equation satisfies your needs in the short run. In particular, the 
estimated coefficients in the equation have the signs you expected. The 
overall fit, although not outstanding, seems reasonable for such a di-
verse group of locations. To predict Y, you obtain the values of N, P, and 
I for each potential new location and then plug them into Equation 3.4. 
Other things being equal, the higher the predicted Y, the better the loca-
tion from Woody’s point of view.

6. Document the results. The results summarized in Equation 3.4 meet our 
documentation requirements. (Note that we include the standard er-
rors of the estimated coefficients and t-values7 for completeness, even 
though we won’t make use of them until Chapter 5.) However, it’s not 
easy for a beginning researcher to wade through a computer’s regres-
sion output to find all the numbers required for documentation. You’ll 
probably have an easier time reading your own computer system’s 
printout if you take the time to “walk through” the sample computer 
output for the Woody’s model in Tables 3.1–3.2. This sample output 
was produced by the Stata computer program, but it’s similar to those 
produced by EViews, SAS, SHAZAM, TSP, and others.

7. Throughout the text, the number in parentheses below a coefficient estimate typically will 
be the standard error of that estimated coefficient. Some authors put the t-value in parentheses, 
though, so be alert when reading journal articles or other books.

The first items listed are the actual data. These are followed by the 
simple correlation coefficients between all pairs of variables in the data 
set. Next comes a listing of the estimated coefficients, their estimated 
standard errors, and the associated t-values, and follows with R2, R2, 
RSS, the F-ratio, and other items that we will explain in later chap-
ters. Finally, we have a listing of the observed Ys, the predicted Ys, and 
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the  residuals for each observation. Numbers followed by “e + 06” or 
“e - 01” are expressed in a scientific notation indicating that the printed 
decimal point should be moved six places to the right or one place to 
the left, respectively.

In future sections, we’ll return to this example in order to apply vari-
ous tests and ideas as we learn them.

3.3  Dummy Variables

Some concepts (for example, gender) might seem impossible to include in 
an equation because they’re inherently qualitative in nature and can’t be 
expressed as a number. Luckily, such concepts can be quantified by using 
dummy (or binary) variables. A dummy variable takes on the value of one 
or zero (and only those values) depending on whether a specified condition 
is met.

As an illustration of a dummy variable, suppose that Yi represents the 
salary of the ith high school teacher and that salaries depend primarily on 
the experience of the teacher and the type of degree that the teacher has 
earned. All teachers have a B.A., but some also have a graduate degree like an 
M.A. An equation representing the relationship between earnings and these 
variables would be:

+        +
 Yi = β0 + β1Xi + β2Di + ei (3.5)

where: Yi = the income of the ith teacher in dollars
  Xi =  the number of years of teaching experience of the ith 

teacher

 Di = e1 if the ith teacher has a graduate degree
0 otherwise

The variable Di takes on values of only zero or one, so Di is called a 
dummy variable, or just a “dummy.” Needless to say, the term has generated 
many a pun. In this case, the dummy variable represents the condition of 
having a graduate degree. The coefficient β2 indicates the additional salary 
that can be attributed to having a graduate degree, holding teaching experi-
ence constant.

Since more experience and a graduate degree can be expected to increase 
the earnings of teachers, we expect positive coefficients for both variables, 
as indicated by the signs above the coefficients in Equation 3.5. Think 
for a second about what those expected signs would be if we had instead 
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defined Di to be equal to one if the ith teacher has no graduate degree and 
equal to zero otherwise. This change shouldn’t impact the expected sign of 
β1, but do you see that the expected sign of β2 now would be negative?8

As can be seen in Figure 3.3, the dummy changes the intercept depending 
on the value of D, but the slopes remain constant no matter what value D 
takes. This is true even if we define the dummy variable “reversed” and have 
D = 0 if the particular condition is met and D = 1 otherwise. The slopes 
still remain constant.

Note that in this example only one dummy variable is used even though 
there were two conditions. This is because one fewer dummy variable is con-
structed than conditions. The event not explicitly represented by a dummy 
variable, the omitted condition, forms the basis against which the included 
conditions are compared. Thus, for dual situations only one dummy variable 
is entered as an independent variable; the coefficient is interpreted as the 
effect of the included condition relative to the omitted condition. Be careful 

Y

0 X

Di = 0

d2

d0

d0 + d2
(d2 7 0)

Di = 1

Both Slopes = d1

Yi = d0 + d1Xi + d2Di

Figure 3.3 a dummy Variable

If a dummy (β2Di) is added to an equation, a graph of the equation will have differ-
ent intercepts for the two qualitative conditions specified by the dummy variable. The 
difference between the two intercepts is β2. The slopes are constant with respect to the 
qualitative condition.

8. The constant term will change as well. 
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never to use two dummy variables to describe the two conditions. If you were 
to make this mistake, sometimes called a dummy variable trap, you’d have per-
fect multicollinearity (to be described in Section 8.1).

For another example of the meaning of the coefficient of a dummy vari-
able, let’s look at a study of the relationship between fraternity/sorority mem-
bership and grade point average (GPA). Most noneconometricians would 
approach this research problem by calculating the mean grades of fraternity/
sorority (so-called Greek) members and comparing them to the mean grades 
of nonmembers. However, such a technique would ignore the relationship 
that grades have to characteristics other than Greek membership.

Instead, we’d want to build a regression model that explains college GPA. 
Independent variables would include not only Greek membership but also 
other predictors of academic performance such as SAT scores and high school 
grades. Being a member of a social organization is a qualitative variable, 
however, so we’d have to create a dummy variable to represent fraternity or 
sorority membership quantitatively in a regression equation:

 Di = •
 1 if the ith student is an active member
   of a fraternity or sorority
 0 otherwise

If we collect data from all the students in our class and estimate the equa-
tion implied in this example, we obtain:

 CGi = 0.37 + 0.81HGi + 0.00001Si - 0.38Di (3.6)
 R 

2 = .45 N = 25

where: CGi =  the cumulative college GPA (4-point scale) of the ith 
 student

 HGi =  the cumulative high school GPA (4-point scale) of the ith 
student

 Si  =  the sum of the highest verbal and mathematics SAT scores 
earned by the ith student

The meaning of the estimated coefficient of Di in Equation 3.6 is very spe-
cific. Stop for a second and figure it out for yourself. What is it? The estimate 
that βnD = -0.38 means that, for this sample, the GPA of fraternity/sorority 
members is 0.38 lower than for nonmembers, holding SATs and high school 
GPA constant. Thus, Greek members are doing about a third of a grade worse 
than otherwise might be expected. To understand this example better, try 
using Equation 3.6 to predict your own GPA; how close does it come?

h
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Before you rush out and quit whatever social organization you’re in, how-
ever, note that this sample is quite small and that we’ve surely omitted some 
important determinants of academic success from the equation. As a result, 
we shouldn’t be too quick to conclude that Greeks are dummies.

Up to this point, we’ve used dummy variables to represent only those 
qualitative variables that have exactly two possibilities (such as gender). What 
about situations where a qualitative variable has three or more alternatives? For 
example, in our study of the salaries of high school teachers in Equation 3.5,  
what if we learn that some of the teachers have Ph.D.s? We now need to be 
able to distinguish teachers whose highest degree is a Ph.D. from teachers 
whose highest degree is an M.A. from teachers whose highest degree is a B.A. 
What can we do?

Well, the answer certainly isn’t to define a variable such that Ph.D. = 2, 
M.A. = 1, and B.A. = 0, because we have no reason to think that the impact 
of having a Ph.D. is exactly twice that of having an M.A. If not that, then 
what?

The answer is to create one fewer dummy variable than there are pos-
sibilities (conditions) and to use each dummy to represent only one of the 
possible conditions. In the high school salary case, you’d create two dummy 
variables to represent the three conditions, for example:

PHDi = e1 if the ith teacher’s highest degree is a Ph.D.
0 otherwise

and

MAi  = e1 if the ith teacher’s highest degree is an M.A.
0 otherwise

The omitted condition (when a B.A. is the highest degree) is represented by 
having both dummies equal to 0. This way you can measure the impact of 
each degree independently without having to link the impacts of having an 
M.A. and a Ph.D.

Thus Equation 3.5 now would look like this:

 +  +  ?
 Yi = β0 + β1Xi + β2PHDi + β3MAi + ei (3.7)

However, be careful! The interpretation of the coefficients when there 
are two or more related dummy variables is tricky. The coefficient tells you 
the increase in the dependent variable caused by the condition being met 
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compared to the omitted condition. Thus β3 measures the impact of having the 
highest degree be an M.A. (holding X and PHD constant) compared to the 
omitted condition, which is when the highest degree is a B.A. To make sure that 
you understand this, go back to Equation 3.7 and determine the expected 
sign of β3. Did you decide it should be positive? That’s right! We’d expect a 
high school teacher whose highest degree is an M.A. to have a higher salary 
than one whose highest degree is a B.A. (holding X and PHD constant).

A dummy variable that has only a single observation with a value of  
1 while the rest of the observations are 0 (or vice versa) is to be avoided 
unless the variable is required by theory. Such a one-time dummy acts merely 
to eliminate that observation from the data set, improving the fit artificially 
by setting the dummy’s coefficient equal to the residual for that observation. 
One would obtain exactly the same estimates of the other coefficients if that 
observation were deleted, but the deletion of an observation is rarely, if ever, 
appropriate.

While this is the end of the section, it’s not the end of our coverage of 
dummy variables. In Section 7.4, we’ll discuss slope dummy variables, and 
in Chapter 13 we’ll analyze what happens when the dependent variable is a 
dummy.

3.4  Summary

1. Six steps typically taken in applied regression analysis for a given 
dependent variable are:
a. Review the literature and develop the theoretical model.
b. Specify the model: Select the independent variables and the func-

tional form.
c. Hypothesize the expected signs of the coefficients.
d. Collect the data. Inspect and clean the data.
e. Estimate and evaluate the equation.
f. Document the results.

2. A dummy variable takes on only the values of 1 or 0, depending on 
whether some condition is met. An example of a dummy variable 
would be X equals 1 if a particular individual is female and 0 if the 
person is male.
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ExErcisEs

(The answers to the even-numberd exercises are in Appendix A.)

 1. Write the meaning of each of the following terms without referring 
to the book (or your notes), and compare your definition with the 
version in the text for each:
a. dummy variable (p. 79)
b. omitted condition (p. 80)
c. six steps in applied regression analysis (p. 66)
d. specification (p. 67)
e. specification error (p. 68)

 2. Contrary to their name, dummy variables are not easy to understand 
without a little bit of practice:
a. Specify a dummy variable that would allow you to distinguish 

between undergraduate students and graduate students in your 
econometrics class.

b. Specify a regression equation to explain the grade (measured on 
a scale of 4.0) each student in your class received on his or her 
first econometrics test (Y) as a function of the student’s grade in a 
previous course in statistics (G), the number of hours the student 
studied for the test (H), and the dummy variable you created above 
(D). Are there other variables you would want to add? Explain.

c. What is the hypothesized sign of the coefficient of D? Does the sign 
depend on the exact way in which you defined D? (Hint: In par-
ticular, suppose that you had reversed the definitions of 1 and 0 in 
your answer to part a.) How?

d. Suppose that you collected the data and ran the regression and 
found an estimated coefficient for D that had the expected sign 
and an absolute value of 0.5. What would this mean in real-world 
terms?

e. Suppose three of the students in your class are high school seniors 
who are taking econometrics as part of an accelerated study pro-
gram for especially talented youngsters. What’s the best way to use 
dummy variables to distinguish between the three types of stu-
dents in your class? Be specific as to the definition of the dummy 
variable(s) you’d use.
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 3. Do liberal arts colleges pay economists more than they pay other 
professors? To find out, we looked at a sample of 2,929 small-college 
faculty members and built a model of their salaries that included a 
number of variables, four of which were:

Sn i = 36,721 + 817Mi + 426Ai + 406Ri + 3539Ti + g (3.8)
      12592   14562     1242   14582
        R2 = .77  N = 2929

  where: Si = the salary of the ith college professor
   Mi =  a dummy variable equal to 1 if the ith professor is a 

male and 0 otherwise
   Ai =  a dummy variable equal to 1 if the ith professor is 

African American and 0 otherwise
   Ri = the years in rank of the ith professor
   Ti  =  a dummy variable equal to 1 if the ith professor 

teaches economics and 0 otherwise

a. Carefully explain the meaning of the estimated coefficient of M.
b. The equation indicates that African Americans earn $426 more 

than members of other ethnic groups, holding constant the other 
variables in the equation. Does this coefficient have the sign you 
expected? Why or why not?

c. Is R a dummy variable? If not, what is it? Carefully explain the 
meaning of the coefficient of R. (Hint: A professor’s salary typically 
increases each year based on rank.)

d. What’s your conclusion? Do economists earn more than other pro-
fessors at liberal arts colleges? Explain.

e. The fact that the equation ends with the notation “+ g” indicates 
that there were more than four independent variables in the equa-
tion. If you could add a variable to the equation, what would it be? 
Explain.

 4. Use Stata or your own computer regression software to estimate Equa-
tion 3.4 using the data in Table 3.1. Can you get the same results?

 5. The Graduate Record Examination (GRE) subject test in economics 
was a multiple-choice measure of knowledge and analytical ability in 
economics that was used mainly as an entrance criterion for students 
applying to Ph.D. programs in the “dismal science.” For years, critics 
claimed that the GRE, like the Scholastic Aptitude Test (SAT), was 
biased against women and some ethnic groups. To test the possibil-
ity that the GRE subject test in economics was biased against women, 
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Mary Hirschfeld, Robert Moore, and Eleanor Brown estimated the fol-
lowing equation (standard errors in parentheses):9

GREi = 172.4 + 39.7Gi + 78.9GPAi + 0.203SATMi + 0.110SAT Vi

110.92   110.42   10.0712    10.0582
N = 149 R 

2 = .46 (3.9)

where: GREi  =  the score of the ith student in the Graduate 
Record Examination subject test in economics

 Gi   =  a dummy variable equal to 1 if the ith student 
was a male, 0 otherwise

 GPAi  =  the GPA in economics classes of the ith student 
(4 = A, 3 = B, etc.)

 SATMi =  the score of the ith student on the mathematics 
portion of the Scholastic Aptitude Test

 SAT Vi =  the score of the ith student on the verbal portion 
of the Scholastic Aptitude Test

a. Carefully explain the meaning of the coefficient of G in this equa-
tion. (Hint: Be sure to specify what 39.7 stands for.)

b. Does this result prove that the GRE is biased against women? Why 
or why not?

c. If you were going to add one variable to Equation 3.9, what would 
it be? Explain your reasoning.

d. Suppose that the authors had defined their gender variables as 
Gi = a dummy variable equal to 1 if the ith student was a female, 
0 otherwise. What would the estimated Equation 3.9 have been 
in that case? (Hint: Only the intercept and the coefficient of the 
dummy variable change.)

 6. Your boss is about to start production of her newest box-office smash-
to-be, Invasion of the Economists, Part II, when she calls you in and asks 
you to build a model of the gross receipts of all the movies produced in 
the last five years. Your regression is (standard errors in parentheses):10

Gn i = 781 + 15.4Ti - 992Fi + 1770Ji + 3027Si - 3160Bi + g
15.92   16742     18002  110062   123812

R2 = .485 N = 254

h

9. Mary Hirschfeld, Robert L. Moore, and Eleanor Brown, “Exploring the Gender Gap on the 
GRE Subject Test in Economics,” Journal of Economic Education, Vol. 26, No. 1, pp. 3–15.

10. This estimated equation (but not the question) comes from a final exam in managerial eco-
nomics given at the Harvard Business School.
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where: Gi =  the final gross receipts of the ith motion picture  
(in thousands of dollars)

 Ti =  the number of screens (theaters) on which the ith 
film was shown in its first week

 Fi =  a dummy variable equal to 1 if the star of the ith 
film is a female and 0 otherwise

 Ji  =  a dummy variable equal to 1 if the ith movie was 
released in June or July and 0 otherwise

 Si =  a dummy variable equal to 1 if the star of the ith 
film is a superstar (like Tom Cruise or Milton) and 0 
otherwise

 Bi =  a dummy variable equal to 1 if at least one member 
of the supporting cast of the ith film is a superstar 
and 0 otherwise

a. Hypothesize signs for each of the slope coefficients in the equa-
tion. Which, if any, of the signs of the estimated coefficients are 
different from your expectations?

b. Milton, the star of the original Invasion of the Economists, is demand-
ing $4 million from your boss to appear in the sequel. If your esti-
mates are trustworthy, should she say “yes” or hire Fred (a nobody) 
for $500,000?

c. Your boss wants to keep costs low, and it would cost $1.2 million 
to release the movie on an additional 200 screens. Assuming your 
estimates are trustworthy, should she spring for the extra screens?

d. The movie is scheduled for release in September, and it would cost 
$1 million to speed up production enough to allow a July release 
without hurting quality. Assuming your estimates are trustworthy, 
is it worth the rush?

e. You’ve been assuming that your estimates are trustworthy. Do you 
have any evidence that this is not the case? Explain your answer.

 7. Let’s get some more experience with the six steps in applied regres-
sion. Suppose that you’re interested in buying an Apple iPod (either 
new or used) on eBay (the auction website) but you want to avoid 
overbidding. One way to get an insight into how much to bid would 
be to run a regression on the prices11 for which iPods have sold in 
previous auctions.

11. This is an example of a hedonic model, in which the price of an item is the dependent 
variable and the independent variables are the attributes of that item rather than the quantity 
demanded/supplied of that item. For more on hedonic models, see Section 11.8.
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   The first step would be to review the literature, and luckily you 
find some good material—particularly a 2008 article by Leonardo 
Rezende12 that analyzes eBay Internet auctions and even estimates a 
model of the price of iPods.

   The second step would be to specify the independent variables and 
functional form for your equation, but you run into a problem. The 
problem is that you want to include a variable that measures the con-
dition of the iPod in your equation, but some iPods are new, some 
are used and unblemished, and some are used and have a scratch or 
other defect.
a. Carefully specify a variable (or variables) that will allow you to 

quantify the three different conditions of the iPods. Please answer 
this question before moving on.

b. The third step is to hypothesize the signs of the coefficients of your 
equation. Assume that you choose the following specification. 
What signs do you expect for the coefficients of NEW, SCRATCH, 
and BIDRS? Explain.

PRICEi = β0 + β1NEWi + β2SCRATCHi + β3BIDRSi + ei

where: PRICEi    =  the price at which the ith iPod sold on 
eBay

 NEWi   =  a dummy variable equal to 1 if the ith iPod 
was new, 0 otherwise

 SCRATCHi =  a dummy variable equal to 1 if the ith iPod 
had a minor cosmetic defect, 0 otherwise

 BIDRSi  = the number of bidders on the ith iPod

c. The fourth step is to collect your data. Luckily, Rezende has data for 
215 silver-colored, 4 GB Apple iPod minis available on a website, 
so you download the data and are eager to run your first regres-
sion. Before you do, however, one of your friends points out that  
the iPod auctions were spread over a three-week period and wor-
ries that there’s a chance that the observations are not comparable  
because they come from different time periods. Is this a valid  
concern? Why or why not?

12. Leonardo Rezende, “Econometrics of Auctions by Least Squares,” Journal of Applied Econo-
metrics, November/December 2008, pp. 925–948.
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d. The fifth step is to estimate your specification using Rezende’s data, 
producing:

PRICEi = 109.24 + 54.99NEWi - 20.44SCRATCHi + 0.73BIDRSi

15.342       15.112       10.592
t =      10.28    -4.00        1.23

N = 215

 Do the estimated coefficients correspond to your expectations? 
Explain.

e. The sixth step is to document your results. Look over the regres-
sion results in part d. What, if anything, is missing that should be 
included in our normal documentation format?

f. (optional) Estimate the equation yourself (Datafile = IPOD3), 
and determine the value of the item that you reported missing in 
your answer to part e.

h

3.5  appendix: econometric Lab #2

This lab contains a section for each of the six steps in applied regression 
analysis. Your project is to estimate an aggregate consumption function for 
the U.S. economy for the period 1945–2014.

Step 1: review the Literature and Develop the theoretical Model

John Maynard Keynes, one of the most influential economists since Adam 
Smith, developed the notion of a consumption function, which explains 
total consumption as a function of disposable personal income. You prob-
ably learned about the Keynesian consumption function in your principles 
of macroeconomics class, your intermediate macroeconomics class, or both. 
Other variables, including interest rates, also affect aggregate consumption.

a. One key analytical concept in the consumption function is the mar-
ginal propensity to consume. If you already know the definition of the 
marginal propensity to consume, write down that definition. If you 
don’t know the definition, read through your macroeconomics text-
book or find an appropriate website and write down the definition, 
being sure to specify your source with a full bibliographical reference.
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b. Use the EconLit database or another source to find two articles from 
academic journals (not newspapers, blogs, or magazines) about the 
consumption function. You don’t need to read the articles, but you 
must include the full bibliographic references for both articles.

Step 2: Specify the Model: Select the Independent Variables and 
the Functional Form

At this point, you would normally choose your independent variables and 
your functional form. Since we’d like everyone to estimate the same equa-
tion, we’ll make those decisions for you. Please estimate a linear consump-
tion function that includes disposable personal income and interest rates as 
your independent variables. The specific variables will be:

CONt real personal consumption expenditures in year t, in billions 
of 2009 dollars

PYDt real disposable personal income in year t, in billions of 2009 
dollars

AAAt the real interest rate in year t

Write out your equation for consumption as a function of disposable 
personal income and the interest rate, using the form of Equation 3.1 in the 
text but substituting the appropriate variable names for Y and X.

Step 3: hypothesize the expected Signs of the Coefficients

Hypothesize the expected signs of the slope coefficients of your model. 
Explain your reasoning—if you don’t know, read about it. That’s what litera-
ture reviews are for!

Step 4: Collect the Data. Inspect and Clean the Data

A handy source of macroeconomic data is the Federal Reserve Economic Data 
(FRED) website: https://research.stlouisfed.org/fred2/. It contains hundreds 
of thousands of downloadable time series from the U.S. and around the 
world. This lab assignment uses data from FRED and other sources. You can 
download this dataset from http://www.pearson.com/studenmund in Stata 
or other formats. The dataset name is LAB3.

Optional: Spot check the dataset yourself by using FRED to find real per-
sonal consumption expenditures in billions of 2009 dollars (annual, not 
seasonally adjusted) for 1946.
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Finally, clean and inspect the data. To do this, print out the summary 
statistics (mean, standard deviation, minimum, maximum) for all three vari-
ables and look for unusual numbers. Do you see any maximum or minimum 
values that are impossible (like negative consumption) or unreasonably high 
(like interest rates over 100%)? If so, that’s a clear indication that there is a 
mistake in the data.

Step 5: estimate and evaluate the equation

Estimate your equation using Stata and print out the results. Then evaluate 
your results by answering the following questions:

a. Do the signs of the coefficients meet the expectations you developed 
in Step 3? If not, explain what differences there are.

b. What is R2? What is R2? Why are they different?

c. According to your results, what is the value of the marginal propensity 
to consume (rounded to three decimal places)? By how much will 
consumption change if disposable personal income falls by $1 billion 
(holding constant the corporate bond Aaa interest rate)?

d. According to your results, by how much will consumption change if 
the corporate bond Aaa interest rate rises by three percentage points 
(holding constant disposable personal income)?

e. Based on your answers to parts a–d above, does your regression result 
seem reasonable, or do you think that you’ve made an error of some sort?

Step 6: Document the results

Now reorganize your Stata regression results and put them into the standard 
format presented in Equation 3.4.
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4.1 The Classical Assumptions

4.2 The Sampling Distribution of �n

4.3  The Gauss–Markov Theorem and the Properties  
of OLS Estimators

4.4 Standard Econometric Notation

4.5 Summary and Exercises

The Classical Model

Chapter 4

The classical model of econometrics has nothing to do with ancient Greece 
or even the classical economic thinking of Adam Smith. Instead, the term 
classical refers to a set of fairly basic assumptions required to hold in order 
for OLS to be considered the “best” estimator available for regression models. 
When one or more of these assumptions do not hold, other estimation tech-
niques (such as Generalized Least Squares, to be explained in Chapter 9) may 
be better than OLS.

As a result, one of the most important jobs in regression analysis is to decide 
whether the classical assumptions hold for a particular equation. If so, the OLS 
estimation technique is the best available. Otherwise, the pros and cons of 
alternative estimation techniques must be weighed. These alternatives usually 
are adjustments to OLS that take account of the particular assumption that 
has been violated. In a sense, most of the rest of this book deals in one way or 
another with the question of what to do when one of the classical assumptions 
is not met. Since econometricians spend so much time analyzing violations 
of them, it is crucial that they know and understand these assumptions.

4.1  The Classical Assumptions

The Classical Assumptions must be met in order for OLS estimators to 
be the best available. Because of their importance in regression analysis, 
the assumptions are presented here in tabular form as well as in words.  

92
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Subsequent chapters will investigate major violations of the assumptions 
and introduce estimation techniques that may provide better estimates in 
such cases.

An error term satisfying Assumptions I through V is called a classical error 
term, and if Assumption VII is added, the error term is called a classical normal 
error term.

I. The regression model is linear, is correctly specified, and has an additive 
error term. The regression model is assumed to be linear:

 Yi = β0 + β1X1i + β2X2i +  g+  βKXKi + ei (4.1)

The assumption that the regression model is linear1 does not require the 
underlying theory to be linear. For example, an exponential function:

 Yi = eβ0Xi
β1eei (4.2)

where e is the base of the natural log, can be transformed by taking the natu-
ral log of both sides of the equation:

 ln1Yi2 = β0 + β1 ln1Xi2 + ei (4.3)

1. The Classical Assumption that the regression model is “linear” technically requires the model 
to be “linear in the coefficients.” You’ll learn what it means for a model to be linear in the 
coefficients, particularly in contrast to being linear in the variables, in Section 7.2. We’ll cover 
the application of regression analysis to equations that are nonlinear in the variables in that 
same section, but the application of regression analysis to equations that are nonlinear in the 
coefficients is beyond the scope of this textbook.

The Classical assumptions

 I.  The regression model is linear, is correctly specified, and has an  
additive error term.

 II. The error term has a zero population mean.

 III. All explanatory variables are uncorrelated with the error term.

 IV.  Observations of the error term are uncorrelated with each other  
(no serial correlation).

 V. The error term has a constant variance (no heteroskedasticity).

 VI.  No explanatory variable is a perfect linear function of any other 
 explanatory variable(s) (no perfect multicollinearity).

 VII.  The error term is normally distributed (this assumption is optional 
but usually is invoked).
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If the variables are relabeled as Yi* = ln1Yi2 and Xi* = ln1Xi2, then the form 
of the equation becomes linear:

 Yi* = β0 + β1Xi* + ei (4.4)

In Equation 4.4, the properties of the OLS estimator of the βs still hold 
because the equation is linear.

Two additional properties also must hold. First, we assume that the equa-
tion is correctly specified. If an equation has an omitted variable or an 
incorrect functional form, the odds are against that equation working well. 
Second, we assume that a stochastic error term has been added to the equa-
tion. This error term must be an additive one and cannot be multiplied by or 
divided into any of the variables in the equation.

II. The error term has a zero population mean. As was pointed out in 
Section 1.2, econometricians add a stochastic (random) error term to regres-
sion equations to account for variation in the dependent variable that is not 
explained by the model. The specific value of the error term for each obser-
vation is determined purely by chance. Probably the best way to picture this 
concept is to think of each observation of the error term as being drawn from 
a random variable distribution such as the one illustrated in Figure 4.1.

Classical Assumption II says that the mean of this distribution is zero. 
That is, when the entire population of possible values for the stochastic error 

Figure 4.1 an error Term distribution with a mean of Zero

Observations of stochastic error terms are assumed to be drawn from a random variable 
distribution with a mean of zero. If Classical Assumption II is met, the expected value 
(the mean) of the error term is zero.

0

Probability

- + g
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term is considered, the average value of that population is zero. For a small 
sample, it is not likely that the mean is exactly zero, but as the size of the 
sample approaches infinity, the mean of the sample approaches zero.

What happens if the mean doesn’t equal zero in a sample? As long as you 
have a constant term in the equation, the estimate of β0 will absorb the non-
zero mean. In essence, the constant term equals the fixed portion of Y that 
cannot be explained by the independent variables, and the error term equals 
the stochastic portion of the unexplained value of Y.

Although it’s true that the error term never can be observed, it’s instructive to 
pretend that we can do so to see how the constant term absorbs the non-zero 
mean of the error term in a sample. Consider a typical regression equation:

 Yi = β0 + β1Xi + ei (4.5)

Suppose that the mean of ei is 3 instead of 0, then2 E1ei - 32 = 0. If we add 
3 to the constant term and subtract it from the error term, we obtain:

 Yi = 1β0 + 32 + β1Xi + 1ei - 32 (4.6)

Since Equations 4.5 and 4.6 are equivalent (do you see why?), and since 
E1ei - 32 = 0, then Equation 4.6 can be written in a form that has a zero 
mean for the error term ei*:

 Yi = β0* + β1Xi + ei* (4.7)

where β0* = β0 + 3 and ei* = ei - 3. As can be seen, Equation 4.7 conforms 
to Assumption II. In essence, if Classical Assumption II is violated in an equa-
tion that includes a constant term, then the estimate of β0 absorbs the non-
zero mean of the error term, and the estimates of the other coefficients are 
unaffected.

III. All explanatory variables are uncorrelated with the error term. It is 
assumed that the observed values of the explanatory variables are indepen-
dent of the values of the error term.

If an explanatory variable and the error term were instead correlated with 
each other, the OLS estimates would be likely to attribute to the X some of 
the variation in Y that actually came from the error term. If the error term 
and X were positively correlated, for example, then the estimated coeffi-
cient would probably be higher than it would otherwise have been (biased 
upward), because the OLS program would mistakenly attribute the variation 

2. Here, as in Chapter 1, the “E” refers to the expected value (mean) of the item in parentheses 
after it. Thus E1ei - 32 equals the expected value of the stochastic error term epsilon minus 3. 
In this specific example, since we’ve defined E1ei2 = 3, we know that E1ei - 32 = 0. One way 
to think about expected value is as our best guess of the long-run average value a specific ran-
dom variable will have.
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in Y caused by e to X instead. As a result, it’s important to ensure that the 
explanatory variables are uncorrelated with the error term.

Classical Assumption III is violated most frequently when a researcher 
omits an important independent variable from an equation.3 As you learned 
in Chapter 1, one of the major components of the stochastic error term is 
omitted variables, so if a variable has been omitted, then the error term will 
change when the omitted variable changes. If this omitted variable is corre-
lated with an included independent variable (as often happens in economics),  
then the error term is correlated with that independent variable as well. We 
have violated Assumption III! Because of this violation, OLS will attribute 
the impact of the omitted variable to the included variable, to the extent that 
the two variables are correlated.

IV. Observations of the error term are uncorrelated with each other. The 
observations of the error term are drawn independently from each other. If a 
systematic correlation exists between one observation of the error term and 
another, then OLS estimates will be less precise than estimates that account 
for the correlation. For example, if the fact that the e from one observation is 
positive increases the probability that the e from another observation also is 
positive, then the two observations of the error term are positively correlated. 
Such a correlation would violate Classical Assumption IV.

In economic applications, this assumption is most important in time-series 
models. In such a context, Assumption IV says that an increase in the error 
term in one time period (a random shock, for example) does not show up 
in or affect in any way the error term in another time period. In some cases, 
though, this assumption is unrealistic, since the effects of a random shock 
sometimes last for a number of time periods. For example, a natural disaster 
like the 2015 earthquake in Nepal will have a negative impact on a region 
long after the time period in which it was truly a random event. If, over all 
the observations of the sample, et + 1 is correlated with et, then the error term is 
said to be serially correlated (or autocorrelated), and Assumption IV is violated. 
Violations of this assumption are considered in more detail in Chapter 9.

V. The error term has a constant variance. The variance (or dispersion) of 
the distribution from which the observations of the error term are drawn 
is constant.4 That is, the observations of the error term are assumed to be 
drawn continually from identical distributions (for example, the one pictured 

3. Another important economic application that violates this assumption is any model that is 
simultaneous in nature. This will be considered in Chapter 14.

4. This is a simplification. The actual assumption (that error terms have positive finite second 
moments) is equivalent to this simplification in all but a few extremely rare cases.
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in Figure 4.1). The alternative would be for the variance of the distribution 
of the error term to change for each observation or range of observations. In 
Figure 4.2, for example, the variance of the error term is shown to increase 
as the variable Z increases; such a pattern violates Classical Assumption V. 
The actual values of the error term are not directly observable, but the lack 
of a constant variance for the distribution of the error term causes OLS to 
generate inaccurate estimates of the standard error of the coefficients.5

For example, suppose that you’re studying the amount of money that the 
50 states spend on education. New York and California are more heavily 
 populated than New Hampshire and Nevada, so it’s probable that the vari-
ance of the error term for big states is larger than it is for small states. The 
amount of unexplained variation in educational expenditures seems likely to 

5. Because some observations have errors with a large variance, those observations are not as 
reliable and so should be given less weight when minimizing the sum of squares. OLS, how-
ever, gives equal weight to each observation, so it will be less precise than estimators that weigh 
the observations more appropriately.

Figure 4.2 an error Term Whose Variance increases as Z increases

One example of Classical Assumption V not being met is when the variance of the error 
term increases as Z increases. In such a situation (called heteroskedasticity), the observa-
tions are on average farther from the true regression line for large values of Z than they 
are for small values of Z.

Y

0 Z

Small gs
Associated with

Small Zs

Large gs Associated
with Large Zs

E(Y|X) = d0 + d1Z
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be larger in big states like New York than in small states like New Hampshire. 
The violation of Assumption V is referred to as heteroskedasticity and will be 
discussed in more detail in Chapter 10.

VI. No explanatory variable is a perfect linear function of any other explan-
atory variable(s). Perfect collinearity between two independent variables 
implies that they are really the same variable, or that one is a multiple of the 
other, and/or that a constant has been added to one of the variables. That is, 
the relative movements of one explanatory variable will be matched exactly 
by the relative movements of the other even though the absolute size of the 
movements might differ. Because every movement of one of the variables is 
matched exactly by a relative movement in the other, the OLS estimation 
procedure will be incapable of distinguishing one variable from the other.

Many instances of perfect collinearity (or multicollinearity if more than 
two independent variables are involved) are the result of the researcher not 
accounting for identities (definitional equivalences) among the independent 
variables. This problem can be corrected easily by dropping one of the per-
fectly collinear variables from the equation.

What’s an example of perfect multicollinearity? Suppose that you decide 
to build a model of the profits of tire stores in your city and you include 
annual sales of tires (in dollars) at each store and the annual sales tax paid by 
each store as independent variables. Since the tire stores are all in the same 
city, they all pay the same percentage sales tax, so the sales tax paid will be 
a constant percentage of their total sales (in dollars). If the sales tax rate is 
7%, then the total taxes paid will be 7% of sales for each and every tire store. 
Thus sales tax will be a perfect linear function of sales, and you’ll have perfect 
multicollinearity!

Perfect multicollinearity also can occur when two independent variables 
always sum to a third or when one of the explanatory variables doesn’t 
change within the sample. With perfect multicollinearity, OLS (or any other 
estimation technique) will be unable to estimate the coefficients of the col-
linear variables (unless there is a rounding error). While it’s quite unusual 
for an experienced researcher to encounter perfect multicollinearity, even 
imperfect multicollinearity can cause problems for estimation, as you will see 
in Chapter 8.

VII. The error term is normally distributed. Although we have already 
assumed that observations of the error term are drawn independently 
(Assumption IV) from a distribution that has a zero mean (Assumption II) 
and that has a constant variance (Assumption V), we have said little about the 
shape of that distribution. Assumption VII states that the observations of the 
error term are drawn from a distribution that is normal (that is, bell-shaped, 
and generally following the symmetrical pattern portrayed in Figure 4.3).
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99 The ClassiCal assumpTions

This assumption of normality is not required for OLS estimation. Its major 
application is in hypothesis testing and confidence intervals, which use the esti-
mated regression coefficient to investigate hypotheses about economic behav-
ior. Hypothesis testing is the subject of Chapter 5, and without the normality 
assumption, most of the small sample tests of that chapter would be invalid.

Even though Assumption VII is optional, it’s usually advisable to add the 
assumption of normality to the other six assumptions for two reasons:

1. The error term ei can be thought of as the sum of a number of minor 
influences or errors. As the number of these minor influences gets 
larger, the distribution of the error term tends to approach the normal 
distribution.

2. The t-statistic and the F-statistic, which will be developed in Chapter 5, 
are not truly applicable unless the error term is normally distributed.

A quick look at Figure 4.3 shows how normal distributions differ when 
the means and variances are different. In normal distribution A (a Standard 
Normal Distribution), the mean is 0 and the variance is 1; in normal distri-
bution B, the mean is 2, and the variance is 0.5. When the mean is different, 
the entire distribution shifts. When the variance is different, the distribution 
becomes fatter or skinnier.

Figure 4.3 normal distributions

Although all normal distributions are symmetrical and bell-shaped, they do not neces-
sarily have the same mean and variance. Distribution A has a mean of 0 and a variance 
of 1, whereas distribution B has a mean of 2 and a variance of 0.5. As can be seen, the 
whole distribution shifts when the mean changes, and the distribution gets fatter as the 
variance increases.

0 2.0 4.0-2.0

Probability

Distribution A      
o = 0
u2 = 1

Distribution B             
o = 2   
u2 = 0.5
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100 ChAPTEr 4 The ClassiCal model

4.2  The Sampling Distribution of �N

“It cannot be stressed too strongly how important it is for students  
to understand the concept of a sampling distribution.”6

Just as the error term follows a probability distribution, so too do the 
estimates of β. In fact, each different sample of data typically produces a 
different estimate of β. The probability distribution of these βN  values across 
different samples is called the sampling distribution of �N .

Recall that an estimator is a formula, such as the OLS formula in Equa-
tion 2.4 that tells you how to compute βN , while an estimate is the value of βN  
computed by the formula for a given sample. Since researchers usually have 
only one sample, beginning econometricians often assume that regression 
analysis can produce only one estimate of β for a given population. In real-
ity, however, each different sample from the same population will produce a 
different estimate of β. The collection of all the possible samples has a distri-
bution, with a mean and a variance, and we need to discuss the properties of 
this sampling distribution of βN , even though in most real applications we will 
encounter only a single draw from it. Be sure to remember that a sampling 
distribution refers to the distribution of different values of βN  across differ-
ent samples, not within one. These βN s usually are assumed to be normally 
distributed because the normality of the error term implies that the OLS esti-
mates of β are normally distributed as well.

Let’s look at an example of a sampling distribution of βN  by going back 
to the height and weight example of Chapter 1 (with weight measured in 
pounds and height measured in inches above five feet).

 +
 WEIGHTi = β0 + β1HEIGHTi + ei (4.8)

Suppose you take a sample of six students and apply OLS to Equation 4.8 to 
get an estimate of β1. So far, so good.

But what will happen if you select a second sample of six students and do 
the same thing? Will you get the exact same βN 1? Nope! Your second βN 1 will 
depend on the second sample, which almost surely will be different from 
your first sample. If your random sample includes a couple of football line-
men, you’re likely to get a really large coefficient. If you randomly choose 
some cross country runners, you’ll get a low estimate. Even if there’s nothing 

6. Peter Kennedy, A Guide to Econometrics (Malden, MA: Blackwell, © 2008), p. 403.
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101 The Sampling DiSTribuTion of �N

unusual about your second sample, you’ll almost certainly get a different βN 1. 
Why? Different data yield different estimates, so if you collect 100 samples, 
you’re likely to get 100 different βN 1s.

All these βN 1 estimates come from a distribution with its own mean and 
variance, called a sampling distribution. To help you understand this, we took 
100 different samples of six students and estimated Equation 4.8 100 times. 
Take a look at Figure 4.4. With the help of a histogram, we’ve graphed all 100 
βN 1s so that we can get an idea of what the sampling distribution looks like.

While the histogram in Figure 4.4 isn’t perfectly normally distributed (rep-
resented by the thin line), it’s close. Notice how the estimates are clustered 
in the middle (near the mean of 7.75), with fewer and fewer estimates in 
the tails. With many more estimates of β1, we’d expect the histogram to look 
even more like a normal curve.

For an estimation technique to be “good,” the mean of the sampling  
distribution of the βN s it produces should equal the true population β. This 
property has a special name in econometrics: unbiasedness. There’s much 
more to come on this idea.

Figure 4.4 a height and Weight Sampling Distribution of βN

We estimated Equation 4.8 (the height weight equation) with 100 samples of six students  
each and plotted the 100 βN s in Figure 4.4. The result is a sampling distribution of βN  
with a mean of 7.75 and a pattern that is reasonably close to being normally distributed 
(the thin line).
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102 ChAPTEr 4 The ClassiCal model

Although we don’t know the true β in this case, it’s likely that if we took 
enough samples—thousands perhaps—the mean of the βN 1s would approach 
the true β. For example, when we took 1,000 samples of six, the mean of the 
βN 1s was 6.88. The chances are that 6.88 is closer to the true β than is 7.75, the 
mean of the 100 estimates shown in Figure 4.4.

The moral of the story is that while a single sample provides a single estimate 
of β1, that estimate comes from a sampling distribution with a mean and a 
variance. Other estimates from that sampling distribution will most likely be 
different. When we discuss the properties of estimators in the next section, 
it will be important to remember that we are discussing the properties of a 
sampling distribution, not the properties of one sample.

Properties of the Mean

A desirable property of a distribution of estimates is that its mean equals the 
true mean of the variable being estimated. An estimator that yields such esti-
mates is called an unbiased estimator.

Only one value of βN  is obtained in practice, but the property of unbiasedness 
is useful because a single estimate drawn from an unbiased distribution is 
more likely to be near the true value (assuming identical variances) than one 
taken from a distribution not centered around the true value. If an estimator 
produces βN s that are not centered around the true β, the estimator is referred 
to as a biased estimator.

We cannot ensure that every estimate from an unbiased estimator is better 
than every estimate from a biased one, because a particular unbiased esti-
mate7 could, by chance, be farther from the true value than a biased estimate 
might be. This could happen by chance or because the biased estimator had 

An estimator βN  is an unbiased estimator if its sampling distribution has 
as its expected value the true value of β.

 E1βN 2 = β (4.9)

7. Technically, since an estimate has just one value, an estimate cannot be unbiased (or biased). 
On the other hand, the phrase “estimate produced by an unbiased estimator” is cumbersome, 
especially if repeated 10 times on a page. As a result, many econometricians use “unbiased 
estimate” as shorthand for “a single estimate produced by an unbiased estimator.”
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103 The sampling disTribuTion of �N

a smaller variance. For example, a broken clock is a biased estimator of the 
time of day, but it has a zero variance and happens to be exactly right twice 
a day. Without any other information about the distribution of the esti-
mates, however, we would always rather have an unbiased estimate than a 
biased one.

Properties of the Variance

Just as we would like the distribution of the βN s to be centered around the 
true population β, we would also like that distribution to be as narrow (or 
precise) as possible. A distribution centered around the truth but with an 
extremely large variance might be of very little use because any given esti-
mate would quite likely be far from the true β value. For a βN  distribution  
with a small variance, the estimates are likely to be close to the mean of 
the sampling distribution. To see this more clearly, compare distributions 
A and B (both of which are unbiased) in Figure 4.5. Distribution A, which 
has a larger variance than distribution B, is less precise than distribution B. 

Figure 4.5 distributions of βN

Different distributions of βN  can have different means and variances. Distributions  
A and B, for example, are both unbiased, but distribution A has a larger variance than 
does distribution B. Distribution C has a smaller variance than distribution A, but  
it is biased.

True
d

Distribution B
(unbiased, small variance)

Distribution A
(unbiased, large variance)

Distribution C
(biased, medium variance)
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104 ChAPTEr 4 The ClassiCal model

For comparison purposes, a biased distribution (distribution C) is also pictured; 
note that bias implies that the expected value of the distribution is to the 
right or left of the true β.

The variance of the distribution of the βN s can be decreased by increasing  
the size of the sample. This also increases the degrees of freedom, since the 
number of degrees of freedom equals the sample size minus the number 
of coefficients or parameters estimated. As the number of observations 
increases, other things held constant, the variance of the sampling distribu-
tion tends to decrease. Although it is not true that a sample of 60 will always 
produce estimates closer to the true β than a sample of 6, it is quite likely to 
do so; such larger samples should be sought. Figure 4.6 presents illustrative 
sampling distributions of βN s for 6, 60, and 600 observations for OLS estima-
tors of β when the true β equals 1. The larger samples do indeed produce 
sampling distributions that are more closely centered around β.

1 2 3

d

4

N = 60

N = 600

N = 6

0-1-2

N

Figure 4.6 sampling distribution of βN  for Various observations (n)

As the size of the sample increases, the variance of the distribution of βN s calculated from 
that sample tends to decrease. In the extreme case (not shown), a sample equal to the 
population would yield only an estimate equal to the mean of that distribution, which 
(for unbiased estimators) would equal the true β, and the variance of the estimates 
would be zero.
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The powerful lesson illustrated by Figure 4.6 is that if you want to maxi-
mize your chances of getting an estimate close to the true value, apply OLS to 
a large sample. There’s no guarantee that you’ll get a more accurate estimate 
from a large sample, but your chances are better. Larger samples, all else 
equal, tend to result in more precise estimates. And if the estimator is unbi-
ased, more precise estimates are more accurate estimates.

Think of it this way. Having a couple of cross country runners might lead 
to a pretty wacky estimate from a sample of 6, but their influence on βN 1 is 
going to be much smaller in a sample of 60. You could imagine getting 2 
cross country runners in a random sample of 6 students, but it would be vir-
tually impossible to get 20 cross country runners in a sample of 60. So try to 
get larger samples.

In econometrics, we must rely on general tendencies. The element of 
chance, a random occurrence, is always present in estimating regression coef-
ficients, and some estimates may be far from the true value no matter how 
good the estimating technique. However, if the distribution is centered on 
the true value and has as small a variance as possible, the element of chance 
is less likely to induce a poor estimate. If the sampling distribution is cen-
tered around a value other than the true β (that is, if βN  is biased) then a lower 
variance implies that most of the sampling distribution of βN  is concentrated 
on the wrong value. However, if this value is not very different from the true 
value, which is usually not known in practice, then the greater precision will 
still be valuable.

One method of deciding whether this decreased variance in the distribu-
tion of the βN s is valuable enough to offset the bias is to compare different 
estimation techniques by using a measure called the Mean Square Error (MSE). 
The Mean Square Error is equal to the variance plus the square of the bias. The 
lower the MSE, the better.

A final item of importance is that as the variance of the error term 
increases, so too does the variance of the distribution of βN . The reason for the 
increased variance of βN  is that with the larger variance of ei, the more extreme 
values of ei are observed with more frequency, and the error term becomes 
more important in determining the values of Yi.

The Standard Error of �N

Since the standard error of the estimated coefficient, SE 1�N 2 , is the square 
root of the estimated variance of the βN s, it is similarly affected by the size of 
the sample and the other factors we’ve mentioned. For example, an increase 
in sample size will cause SE1βN 2 to fall; the larger the sample, the more pre-
cise our coefficient estimates will be.
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106 ChAPTEr 4 The ClassiCal model

Given Classical Assumptions I through VI (Assumption VII, normality, 
is not needed for this theorem), the Ordinary Least Squares estimator of 
βk is the minimum variance estimator from among the set of all linear 
unbiased estimators of βk, for k = 0, 1, 2, c, K.

4.3   The Gauss–Markov Theorem and the Properties  
of OLS Estimators

The Gauss–Markov Theorem proves two important properties of OLS estima-
tors. This theorem is proven in all advanced econometrics textbooks, but for 
a regression user, it’s more important to know what the theorem implies than 
to be able to prove it. The Gauss–Markov Theorem states that:

The Gauss–Markov Theorem is perhaps most easily remembered by stat-
ing that “OLS is BLUE” where BLUE stands for “Best (meaning minimum 
variance) Linear Unbiased Estimator.” Students who might forget that “best” 
stands for minimum variance might be better served by remembering “OLS 
is MvLUE,” but such a phrase is hardly catchy or easy to remember.

If an equation’s coefficient estimation is unbiased (that is, if each of the 
estimated coefficients is produced by an unbiased estimator of the true popu-
lation coefficient), then:

 E1βN k2 = βk  1k = 0, 1, 2, c, K2

Best means that each βN k has the smallest variance possible (in this case, out 
of all the linear unbiased estimators of βk). An unbiased estimator with the 
smallest variance is called efficient, and that estimator is said to have the prop-
erty of efficiency. Since the variance typically falls as the sample size increases, 
larger samples almost always produce more accurate coefficient estimates than 
do smaller ones.

The Gauss–Markov Theorem requires that just the first six of the seven 
classical assumptions be met. What happens if we add in the seventh assump-
tion, that the error term is normally distributed? In this case, the result of 
the Gauss–Markov Theorem is strengthened because the OLS estimator can 
be shown to be the best (minimum variance) unbiased estimator out of all 
the possible estimators, not just out of the linear estimators. In other words, 
if all seven assumptions are met, OLS is “BUE.”
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Given all seven classical assumptions, the OLS coefficient estimators can 
be shown to have the following properties:

1. They are unbiased. That is, E1βN 2 is β. This means that the OLS estimates 
of the coefficients are centered around the true population values of 
the parameters being estimated.

2. They are minimum variance. The distribution of the coefficient estimates 
around the true parameter values is as tightly or narrowly distributed 
as is possible for an unbiased distribution. No other unbiased estima-
tor has a lower variance for each estimated coefficient than OLS.

3. They are consistent. As the sample size approaches infinity, the estimates 
converge to the true population parameters. Put differently, as the 
sample size gets larger, the variance gets smaller, and each estimate  
approaches the true value of the coefficient being estimated.8

4. They are normally distributed. The βN s are N1β, VAR3βN 42. Thus various 
statistical tests based on the normal distribution may indeed be  
applied to these estimates, as will be done in Chapter 5.

4.4  Standard Econometric Notation

This section presents the standard notation used throughout the economet-
rics literature. Table 4.1 presents various alternative notational devices used 
to represent the different population (true) parameters and their correspond-
ing estimates (based on samples).

The measure of the central tendency of the sampling distribution of βN , 
which can be thought of as the mean of the βN s, is denoted as E1βN 2, read as 
“the expected value of beta-hat.” The variance of βN  is the typical measure of 
dispersion of the sampling distribution of βN . The variance (or, alternatively, 
the square root of the variance, called the standard deviation) has several alter-
native notational representations, including VAR1βN 2 and σ21βN 2, read as the 
“variance of beta-hat.”

The variance of the estimates is a population parameter that is never actu-
ally observed in practice; instead, it is estimated with σN 21βN k2, also written as 
s21βN k2. Note, by the way, that the variance of the true β, σ21β2, is zero, since 
there is only one true βk with no distribution around it. Thus, the estimated 

8. Technically, OLS estimates are consistent only if the independent variables continue to 
fluctuate as the sample size increases. See Halbert White, Asymptotic Theory for Econometricians 
(Orlando: Academic Press, 1984), p. 20.
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108 Chapter 4 The ClassiCal Model

variance of the estimated coefficient is defined and observed, the true vari-
ance of the estimated coefficient is unobservable, and the true variance of the 
true coefficient is zero. The square root of the estimated variance of the coef-
ficient estimate is the standard error of βN , SE1βN k2, which we will use exten-
sively in hypothesis testing.

4.5  Summary

 1. The seven Classical Assumptions state that the regression model is 
linear with an additive error term that has a mean of zero, is uncorre-
lated with the explanatory variables and other observations of the error 
term, has a constant variance, and is normally distributed (optional). 
In addition, explanatory variables must not be perfect linear functions 
of each other.

Table 4.1 Notation Conventions

population parameter  
(true Values, but Unobserved)

estimate  
(Observed from Sample)

Name Symbol(s) Name Symbol(s)

Regression  
 coefficient

βk estimated regression  
 coefficient

βn k

expected value of 
  the estimated  

coefficient

e1βn k2

Variance of the  
 error term

σ2 or VaR1ei2 estimated variance  
 of the error term

s2 or σn2

standard deviation  
 of the error term

σ an estimate of the  
  standard deviation 

of the error term

s or se

Variance of the  
 estimated  
 coefficient

σ21βn k2 or VaR1βn k2 estimated variance  
  of the estimated 

coefficient

s21βn k2 or VaR1βn k2

standard deviation 
  of the estimated 

coefficient

σβk or σ1βn k2 standard error of  
  the estimated  

coefficient

σn 1βn k2 or se1βn k2

error or  
  disturbance  

term

ei Residual (estimate  
  of error in a loose 

sense)

ei

h

 n
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 2. The two most important properties of an estimator are unbiasedness 
and minimum variance. An estimator is unbiased when the expected 
value of the estimated coefficient is equal to the true value. Minimum 
variance holds when the estimating distribution has the smallest vari-
ance of all the estimators in a given class of estimators (for example, 
unbiased estimators).

 3. Given the Classical Assumptions, OLS can be shown to be the mini-
mum variance, linear, unbiased estimator (or BLUE, for best linear 
unbiased estimator) of the regression coefficients. This is the Gauss–
Markov Theorem. When one or more of the classical properties do 
not hold (excluding normality), OLS is no longer BLUE, although it 
still may provide better estimates in some cases than the alternative 
estimation techniques discussed in subsequent chapters.

 4. Because the sampling distribution of the OLS estimator of βN k is BLUE, 
it has desirable properties. Moreover, the variance, or the measure of 
dispersion of the sampling distribution of βN k , decreases as the num-
ber of observations increases.

 5. There is a standard notation used in the econometric literature.  
Table 4.1 presents this fairly complex set of notational conventions 
for use in regression analysis. This table should be reviewed periodi-
cally as a refresher.

ExErcisEs

(The answers to the even-numbered exercises are in appendix a.)

 1. Write the meaning of each of the following terms without referring 
to the book (or to your notes), and compare your definition with the 
version in the text for each:
a. biased estimator (p. 102)
b. BLUE (p. 106)
c. classical error term (p. 93)
d. efficiency (p. 106)
e. Gauss–Markov Theorem (p. 106)
f. sampling distribution of βn  (p. 100)
g. SE1βN 2 (p. 105)
h. standard normal distribution (p. 99)
i. the Classical Assumptions (p. 92)
j. unbiased estimator (p. 102)

M04_STUD2742_07_SE_C04.indd   109 19/01/16   5:14 PM
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 2. Consider the following estimated regression equation (standard errors 
in parentheses):

Ynt = -120 + 0.10Ft + 5.33Rt  R 

2 = .50
10.052   11.002

where:  Yt = the corn yield (bushels/acre) in year t
    Ft = fertilizer intensity (pounds/acre) in year t
   Rt = rainfall (inches) in year t

a. Carefully state the meaning of the coefficients 0.10 and 5.33 in this 
equation in terms of the impact of F and R on Y.

b. Does the constant term of -120 really mean that negative amounts 
of corn are possible? If not, what is the meaning of that estimate?

c. Suppose you were told that the true value of βF is known to be 0.20. 
Does this show that the estimate is biased? Why or why not?

d. Suppose you were told that the equation does not meet all the clas-
sical assumptions and therefore is not BLUE. Does this mean that 
the true βR is definitely not equal to 5.33? Why or why not?

 3. Which of the following pairs of independent variables would violate 
Assumption VI? (That is, which pairs of variables are perfect linear 
functions of each other?)
a. right shoe size and left shoe size (of students in your class)
b. consumption and disposable income (in the United States over the 

last 30 years)
c. Xi and 2Xi

d. Xi and 1Xi22

 4. Edward Saunders published an article that tested the possibility that 
the stock market is affected by the weather on Wall Street. Using daily 
data from 28 years, he estimated an equation with the following vari-
ables (standard errors in parentheses):9

DJt = βN 0 + 0.10Rt - 1 + 0.0010Jt - 0.017Mt + 0.0005Ct

10.012     10.00062   10.0042     10.00022
N = 6,911 (daily) R 

2 = .02

8

9. Edward M. Saunders, Jr., “Stock Prices and Wall Street Weather,” American Economic Review, 
Vol. 76, No. 1, pp. 1337–1346. (Published by the American Economic Association, © 1993.) 
Saunders also estimated equations for the New York and American Stock Exchange indices, 
both of which had much higher R2s than did this equation. Rt - 1 was included in the equation 
“to account for nonsynchronous trading effects” (p. 1341).
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where: DJt =  the percentage change in the Dow Jones industrial 
average on day t

  Rt  = the daily index capital gain or loss for day t
  Jt  =  a dummy variable equal to 1 if the ith day was in 

January, 0 otherwise
  Mt  =  a dummy variable equal to 1 if the ith day was a 

Monday, 0 otherwise
  Ct  =   a variable equal to 1 if the cloud cover was 20 per-

cent or less, equal to -1 if the cloud cover was 100 
percent, 0 otherwise

a. Saunders did not include an estimate of the constant term in his 
published regression results. Which of the Classical Assumptions 
supports the conclusion that you shouldn’t spend much time 
analyzing estimates of the constant term? Explain.

b. Which of the Classical Assumptions would be violated if you  
decided to add a dummy variable to the equation that was equal 
to 1 if the ith day was a Tuesday, Wednesday, Thursday, or Friday, 
and equal to 0 otherwise? (Hint: The stock market is not open on 
weekends.)

c. Carefully state the meaning of the coefficients of R and M, being 
sure to take into account the fact that R is lagged (one time period 
behind) in this equation for valid theoretical reasons.

d. The variable C is a measure of the percentage of cloud cover from 
sunrise to sunset on the ith day and reflects the fact that approxi-
mately 85 percent of all New York’s rain falls on days with 100 
percent cloud cover. Is C a dummy variable? What assumptions 
(or conclusions) did the author have to make to use this variable? 
What constraints does it place on the equation?

e. Saunders concludes that these findings cast doubt on the hypoth-
esis that security markets are entirely rational. Based just on the 
small portion of the author’s work that we include in this question, 
would you agree or disagree? Why?

 5. In Hollywood, most nightclubs hire “promoters,” or people who walk 
around near the nightclub and try to convince passersby to enter the 
club. One of the nightclub owners asked a marketing consultant to 
estimate the effectiveness of such promoters in terms of their ability 
to attract patrons to the club. The consultant did some research and 
found that the main entertainment at the nightclubs was attractive 
dancers and that the most popular nightclubs were on Hollywood 
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Boulevard or attached to hotels, so he hypothesized the following 
model of nightclub attendance:

+  +  +  +
PEOPLEi = β0 + β1HOLLYi + β2PROMOi + β3HOTELi + β4GOGOi + ei

where:  PEOPLEi  =  attendance at the ith nightclub at midnight 
on Saturday 11/24/07

 HOLLYi  =  equal to 1 if the ith nightclub is on Hollywood 
Boulevard, 0 otherwise

 PROMOi =  number of promoters working at the ith 
nightclub that night

 HOTELi  =  equal to 1 if the ith nightclub is part of a 
hotel, 0 otherwise

 GOGOi  =  number of dancers working at the ith night-
club that night

  He then collected data from 25 similarly sized nightclubs on or near 
Hollywood Boulevard and came up with the following estimates 
(standard errors in parentheses):

PEOPLEi = 162.8 + 47.4HOLLYi + 22.3PROMOi + 214.5HOTELi + 26.9GOGOi

121.72      111.82         146.02      17.22
N = 25 R 

2 = .57

  Let’s work through the classical assumptions to see which assump-
tions might or might not be met by this model. As we analyze each 
assumption, make sure that you can state the assumption from 
memory and that you understand how the following questions help 
us understand whether the assumption has been met.
a. Assumption I: Is the equation linear with an additive error term? Is 

there a chance that there’s an omitted variable or an incorrect func-
tional form?

b. Assumption II: Is there a constant term in the equation?
c. Assumption III: Is there a chance that there’s an omitted variable or 

that this equation is part of a simultaneous system?
d. Assumption IV: Is the model estimated with time-series data with 

the chance that a random event in one time period could affect the 
regression in subsequent time periods?

e. Assumption V: Is the model estimated with cross-sectional data 
with dramatic variations in the size of the dependent variable?

f. Assumption VI: Is any independent variable a perfect linear func-
tion of any other independent variable?

®
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g. Assume that dancers earn about as much per hour as promoters. If 
the equation is accurate, should the nightclub owner hire one more 
promoter or one more dancer if they want to increase attendance? 
Explain your answer.

 6. In 2001, Donald Kenkel and Joseph Terza published an article in 
which they investigated the impact on an individual’s alcohol con-
sumption of a physician’s advice to reduce drinking.10 In that article, 
Kenkel and Terza used econometric techniques well beyond the scope 
of this text to conclude that such physician advice can play a signifi-
cant role in reducing alcohol consumption.

   We took a fifth (no pun intended) of the authors’ dataset11 and esti-
mated the following equation (standard errors in parentheses):

DRINKSi = 13.00 + 11.36ADVICEi - 0.20EDUCi + 2.85DIVSEPi + 14.20UNEMPi

12.122      10.312      12.552       15.162
t = 5.37       -0.65          1.11         2.75

N = 500 R 

2 = .07

where: DRINKSi =  drinks consumed by the ith individual in the last 
two weeks

   ADVICEi =  1 if a physician had advised the ith individual to 
cut back on drinking alcohol, 0 otherwise

   EDUCi  = years of schooling of the ith individual
   DIVSEPi  =  1 if the ith individual was divorced or separated, 0 

otherwise
   UNEMPi  =  1 if the ith individual was unemployed, 0 

otherwise

a. Carefully state the meaning of the estimated coefficients of DIVSEP 
and UNEMP. Do the signs of the coefficients make sense to you? 
Do the relative sizes of the coefficients make sense to you? Explain.

®

10. Donald S. Kenkel and Joseph V. Terza, “The Effect of Physician Advice on Alcohol Con-
sumption: Count Regression with an Endogenous Treatment Effect,” Journal of Applied Econo-
metrics, 2001, pp. 165–184.

11. The dataset, which is available on the JAE website, consists of more than 20 variables for 
2467 males who participated in the 1990 National Health Interview Survey and who were 
current drinkers with high blood pressure. Because roughly 30 percent of the sample had zero 
drinks, many econometricians wouldn’t use OLS to estimate this equation. Instead, they’d use 
techniques that, while similar to those covered in Chapter 13, are beyond the scope of this text.
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b. Carefully state the meaning of the estimated coefficient of ADVICE. 
Does the sign of the coefficient make sense to you? If so, explain. 
If not, this unexpected sign might be related to a violation of one 
of the Classical Assumptions. What Classical Assumption (other 
than Assumption I) is this equation almost surely violating? (Hint: 
Think about what might cause a physician to advise a patient to cut 
back on alcohol drinking and then review the Classical Assump-
tions one more time.)

c. We broke up our sample of 500 observations into five different 
samples of 100 observations each and calculated βns for four of the 
five samples. The results (for βN ADVICE) were:

1st sample: βN ADVICE = 10.43

2nd sample: βN ADVICE = 13.52

3rd sample: βN ADVICE = 14.39

4th sample: βN ADVICE = 8.01

The βN s are different! Explain in your own words how it’s possible 
to get different βN s when you’re estimating identical specifications 
on data that are drawn from the same source. What term would 
you use to describe this group of βN s?

d. The data for the fifth sample of 100 observations are in data-
set DRINKS4 on the text’s website. Use these data to estimate  
DRINKS = f(ADVICE, EDUC, DIVSEP, and UNEMP) with Stata, 
EViews, or another regression program. What value do you get for 
βN ADVICE? How do your estimated coefficients compare to those of 
the entire sample of 500?
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Chapter 5

Hypothesis Testing and 
Statistical Inference

5.1 What Is Hypothesis Testing?

5.2 The t-Test

5.3 Examples of t-Tests

5.4 Limitations of the t-Test

5.5 Confidence Intervals

5.6 The F-Test

5.7 Summary and Exercises

5.8 Appendix: Econometric Lab #3

In this chapter, we return to the essence of econometrics—an effort to quan-
tify economic relationships by analyzing sample data—and ask what conclu-
sions we can draw from this quantification. Hypothesis testing goes beyond 
calculating estimates of the true population parameters to a much more 
complex set of questions. Hypothesis testing and statistical inference allow 
us to answer important questions about the real world from a sample. Is it 
likely that our result could have been obtained by chance? Would the results 
generated from our sample lead us to reject our original theories? How con-
fident can we be that our estimate is close to the true value of the parameter? 
This chapter starts with a brief introduction to the topic of hypothesis testing. 
We then examine the t-test, typically used for hypothesis tests of individual 
regression coefficients. We next look at the confidence interval, a tool for 
evaluating the precision of our estimates, and we end the chapter by learn-
ing how to use the F-test to determine whether whole groups of coefficients 
affect the dependent variable.

Hypothesis testing and the t-test should be familiar topics to readers with 
strong backgrounds in statistics, who are encouraged to skim this chapter and 
focus on only those applications that seem somewhat new. The development 
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of hypothesis testing procedures is explained here in terms of the regression 
model, however, so parts of the chapter may be instructive even to those 
already skilled in statistics.

Our approach will be classical in nature, since we assume that the sample 
data are our best and only information about the population. An alternative, 
Bayesian statistics, uses a completely different definition of probability and 
does not use the sampling distribution concept.1

5.1  What Is Hypothesis Testing?

Hypothesis testing is used in a variety of settings. The Food and Drug Admin-
istration (FDA), for example, tests new products before allowing their sale. 
If the sample of people exposed to the new product shows some side effect 
significantly more frequently than would be expected to occur by chance, 
the FDA is likely to withhold approval of marketing that product. Similarly, 
economists have been statistically testing various relationships between 
consumption and income for almost a century; theories developed by John 
Maynard Keynes and Milton Friedman, among others, have been tested on mac-
roeconomic and microeconomic data sets.

Although researchers are always interested in learning whether the theory 
in question is supported by estimates generated from a sample of real-world 
observations, it’s almost impossible to prove that a given hypothesis is correct. 
All that can be done is to state that a particular sample conforms to a particu-
lar hypothesis. Even though we cannot prove that a given theory is “correct” 
using hypothesis testing, we often can reject a given hypothesis with a certain 
level of confidence. In such a case, the researcher concludes that it is very 
unlikely that the sample result would have been observed if the hypothesized 
theory were correct.

Classical Null and Alternative Hypotheses

The first step in hypothesis testing is to state the hypotheses to be tested. 
This should be done before the equation is estimated because hypotheses 

1. Bayesians, by being forced to state explicitly their prior expectations, tend to do most of their 
thinking before estimation, which is a good habit for a number of important reasons. For more 
on this approach, see Peter Kennedy, A Guide to Econometrics (Malden, MA: Blackwell, 2008), 
pp. 213–231. For more advanced coverage, see Tony Lancaster, An Introduction to Bayesian Econo-
metrics (Oxford: Blackwell Publishing, 2004).
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developed after estimation run the risk of being justifications of particular 
results rather than tests of the validity of those results.

The null hypothesis typically is a statement of the values that the 
researcher does not expect. The notation used to specify the null hypothesis 
is “H0:” followed by a statement of the range of values you do not expect. For 
example, if you expect a positive coefficient, then you don’t expect a zero or 
negative coefficient, and the null hypothesis is:

 Null hypothesis H0: β … 0 (the values you do not expect)

The alternative hypothesis typically is a statement of the values that the 
researcher expects. The notation used to specify the alternative hypothesis is 
“HA:” followed by a statement of the range of values you expect. To continue 
our previous example, if you expect a positive coefficient, then the alterna-
tive hypothesis is:

Alternative hypothesis HA: β 7 0 (the values you expect)

To test yourself, take a moment and think about what the null and alternative 
hypotheses will be if you expect a negative coefficient. That’s right, they’re:

 H0: β Ú 0
 HA: β 6 0

The above hypotheses are for a one-sided test because the alternative 
hypotheses have values on only one side of the null hypothesis. Another 
approach is to use a two-sided test (or a two-tailed test) in which the alter-
native hypothesis has values on both sides of the null hypothesis. For a 
two-sided test around zero, the null and alternative hypotheses are:

 H0: β = 0
 HA: β ≠ 0

We should note that there are a few rare cases in which we must violate 
our rule that the value you expect goes in the alternative hypothesis. Classical 
hypothesis testing requires that the null hypothesis contain the equal sign 
in some form (whether it be = , … , or Ú). This requirement means that 
researchers are forced to put the value they expect in the null hypothesis if 
their expectation includes an equal sign. This typically happens when the 
researcher specifies a particular value rather than a range. Luckily, such excep-
tions are unusual in elementary applications.

With the exception of the unusual cases previously mentioned, economists 
always put what they expect in the alternative hypothesis. This allows us to 
make rather strong statements when we reject a null hypothesis. However, we 
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can never say that we accept the null hypothesis; we must always say that we 
cannot reject the null hypothesis. As put by Jan Kmenta:

Just as a court pronounces a verdict as not guilty rather than  
innocent, so the conclusion of a statistical test is do not reject rather 
than accept.2

Type I and Type II Errors

The typical testing technique in econometrics is to hypothesize an expected sign 
(or value) for each regression coefficient (except the constant term) and then to 
determine whether to reject the null hypothesis. Since the regression coefficients 
are only estimates of the true population parameters, it would be unrealistic 
to think that conclusions drawn from regression analysis will always be right.

There are two kinds of errors we can make in such hypothesis testing:

Type I: We reject a true null hypothesis.
Type II: We do not reject a false null hypothesis.

We will refer to these errors as Type I and Type II Errors, respectively.
Suppose we have the following null and alternative hypotheses:

H0: β … 0
HA: β 7 0

Even if the true parameter β is not positive, the particular estimate obtained 
by a researcher may be sufficiently positive to lead to the rejection of the null 
hypothesis that β … 0. This is a Type I Error; we have rejected the truth!

Alternatively, it’s possible to obtain an estimate of β that is close enough to 
zero (or negative) to be considered “not significantly positive.” Such a result 
may lead the researcher to “accept”3 the hypothesis that β … 0 when in truth 
β 7 0. This is a Type II Error; we have failed to reject a false null hypothesis!

As an example of Type I and Type II Errors, let’s suppose that you’re on 
a jury in a murder case.4 In such a situation, the presumption of “innocent 
until proven guilty” implies that:

H0: The defendant is innocent.
HA: The defendant is guilty.

2. Jan Kmenta, Elements of Econometrics (Ann Arbor: University of Michigan Press, © 1986), 
p. 112. (Emphasis added.)
3. We will consistently put the word accept in quotes whenever we use it. In essence, “accept” 
means do not reject.

4. This example comes from and is discussed in much more detail in Ed Leamer, Specification 
Searches (New York: John Wiley and Sons, 1978), pp. 93–98.
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What would a Type I Error be? Rejecting the null hypothesis would mean 
sending the defendant to jail, so a Type I Error, rejecting a true null hypoth-
esis, would mean:

Type I Error = Sending an innocent defendant to jail.

Similarly,

Type II Error = Freeing a guilty defendant.

Most reasonable jury members would want both levels of error to be quite 
small, but such certainty is almost impossible. After all, couldn’t there be a 
mistaken identification or a lying witness? In the real world, decreasing the 
probability of a Type I Error (sending an innocent defendant to jail) means 
increasing the probability of a Type II Error (freeing a guilty defendant). If we 
never sent an innocent defendant to jail, we’d be freeing quite a few murderers!

Decision rules of Hypothesis Testing

A decision rule is a method of deciding whether to reject a null hypothesis. 
Typically, a decision rule involves comparing a sample statistic with a pre-
selected critical value found in tables such as those in the end of this text.

A decision rule should be formulated before regression estimates are 
obtained. The range of possible values of βN  is divided into two regions, 
an “acceptance” region and a rejection region, where the terms are expressed 
relative to the null hypothesis. To define these regions, we must determine a 
critical value (or, for a two-tailed test, two critical values) of βN . Thus, a critical 
value is a value that divides the “acceptance” region from the rejection region 
when testing a null hypothesis. Graphs of these “acceptance” and rejection 
regions are presented in Figures 5.1 and 5.2.

To use a decision rule, we need to select a critical value. Let’s suppose that 
the critical value is 1.8. If the observed βN  is greater than 1.8, we can reject the 
null hypothesis that β is zero or negative. To see this, take a look at Figure 5.1. 
Any βN  above 1.8 can be seen to fall into the rejection region, whereas any βN  
below 1.8 can be seen to fall into the “acceptance” region.

The rejection region measures the probability of a Type I Error if the null 
hypothesis is true. Some students react to this news by suggesting that we 
make the rejection region as small as possible. Unfortunately, decreasing the 
chance of a Type I Error means increasing the chance of a Type II Error (not 
rejecting a false null hypothesis). If you make the rejection region so small 
that you almost never reject a true null hypothesis, then you’re going to be 
unable to reject almost every null hypothesis, whether they’re true or not! As 
a result, the probability of a Type II Error will rise.
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0

Distribution of ds

Probability of
Type I Error

1.8
d

“Acceptance” Region Rejection
Region

N

N

Figure 5.1 “acceptance” and rejection regions for a one-sided test of β

For a one-sided test of H0: β … 0 vs. HA: β 7 0, the critical value divides the distribution 
of βN  (centered around zero on the assumption that H0 is true) into “acceptance” and 
rejection regions.

0

Distribution of ds

Probability of
Type I Error

“Acceptance” Region Rejection
Region

Rejection
Region

dN

N

Figure 5.2 “acceptance” and rejection regions for a two-sided test of β

For a two-sided test of H0: β = 0 vs. HA: β ≠ 0, we divided the distribution of βN  into an 
“acceptance” region and two rejection regions.
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Given that, how do you choose between Type I and Type II Errors? The 
answer is easiest if you know that the cost (to society or the decision maker) 
of making one kind of error is dramatically larger than the cost of making the 
other. If you worked for the FDA, for example, you’d want to be very sure that 
you hadn’t released a product that had horrible side effects. We’ll discuss this 
dilemma for the t-test on page 126.

5.2  The t-Test

Econometricians generally use the t-test to test hypotheses about individual 
regression slope coefficients. Tests of more than one coefficient at a time 
(joint hypotheses) are typically done with the F-test, presented in Section 5.6.

The t-test is easy to use because it accounts for differences in the units of 
measurement of the variables and in the standard deviations of the estimated 
coefficients. More important, the t-statistic is the appropriate test to use when 
the stochastic error term is normally distributed and when the variance of that 
distribution must be estimated. Since these usually are the case, the use of the 
t-test for hypothesis testing has become standard practice in econometrics.

The t-Statistic

For a typical multiple regression equation:

 Yi = β0 + β1X1i + β2X2i + ei (5.1)

we can calculate t-values for each of the estimated coefficients in the equa-
tion. For reasons that will be explained in Section 7.1, t-tests are usually done 
only on the slope coefficients; for these, the relevant form of the t-statistic 
for the kth coefficient is

 tk =
1βN k - βH0

2
SE1βN k2

  1k = 1, 2, c, K2 (5.2)

where: βN k  = the estimated regression coefficient of the kth variable
 βH0

 =  the border value (usually zero) implied by the null hy-
pothesis for βk

 SE1βN k2 =  the estimated standard error of βN k (that is, the square 
root of the estimated variance of the distribution of the 
βN k; note that there is no “hat” attached to SE because 
SE is already defined as an estimate)
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How do you decide what border is implied by the null hypothesis? Some null 
hypotheses specify a particular value. For these, βH0

 is simply that value; if 
H0: β = S, then βH0

= S. Other null hypotheses involve ranges, but we are 
concerned only with the value in the null hypothesis that is closest to the 
border between the “acceptance” region and the rejection region. This border 
value then becomes the βH0

. For example, if H0: β Ú 0 and HA: β 6 0, then 
the value in the null hypothesis closest to the border is zero, and βH0

= 0.
Since most regression hypotheses test whether a particular regression coef-

ficient is significantly different from zero, βH0
 is typically zero. Zero is partic-

ularly meaningful because if the true β equals zero, then the variable doesn’t 
belong in the equation. Before we drop the variable from the equation and 
effectively force the coefficient to be zero, however, we need to be careful and 
test the null hypothesis that β = 0. Thus, the most-used form of the t-statistic 
becomes

 tk =
1βN k - 02
SE1βN k2

  1k = 1, 2, c, K2

which simplifies to

 tk =
βN k

SE1βN k2
  1k = 1, 2, c, K2 (5.3)

or the estimated coefficient divided by the estimate of its standard error. This 
is the t-statistic formula used by most computer programs.

For an example of this calculation, let’s consider the equation for the 
check volume at Woody’s restaurants from Section 3.2:

 YN i = 102,192 - 9075Ni + 0.3547Pi + 1.288Ii (5.4)
120532    10.07272   10.5432

t = -4.42     4.88   2.37
N = 33  R 

2 = .579

In Equation 5.4, the numbers in parentheses underneath the estimated 
regression coefficients are the estimated standard errors of the estimated βN s, 
and the numbers below them are t-values calculated according to Equation 5.3. 
The format used to document Equation 5.4 is the one we’ll use whenever 
possible throughout this text. Note that the sign of the t-value is always the 
same as that of the estimated regression coefficient, and the standard error is 
always positive.

Using the regression results in Equation 5.4, let’s calculate the t-value for 
the estimated coefficient of P, the population variable. Given the values in 
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Equation 5.4 of 0.3547 for βN P and 0.0727 for SE1βN P2, and given H0: βP … 0, 
the relevant t-value is indeed 4.88, as specified in Equation 5.4:

 tP =
βN P

SE1βN P2
=

0.3547
0.0727

= 4.88

The larger in absolute value this t-value is, the greater the likelihood that the 
estimated regression coefficient is different from zero.

The Critical t-Value and the t-Test Decision rule

To decide whether to reject or not to reject a null hypothesis based on a 
calculated t-value, we use a critical t-value. A critical t-value is the value that 
distinguishes the “acceptance” region from the rejection region. The critical 
t-value, tc, is selected from a t-table (see Statistical Table B-1 in the back of 
the book) depending on whether the test is one-sided or two-sided, on the 
level of Type I Error you specify, and on the degrees of freedom, which we 
have defined as the number of observations minus the number of coefficients 
estimated (including the constant) or N - K - 1. The level of Type I Error in a 
hypothesis test is also called the level of significance of that test and will be dis-
cussed in more detail later in this section. The t-table was created to save time 
during research; it consists of critical t-values given specific areas underneath 
curves such as those in Figure 5.1 for Type I Errors. A critical t-value is thus a 
function of the probability of Type I Error that the researcher wants to specify.

Once you have obtained a calculated t-value tk and a critical t-value tc, you 
reject the null hypothesis if the calculated t-value is greater in absolute value 
than the critical t-value and if the calculated t-value has the sign implied by HA.

Thus, the rule to apply when testing a single regression coefficient is that 
you should:

Reject H0 if � tk � 7 tc and if tk also has the sign implied by HA. Do not 
reject H0 otherwise.

This decision rule works for calculated t-values and critical t-values for one-
sided hypotheses around zero:

 H0: βk … 0
 HA: βk 7 0

 H0: βk Ú 0
 HA: βk 6 0
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for two-sided hypotheses around zero:

 H0: βk = 0
 HA: βk ≠ 0

for one-sided hypotheses based on hypothesized values other than zero:

 H0: βk … S
 HA: βk 7 S

 H0: βk Ú S
 HA: βk 6 S

and for two-sided hypotheses based on hypothesized values other than zero:

 H0: βk = S
 HA: βk ≠ S

The decision rule is the same: Reject the null hypothesis if the appropriately 
calculated t-value, tk, is greater in absolute value than the critical t-value, tc, as 
long as the sign of tk is the same as the sign of the coefficient implied in HA. 
Otherwise, do not reject H0. Always use Equation 5.2 whenever the hypoth-
esized value is not zero.

Statistical Table B-1 contains the critical values tc for varying degrees of 
freedom and levels of significance. The columns indicate the levels of sig-
nificance according to whether the test is one-sided or two-sided, and the 
rows indicate the degrees of freedom. For an example of the use of this table 
and the decision rule, let’s return to the Woody’s restaurant example and, in 
particular, to the t-value for βN P calculated in the previous section. Recall that 
we hypothesized that population’s coefficient would be positive, so this is a 
one-sided test:

 H0: βp … 0
 HA: βp 7 0

There are 29 degrees of freedom (equal to N - K - 1, or 33 - 3 - 1) in this 
regression, so the appropriate t-value with which to test the calculated t-value 
is a one-tailed critical t-value with 29 degrees of freedom. To find this value, 
pick a level of significance, say 5 percent, and turn to Statistical Table B-1. 
Take a look for yourself. Do you agree that the number there is 1.699?

Given that, should you reject the null hypothesis? The decision rule is to 
reject H0 if � tk � 7 tc and if tk has the sign implied by HA. Since the 5-percent, 
one-sided, 29 degrees of freedom critical t-value is 1.699, and since the sign 
implied by HA is positive, the decision rule (for this specific case) becomes:

 Reject H0 if � tP � 7 1.699 and if tP is positive
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or, combining the two conditions:

 Reject H0 if tP 7 1.699

What is tP? In the previous section, we found that tP was +4.88, so we would 
reject the null hypothesis and conclude that population does indeed tend to 
have a positive relationship with Woody’s check volume (holding the other 
variables in the equation constant).

Note from Statistical Table B-1 that the critical t-value for a one-tailed test 
at a given level of significance is exactly equal to the critical t-value for a two-
tailed test at twice the level of significance as the one-tailed test. This rela-
tionship between one-sided and two-sided tests is illustrated in Figure 5.3.  
The critical value tc = 1.699 is for a one-sided, 5-percent level of signifi-
cance, but it also represents a two-sided, 10-percent level of significance 
because if one tail represents 5 percent, then both tails added together rep-
resent 10 percent.

0

Area = .05

1.699

5% One-Sided
Level of Significance

-1.699

10% Two-Sided Level of Significance

Figure 5.3 one-sided and two-sided t-tests

The tc for a one-sided test at a given level of significance is equal exactly to the tc for a 
two-sided test with twice the level of significance of the one-sided test. For example,  
tc = 1.699 for a 10-percent two-sided test and for a 5-percent one-sided test (for 29  
degrees of freedom).
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Choosing a Level of Significance

To complete the previous example, it was necessary to pick a level of sig-
nificance before a critical t-value could be found in Statistical Table B-1. The 
words “significantly positive” usually carry the statistical interpretation that 
H0 1β … 02 was rejected in favor of HA 1β 7 02 according to the preestab-
lished decision rule, which was set up with a given level of significance. The 
level of significance indicates the probability of observing an estimated 
t-value greater than the critical t-value if the null hypothesis were correct. It 
measures the amount of Type I Error implied by a particular critical t-value. 
If the level of significance is 10 percent and we reject the null hypothesis  
at that level, then this result would have occurred only 10 percent of the time 
that the null hypothesis was indeed correct.

How should you choose a level of significance? Most beginning econome-
tricians (and many published ones, too) assume that the lower the level of 
significance, the better. After all, they say, doesn’t a low level of significance 
guarantee a low probability of making a Type I Error? Unfortunately, an 
extremely low level of significance also dramatically increases the probability 
of making a Type II Error. Therefore, unless you’re in the unusual situation of 
not caring about mistakenly “accepting” a false null hypothesis, minimizing 
the level of significance is not good standard practice.

Instead, we recommend using a 5-percent level of significance except in 
those circumstances when you know something unusual about the relative 
costs of making Type I and Type II Errors. If you know that a Type II Error 
will be extremely costly, for example, then it makes sense to consider using a 
10-percent level of significance when you determine your critical value. Such 
judgments are difficult, however, so we encourage beginning researchers to 
adopt a 5-percent level of significance as standard.

If we can reject a null hypothesis at the 5-percent level of significance, 
we can summarize our results by saying that the coefficient is “statistically 
significant” at the 5-percent level. Since the 5-percent level is arbitrary, we 
shouldn’t jump to conclusions about the value of a variable simply because 
its coefficient misses being significant by a small amount; if a different level 
of significance had been chosen, the result might have been different.

Some researchers produce tables of regression results, typically without 
hypothesized signs for their coefficients, and then mark “significant” coef-
ficients with asterisks. The asterisks indicate when the t-score is larger in 
absolute value than the two-sided 10-percent critical value (which merits one 
asterisk), the two-sided 5-percent critical value (**), or the two-sided 1-percent 
critical value (***). Such a use of the t-value should be regarded as a descrip-
tive rather than a hypothesis-testing use of statistics.
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Now and then researchers will use the phrase “degree of confidence” or 
“level of confidence” when they test hypotheses. What do they mean? The 
level of confidence is nothing more than 100 percent minus the level of signifi-
cance. Thus a t-test for which we use a 5-percent level of significance can also 
be said to have a 95-percent level of confidence. Since the two terms have 
identical meanings, we will use level of significance throughout this text. 
Another reason we prefer the term level of significance to level of confidence 
is to avoid any possible confusion with the related concept of confidence 
intervals, which will be covered in Section 5.5.

Some researchers avoid choosing a level of significance by simply stating 
the lowest level of significance possible for each estimated regression coeffi-
cient. The resulting significance levels are called p-values.

p-Values

There’s an alternative to the t-test based on a measure called the p-value, or 
marginal significance level. A p-value for a t-score is the probability of observ-
ing a t-score that size or larger (in absolute value) if the null hypothesis were 
true. Graphically, it’s two times the area under the curve of the t-distribution 
between the absolute value of the actual t-score and infinity.

A p-value is a probability, so it runs from 0 to 1. It tells us the lowest level 
of significance at which we could reject the null hypothesis (assuming that 
the estimate is in the expected direction). A small p-value casts doubt on the 
null hypothesis, so to reject a null hypothesis, we need a low p-value.

How do we calculate a p-value? One option would be to comb through 
pages and pages of statistical tables, looking for the level of significance that 
exactly matches the regression result. That could take days! Luckily, standard 
regression software packages calculate p-values automatically and print them 
out for every estimated coefficient.5 You’re thus able to read p-values off your 
regression output just as you would your βN s. Be careful, however, because 
virtually every regression package prints out p-values for two-sided alternative 
hypotheses. Such two-sided p-values include the area in both “tails,” so two-
sided p-values are twice the size of one-sided ones. If your test is one-sided, 
you need to divide the p-value in your regression output by 2 before doing 
any tests.

How would you use a p-value to run a t-test? If your chosen level of sig-
nificance is 5 percent and the p-value is less than .05, then you can reject 

5. Different software packages use different names for p-values. Stata uses P 7 � t � . To see this, turn 
to page 77 and look in the center of the top of the page. Note that such p-values are for H0: β = 0.
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your null hypothesis as long as the sign is in the expected direction. Thus the 
p-value decision rule is:

Reject H0 if p@valueK 6 the level of significance and if βN K has the sign 
implied by HA. Do not reject H0 otherwise.

Let’s look at an example of the use of a p-value to run a t-test. If we return 
to the Woody’s example of Equation 5.4 and run a one-sided test on the coef-
ficient of I, the income variable, we have the following null and alternative 
hypotheses:

 H0: βI … 0
 HA: βI 7 0

As you can see from the regression output for the Woody’s equation on 
page 77, the p-value for βN I is .025. This is a two-sided p-value and we’re run-
ning a one-sided test, so we need to divide .025 by 2, getting .0125. Since 
.0125 is lower than our chosen level of significance of .05, and since the sign 
of βN I is positive and agrees with that in HA, we can reject H0. Not surprisingly, 
this is the same result we’d get if we ran a conventional t-test.

p-values have a number of advantages. They’re easy to use, and they allow 
readers of research to choose their own levels of significance instead of being 
forced to use the level chosen by the original researcher. In addition, p-values 
convey information to the reader about the relative strength with which we 
can reject a null hypothesis. Because of these benefits, many researchers use 
p-values on a consistent basis.

Despite these advantages, we will not use p-values in this text. We think that 
beginning researchers benefit from learning the standard t-test procedure, par-
ticularly since it’s more likely to force them to remember to hypothesize the 
sign of the coefficient and to use a one-sided test when a particular sign can be 
hypothesized. In addition, if you know how to use the standard t-test approach, 
it’s easy to switch to the p-value approach, but the reverse isn’t necessarily true.

However, we acknowledge that practicing econometricians today spend 
far more energy estimating models and coefficients than they spend test-
ing hypotheses. This is because most researchers are more confident in their 
theories (say, that demand curves slope downward) than they are in the qual-
ity of their data or their regression methods. In such situations, where the 
statistical tools are being used more for descriptive purposes than for hypoth-
esis testing purposes, it’s clear that the use of p-values saves time and conveys 
more information than does the standard t-test procedure.
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5.3  Examples of t-Tests

Examples of One-Sided t-Tests

The most common use of the one-sided t-test is to determine whether a 
regression coefficient is significantly different from zero in the direction pre-
dicted by theory. Let’s face it: if you expect a positive sign for a coefficient and 
you get a negative βN , it’s hard to reject the possibility that the true β might 
be negative (or zero). On the other hand, if you expect a positive sign and 
get a positive βN , things get a bit tricky. If βN  is positive but fairly close to zero, 
then a one-sided t-test should be used to determine whether the βN  is different 
enough from zero to allow the rejection of the null hypothesis. Recall that in 
order to be able to control the amount of Type I Error we make, such a theory 
implies an alternative hypothesis of HA: β 7 0 (the expected sign) and a null 
hypothesis of H0: β … 0. Let’s look at some complete examples of these kinds 
of one-sided t-tests.

Consider a simple model of the aggregate annual retail sales of new cars 
that specifies that sales of new cars (CARS) are a function of real disposable 
income (YD) and the average retail price of a car adjusted by the consumer 
price index (PRICE). Suppose you spend some time reviewing the literature 
on the automobile industry and are inspired to test a new theory. You decide 
to add a third independent variable, the number of sports utility vehicles sold 
(SUV) to take account of the fact that some potential new car buyers pur-
chase SUVs instead. You therefore hypothesize the following model:

 +  -  -
 CARS = β0 + β1YD + β2PRICE + β3SUV + e (5.5)

As you can see from the hypothesized signs above the coefficients in Equa-
tion 5.5, you expect β1 to be positive and β2 and β3 to be negative. This 
makes sense, since you’d expect higher incomes, lower prices, or lower  
sales of SUVs to increase new car sales, holding the other variables in the 
equation constant.

The four steps to use when working with the t-test are:

1. Set up the null and alternative hypotheses.

2. Choose a level of significance and therefore a critical t-value.

3. Run the regression and obtain an estimated t-value (or t-score).

4. Apply the decision rule by comparing the calculated t-value  
with the critical t-value in order to reject or not reject the null  
hypothesis.

M05_STUD2742_07_SE_C05.indd   129 1/6/16   5:08 PM



130 CHApTEr 5 HypotHesis testing and statistical inference

Let’s look at each step in more detail.

1. Set up the null and alternative hypotheses.6 From Equation 5.5, the one-
sided hypotheses are set up as:

1.  H0: β1 … 0 
HA: β1 7 0

2.  H0: β2 Ú 0 
HA: β2 6 0

3.  H0: β3 Ú 0 
HA: β3 6 0

 Remember that a t-test typically is not run on the estimate of the con-
stant term β0.

2. Choose a level of significance and therefore a critical t-value. Assume that 
you have considered the various costs involved in making Type I and 
Type II Errors and have chosen 5 percent as the level of significance 
with which you want to test. There are 10 observations in the data 
set that is going to be used to test these hypotheses, and so there are 
10 - 3 - 1 = 6 degrees of freedom. At a 5-percent level of significance, 
the critical t-value, tc, can be found in Statistical Table B-1 to be 1.943. 
Note that the level of significance does not have to be the same for all 
the coefficients in the same regression equation. It could well be that 
the costs involved in an incorrectly rejected null hypothesis for one 
coefficient are much higher than for another, so lower levels of signifi-
cance would be used. In this equation, though, for all three variables:

 tc = 1.943

3. Run the regression and obtain an estimated t-value. You now use the data 
(annual from 2000 to 2009) to run the regression on your OLS com-
puter package, getting:

 CARSt = 1.30 + 4.91YDt + 0.00123PRICEt - 7.14SUVt (5.6)
12.382      10.000442          171.382

t = 2.1            2.8                      -0.1

6. The null hypothesis can be stated either as H0: β … 0 or H0: β = 0 because the value used to 
test H0: β … 0 is the value in the null hypothesis closest to the border between the acceptance 
and the rejection regions. When the amount of Type I Error is calculated, this border value of 
β is the one that is used, because over the whole range of β … 0, the value β = 0 gives the 
maximum amount of Type I Error. The classical approach limits this maximum amount to a 
preassigned level—the chosen level of significance.
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where:  CARSt  =  new car sales (in hundreds of thousands of units) 
in year t

 YDt  =  real U.S. disposable income (in hundreds of 
 billions of dollars)

 PRICEt =  the average real price of a new car in year t  
(in dollars)

 SUVt  =  the number of sports utility vehicles sold in year t  
(in millions)

 Once again, we use our standard documentation notation, so the 
figures in parentheses are the estimated standard errors of the βN s. The 
t-values to be used in these hypothesis tests are printed out by standard 
OLS programs:

 tk =
βN k

SE1βN k2
  1k = 1, 2, c, K2 (5.3)

 For example, the estimated coefficient of SUV divided by its estimated 
standard error is -7.14/71.38 = -0.1. Note that since standard errors 
are always positive, a negative estimated coefficient implies a negative 
t-value.

4. Apply the decision rule by comparing the calculated t-value with the critical 
t-value in order to reject or not reject the null hypothesis. As stated in Sec-
tion 5.2, the decision rule for the t-test is to

Reject H0 if � tk � 7 tc and if tk also has the sign implied by HA.
Do not reject H0 otherwise.

What would these decision rules be for the three hypotheses, given the rel-
evant critical t-value (1.943) and the calculated t-values?

 For β1: Reject H0 if � 2.1 � 7 1.943 and if 2.1 is positive.

In the case of disposable income, you reject the null hypothesis that β1 … 0 
since 2.1 is indeed greater than 1.943. The result (that is, HA: β1 7 0) is as 
you expected on the basis of theory, since the more income in the country, 
the more new car sales you’d expect.

 For β2: Reject H0 if � 2.8 � 7 1.943 and if 2.8 is negative.

For prices, the t-statistic is large in absolute value (being greater than 
1.943) but has a sign that is contrary to our expectations, since the alter-
native hypothesis implies a negative sign. Since both conditions in the 
decision rule must be met before we can reject H0, you cannot reject the 
null hypothesis that prices have a zero or positive effect on new car sales!  
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Despite your surprise,7 you stick with your contention that prices belong in 
the equation and that their expected impact should be negative.

Notice that the coefficient of PRICE is quite small, 0.00123, but that this 
size has no effect on the t-calculation other than its relationship to the stan-
dard error of the estimated coefficient.

 For β3: Reject H0 if � -0.1 � 7 1.943 and if -0.1 is negative.

For sales of sports utility vehicles, the coefficient βN 3 is not statistically 
different from zero, since � -0.1 � 6 1.943, and you cannot reject the null 
hypothesis that β Ú 0 even though the estimated coefficient has the sign 
implied by the alternative hypothesis. After thinking this model over again, 
you come to the conclusion that you were hasty in adding the variable to the 
equation.

Figure 5.4 illustrates all three of these outcomes by plotting the criti-
cal t-value and the calculated t-values for all three null hypotheses on a 
t-distribution that is centered around zero (the value in the null hypothesis 
closest to the border between the acceptance and rejection regions). Students 
are urged to analyze the results of tests on the estimated coefficients of  
Equation 5.6 assuming different numbers of observations and different 
levels of significance. Exercise 2 has a number of such specific combinations, 
with answers in Appendix A.

The purpose of this example is to provide practice in testing hypotheses, 
and the results of such a poorly thought-out equation for such a small 
number of observations should not be taken too seriously. Given all that, 
however, it’s still instructive to note that you did not react the same way to 
your inability to reject the null hypotheses for the price and sports utility 
vehicle variables. That is, the failure of the sports utility vehicle variable’s 
coefficient to be significantly negative caused you to realize that perhaps 
the addition of this variable was ill-advised. The failure of the price vari-
able’s coefficient to be significantly negative did not cause you to consider 
the possibility that price has no effect on new car sales. Put differently, 
estimation results should never be allowed to cause you to want to adjust 
theoretically sound variables or hypotheses, but if they make you realize you  

7. Actually, it shouldn’t be a surprise to occasionally get a positive estimated coefficient for price 
in a demand equation, particularly in such a small sample. Supply and demand are determined 
simultaneously, but we didn’t specify a supply equation in our model. Thus our “demand” 
equation might be picking up the positive impact of price on quantity from the omitted supply 
equation. We’ll deal with the simultaneity issue in Chapter 14.
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have made a serious mistake, then it would be foolhardy to ignore that 
mistake. What to do about the positive coefficient of price, on the other 
hand, is what the “art” of econometrics is all about. Surely a positive coef-
ficient is unsatisfactory, but throwing the price variable out of the equation 
seems even more so. Possible answers to such issues are addressed more than 
once in the chapters that follow.
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Figure 5.4 one-sided t-tests of the coefficients of the new car sales Model

Given the estimates in Equation 5.6 and the critical t-value of 1.943 for a 5-percent level 
of significance, one-sided, 6 degrees of freedom t-test, we can reject the null hypothesis for 
βN 1, but not for βN 2 or βN 3.
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Examples of Two-Sided t-Tests

Although most hypotheses in regression analysis should be tested with 
one-sided t-tests, two-sided t-tests are appropriate in particular situations. 
Researchers sometimes encounter hypotheses that should be rejected if esti-
mated coefficients are significantly different from zero, or a specific nonzero 
value, in either direction. This situation requires a two-sided t-test. The kinds 
of circumstances that call for a two-sided test fall into two categories:

1. Two-sided tests of whether an estimated coefficient is significantly  
different from zero, and

2. Two-sided tests of whether an estimated coefficient is significantly  
different from a specific nonzero value.

Let’s take a closer look at these categories:

1. Testing whether a �N  is statistically different from zero. The first 
case for a two-sided test of βN  arises when there are two or more conflict-
ing hypotheses about the expected sign of a coefficient. For example, in 
the Woody’s restaurant equation of Section 3.2, the impact of the aver-
age income of an area on the expected number of Woody’s customers in 
that area is ambiguous. A high-income neighborhood might have more 
total customers going out to dinner, but those customers might decide 
to eat at a more formal restaurant than Woody’s. As a result, you might 
run a two-sided t-test around zero to determine whether the estimated 
coefficient of income is significantly different from zero in either direc-
tion. In other words, since there are reasonable cases to be made for 
either a positive or a negative coefficient, it is appropriate to test the βN  
for income with a two-sided t-test:

 H0: βI = 0
 HA: βI ≠ 0

 As Figure 5.5 illustrates, a two-sided test implies two different rejection 
regions (one positive and one negative) surrounding the acceptance 
region. A critical t-value, tc, must be increased in order to achieve the 
same level of significance with a two-sided test as can be achieved with 
a one-sided test.8 As a result, there is an advantage to testing hypotheses 
with a one-sided test if the underlying theory allows because, for the same 
t-values, the possibility of Type I Error is half as much for a one-sided 

8. See Figure 5.3. In that figure, the same critical t-value has double the level of significance for 
a two-sided test as for a one-sided test.
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test as for a two-sided test. In cases where there are powerful theoretical 
arguments on both sides, however, the researcher has no alternative to 
using a two-sided t-test around zero. To see how this works, let’s follow 
through the Woody’s income variable example in more detail.

a. Set up the null and alternative hypotheses.

H0: βI = 0
HA: βI ≠ 0

b. Choose a level of significance and therefore a critical t-value. You decide 
to keep the level of significance at 5 percent, but now this amount 
must be distributed between two rejection regions for 29 degrees 
of freedom. Hence, the correct critical t-value is 2.045 (found in 
Statistical Table B-1 for 29 degrees of freedom and a 5-percent, two-
sided test). Note that, technically, there now are two critical t-values, 
+2.045 and -2.045.

0
t

+2.045
Critical
Value

-2.045
Critical
Value

+2.37
Estimated

t-Value

H0 : dI = 0
HA : dI Z 0

Rejection
Region

Rejection
Region

“Acceptance”
Region

tdI
N

Figure 5.5 two-sided t-test of the coefficient of income  
in the Woody’s Model

Given the estimates of Equation 5.4 and the critical t-values of {2.045 for a 5-percent 
level of significance, two-sided, 29 degrees of freedom t-test, we can reject the null  
hypothesis that βI = 0.
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c. Run the regression and obtain an estimated t-value. Since the value 
implied by the null hypothesis is still zero, the estimated t-value of 
+2.37 given in Equation 5.4 is applicable.

d. Apply the decision rule by comparing the calculated t-value with the critical 
t-value in order to reject or not reject the null hypothesis. We once again 
use the decision rule stated in Section 5.2, but since the alternative 
hypothesis specifies either sign, the decision rule simplifies to:

For βI: Reject H0 if � 2.37 � 7 2.045

 In this case, you reject the null hypothesis that βI equals zero because 
2.37 is greater than 2.045 (see Figure 5.5). Note that the positive sign 
implies that, at least for Woody’s restaurants, income increases cus-
tomer volume (holding constant population and competition). Given 
this result, we might well choose to run a one-sided t-test on the next 
year’s Woody’s data set. For more practice with two-sided t-tests, see 
Exercise 5.

2. Two-sided t-tests of a specific nonzero coefficient value. The sec-
ond case for a two-sided t-test arises when there is reason to expect a 
specific nonzero value for an estimated coefficient. For example, if a 
previous researcher has stated that the true value of some coefficient al-
most surely equals a particular number, βH0

, then that number would 
be the one to test by creating a two-sided t-test around the hypoth-
esized value, βH0

.
  In such a case, the null and alternative hypotheses become:

H0: βk = βH0

HA: βk ≠ βH0

 where βH0
 is the specific nonzero value hypothesized.

  Since the hypothesized β value is no longer zero, the formula with 
which to calculate the estimated t-value is Equation 5.2, repeated here:

 tk =
1βN k - βH0

2
SE1βN k2

  1k = 1, 2, c, K2 (5.2)

 This t-statistic is still distributed around zero if the null hypothesis is 
correct, because we have subtracted βH0

 from the estimated regression 
coefficient whose expected value is supposed to be βH0

 when H0 is 
true. Since the t-statistic is still centered around zero, the decision rule 
developed earlier still is applicable.
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5.4  Limitations of the t-Test

One problem with the t-test is that it is easy to misuse. t-scores are printed 
out by computer regression packages and the t-test seems easy to work with, 
so beginning researchers sometimes attempt to use the t-test to “prove” things 
that it was never intended to even test. For that reason, it’s probably just as 
important to know the limitations of the t-test9 as it is to know the applica-
tions of that test. Perhaps the most important of these limitations, that the 
usefulness of the t-test diminishes rapidly as more and more specifications are 
estimated and tested, is the subject of Section 6.4. The purpose of the present 
section is to give additional examples of how the t-test should not be used.

The t-Test Does Not Test Theoretical Validity

Recall that the purpose of the t-test is to help the researcher make inferences 
about a particular population coefficient based on an estimate obtained from 
a sample of that population. Some beginning researchers conclude that any  
statistically significant result is also a theoretically correct one. This is dangerous 
because such a conclusion confuses statistical significance with theoretical validity.

Consider for instance, the following estimated regression that explains the 
consumer price index in the United Kingdom:10

 PN = 10.9 - 3.2C + 0.39C2 (5.7)
10.232 10.022

t = -13.9  19.5
R 

2 = .982   N = 21
Apply the t-test to these estimates. Do you agree that the two slope coeffi-
cients are statistically significant?

The catch is that P is the consumer price index and C is the cumulative 
amount of rainfall in the United Kingdom! We have just shown that rain is 
statistically significant in explaining consumer prices, but does that also show 
that the underlying theory is valid? Of course not. Why is the statistical result 
so significant? The answer is that by chance there is a common trend on both 
sides of the equation. This common trend does not have any meaning. The 

9. These limitations also apply to the use of p-values. For example, many beginning students 
conclude that the variable with the lowest p-value is the most important variable in an equation, 
but this is just as false for p-values as it is for the t-test.

10. These results, and others similar to them, can be found in David F. Hendry, “Econometrics— 
Alchemy or Science?” Economica, Vol. 47, pp. 383–406. This is another example of spurious 
regression, first mentioned in Section 2.5 and covered in more detail in Section 12.4.
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moral should be clear: Never conclude that statistical significance, as shown 
by the t-test, is the same as theoretical validity.

Occasionally, estimated coefficients will be significant in the direction 
opposite from that hypothesized, and some beginning researchers may be 
tempted to change their hypotheses. For example, a student might run a regres-
sion in which the hypothesized sign is positive, get a “statistically significant”  
negative sign, and be tempted to change the theoretical expectations to 
“expect” a negative sign after “rethinking” the issue. Although it is admirable 
to be willing to reexamine incorrect theories on the basis of new evidence, that 
evidence should be, for the most part, theoretical in nature. If the evidence 
causes a researcher to go back to the theoretical underpinnings of a model and 
find a mistake, then the null hypothesis should be changed, but then this new 
hypothesis should be tested using a completely different data set. After all, we 
already know what the result will be if the hypothesis is tested on the old one.

The t-Test Does Not Test “Importance”

One possible use of a regression equation is to help determine which inde-
pendent variable has the largest relative effect (importance) on the depen-
dent variable. Some beginning researchers draw the unwarranted conclusion 
that the most statistically significant variable in their estimated regression is 
also the most important in terms of explaining the largest portion of the 
movement of the dependent variable. Statistical significance says little—if  
anything—about which variables determine the major portion of the variation 
in the dependent variable. To determine importance, a measure such as the 
size of the coefficient multiplied by the average size of the independent vari-
able or the standard error of the independent variable would make more sense.

Consider the following hypothetical equation:

 YN = 300.0 + 10.0X1 + 200.0X2 (5.8)
11.02      125.02

t = 10.0       8.0
R 

2 = .90   N = 30

where: Y  = mail-order sales of O’Henry’s Oyster Recipes
 X1 =  hundreds of dollars of advertising expenditures in Gourmets’ 

Magazine
 X2 =  hundreds of dollars of advertising expenditures on the Julia 

Adult TV Cooking Show

Assume that all other factors, including prices, quality, and competition, 
remain constant during the estimation period. Where should O’Henry be 
spending his advertising money? That is, which independent variable has 
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the biggest impact per dollar on Y? Given that X2’s coefficient is 20 times X1’s 
coefficient, you’d have to agree that X2 is more important as defined, and yet 
which coefficient is more statistically significantly different from zero? With a 
t-score of 10.0, X1 is more statistically significant than X2 and its t-score of 8.0, 
but all that means is that we have more evidence that the coefficient is posi-
tive, not that the variable itself is necessarily more important in determining Y.

The t-Test Is Not Intended for Tests of the Entire population

The t-test helps make inferences about the true value of a parameter from an 
estimate calculated from a sample of the population (the group from which 
the sample is being drawn). If a coefficient is calculated from the entire pop-
ulation, then an unbiased estimate already measures the population value 
and a significant t-test adds nothing to this knowledge. One might forget this 
property and attach too much importance to t-scores that have been obtained 
from samples that approximate the population in size.

This point can perhaps best be seen by remembering that the t-score is 
the estimated regression coefficient divided by the standard error of the esti-
mated regression coefficient. If the sample size is large enough to approach 
the population, then the standard error will approach zero and the t-score 
will eventually become:

 t =
βN

0
= ∞

Thus, the mere existence of a large t-score for a huge sample has no real sub-
stantive significance.

5.5  Confidence Intervals

Now that you’ve learned how to do hypothesis tests using the t-statistic and 
the p-value, you’re probably thinking it would be fun to learn a third way. 
OK, maybe not! But there is indeed a third way. It’s based on the concept of 
a confidence interval.

A confidence interval is a range of values that will contain the true value 
of β a certain percentage of the time, say 90 or 95 percent. The formula for a 
confidence interval is

 Confidence interval = βN { tc
# SE1βN 2 (5.9)

where tc is the two-sided critical value of the t-statistic for whatever sig-
nificance level we choose. If you want a 90-percent confidence interval,  
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you’d choose the critical value for the 10-percent significance level. For a 
95-percent confidence interval, you’d use a 5-percent critical value.

To see how confidence intervals can be used for hypothesis tests, let’s 
return to Equation 5.4 and test the significance of the income coefficient:

 YN i = 102,192 - 9075Ni + 0.3547Pi + 1.288Ii (5.4)
120532 10.07272   10.5432

t = -4.42   4.88      2.37
N = 33    R 

2 = .579

We’d typically expect sales at a restaurant to rise as income rises (a normal 
good), but Woody’s is a fairly low-priced restaurant chain, so there’s a chance 
that sales will tail off if income gets too high (an inferior good). As a result, 
many econometricians would choose βI = 0 as their null hypothesis and 
therefore run a two-sided test of βI. In a situation where a two-sided test is 
appropriate, a confidence interval makes a lot of sense.

What would a 90-percent confidence interval for βI look like? Well, 
βN I = 1.288 and SE1βN I2 = 0.543, so all we need is a 10-percent two-sided 
critical t-value for 29 degrees of freedom. Using Statistical Table B-1, we see 
tc = 1.699. Substituting these values into Equation 5.9, we get:

 90@percent confidence interval around βN I = 1.288 { 1.699 # 0.543
 = 1.288 { 0.923

and therefore 0.365 … βI … 2.211

What exactly does this mean? If the Classical Assumptions hold true, the confi-
dence interval formula produces ranges that contain the true value of β 90 per-
cent of the time. In this case, there’s a 90 percent chance the true value of βI is 
between 0.365 and 2.211. If it’s not in that range, it’s due to an unlucky sample.

How can we use a confidence interval for a two-tailed hypothesis test? If the 
null hypothesis is βI = 0, we can reject it at the 10-percent level because 0 is 
not in the confidence interval. If the null hypothesis is that βI = 1.0, we cannot 
reject it because 1.0 is in the interval. In general, if your null hypothesis border 
value is in the confidence interval, you cannot reject the null hypothesis.

Thus, confidence intervals can be used for two-sided tests, but they are 
more complicated. So why bother with them? It turns out that confidence 
intervals are very useful in telling us how precise a coefficient estimate is. 
And for many people using econometrics in the real world, this may be 
more important than hypothesis testing. An example will make it easier to 
understand.

Meet Grace, a building contractor who specializes in starter homes for 
young families. It’s a really competitive business, so to make a profit she 
needs to build appealing but inexpensive houses. As a result, Grace wants to 
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know which features she can add to her houses that will increase the selling 
price more than they increase her costs. Since she took econometrics in col-
lege, she decides to estimate a model of starter home prices in her city using 
13 independent variables (such as square footage, number of bathrooms, etc.). 
She hopes to use the results to decide which features might turn a profit for 
her on the houses that she’s planning on building.

Let’s focus on how much an additional bathroom might increase the sales 
price. Grace knows that her marginal cost of adding a bathroom is about 
$8,000. She collects 100 observations on recently sold starter homes in her 
city and estimates her model.

The results appear in the first row of Table 5.1. The estimate of the coef-
ficient of bathrooms is about $21,770, well above the $8,000 marginal cost. 
Sounds like a no-brainer to add a bathroom, right? Not so fast. Look at the 
90-percent confidence interval in the first row of Table 5.1. It is huge, ranging 
from about $187 to $43,356. If the true value is in that interval, there’s a 
pretty big chance it could be below $8,000, meaning Grace would lose money 
by adding a bathroom. Or, she could come out way ahead. What should she do?

Remember one of the lessons of Section 4.2 on sampling distributions: 
Bigger samples decrease the variance of βN . In plain English, as the sample size 
grows, βN  tends to get closer and closer to the true value of β. As a result, the 
confidence interval for β shrinks. Let’s see what happens if Grace increases 
her sample to 1,000 observations.

The results for βN bath when N = 1,000 appear in Table 5.1, right below those 
for N = 100. Notice that βN bath has fallen from almost $22,000 to less than 
$13,000. Does this mean Grace should not add a bathroom? Not at all! Look 
at the 90-percent confidence interval. The lower end has risen to $8,346.29, a 
bit more than the $8,000 marginal cost. While Grace could still lose money on 
the deal, it looks like a much safer bet than the small sample results suggest.

Why does a confidence interval become so much narrower with a bigger 
sample? Well, take a look at Equation 5.9. As you can see, the width of a 

Table 5.1 selected results from two regressions on selling prices  
of starter Homes as a function of House characteristics

obs variable Coef. Std. Err. t p-value [90% Conf. Interval]

 100 bath 21771.65 12981.1 1.68 0.097 187.1275 to 43356.18
1000 bath 12935.06  2787.154 4.64 0.000 8346.288 to 17523.83

these results were generated with data from nashville, tn house sales in 2012. Because the 
model included 13 independent variables, the first regression has 86 degrees of freedom, and 
the second has 986 degrees of freedom.
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confidence interval depends entirely on the product of tc and SE1βN 2. What 
happens to tc and SE1βN 2  as the sample size rises? If you take a look at 
Table B-1, you’ll see that as the sample size rises, tc falls. Simultaneously, as 
the sample size rises, the variance of the sampling distribution falls, so the 
SE1βN 2 (the square root of the estimated variance) must fall as well. If both tc 
and SE1βN 2 fall, then their multiple must fall, and a bigger sample will indeed 
lead to a narrower confidence interval.

This example illustrates how confidence intervals provide information on 
how precise an estimated coefficient is. In addition, confidence intervals also 
are extremely useful in forecasting, and we’ll cover that topic in Chapter 15.

5.6  The F-Test

Although the t-test is invaluable for hypotheses about individual regression 
coefficients, it can’t be used to test multiple hypotheses simultaneously. Such a 
limitation is unfortunate because many interesting ideas involve a number of 
hypotheses or involve one hypothesis about multiple coefficients. For exam-
ple, suppose that you want to test the null hypothesis that there is no seasonal 
variation in a quarterly regression equation that has dummy variables for the 
seasons. To test such a hypothesis, most researchers would use the F-test.

What Is the F-Test?

The F-test is a formal hypothesis test that is designed to deal with a null 
hypothesis that contains multiple hypotheses or a single hypothesis about 
a group of coefficients.11 Such “joint” or “compound” null hypotheses are 
appropriate whenever the underlying economic theory specifies values for 
multiple coefficients simultaneously.

The way in which the F-test works is fairly ingenious. The first step is to 
translate the particular null hypothesis in question into constraints that 
will be placed on the equation. The resulting constrained equation can be 
thought of as what the equation would look like if the null hypothesis were 
correct; you substitute the hypothesized values into the regression equation 
in order to see what would happen if the equation were constrained to agree 
with the null hypothesis. As a result, in the F-test the null hypothesis always 
leads to a constrained equation, even if this violates our standard practice 
that the alternative hypothesis contains what we expect is true.

11. As you will see, the F-test works by placing constraints or restrictions on the equation to 
be tested. Because of this, it’s equivalent to say that the F-test is for tests that involve multiple 
linear restrictions.
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The second step in an F-test is to estimate this constrained equation 
with OLS and compare the fit of this constrained equation with the fit of 
the unconstrained equation. If the fits of the constrained equation and the 
unconstrained equation are not substantially different, the null hypothesis 
should not be rejected. If the fit of the unconstrained equation is substan-
tially better than that of the constrained equation, then we reject the null 
hypothesis. The fit of the constrained equation is never superior to the fit of 
the unconstrained equation, as we’ll explain next.

The fits of the equations are compared with the general F-statistic:

 F =
1RSSM - RSS2/M

RSS/1N - K - 12  (5.10)

where: RSS  =  residual sum of squares from the unconstrained 
equation

 RSSM  =  residual sum of squares from the constrained 
equation

 M  =  number of constraints placed on the equation 
(usually equal to the number of βs eliminated 
from the unconstrained equation)

 1N - K - 12 = degrees of freedom in the unconstrained equation

RSSM is always greater than or equal to RSS. Imposing constraints on the 
coefficients instead of allowing OLS to select their values can never decrease 
the summed squared residuals. (Recall that OLS selects that combination of 
values of the coefficients that minimizes RSS.) At the extreme, if the uncon-
strained regression yields exactly the same estimated coefficients as does the 
constrained regression, then the RSS are equal and the F-statistic is zero. In 
this case, H0 is not rejected because the data indicate that the constraints 
appear to be correct. As the difference between the constrained coefficients 
and the unconstrained coefficients increases, the data indicate that the null 
hypothesis is less likely to be true. Thus, when F gets larger than the critical 
F-value, the hypothesized restrictions specified in the null hypothesis are 
rejected by the test.

The decision rule to use in the F-test is to reject the null hypothesis if the 
calculated F-value (F) from Equation 5.10 is greater than the appropriate 
critical F-value 1Fc2:

Reject H0 if F 7 Fc

Do not reject H0 if F … Fc
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The critical F-value, Fc, is determined from Statistical Table B-2 or B-3, 
depending on the level of significance chosen by the researcher and on the 
degrees of freedom. The F-statistic has two types of degrees of freedom: the 
degrees of freedom for the numerator of Equation 5.10 (M, the number of 
constraints implied by the null hypothesis) and the degrees of freedom for 
the denominator of Equation 5.10 (N - K - 1, the degrees of freedom in the 
unconstrained regression equation). The underlying principle here is that if 
the calculated F-value (or F-ratio) is greater than the critical value, then the 
estimated equation’s fit is substantially better than the constrained equation’s 
fit, and we can reject the null hypothesis of no effect.

The F-Test of Overall Significance

Although R2 and R 

2 measure the overall degree of fit of an equation, they 
don’t provide a formal hypothesis test of that overall fit. Such a test is pro-
vided by the F-test. The null hypothesis in an F-test of overall significance 
is that all the slope coefficients in the equation equal zero simultaneously. 
For an equation with K independent variables, this means that the null and 
alternative hypotheses would be12:

 H0: β1 = β2 = g = βK = 0
 HA: H0 is not true

To show that the overall fit of the estimated equation is statistically signifi-
cant, we must be able to reject this null hypothesis using the F-test.

For the F-test of overall significance, Equation 5.10 simplifies to:

 F =
ESS/K

RSS/1N - K - 12 =
g 1YN i - Y22/K

ge2
i /1N - K - 12  (5.11)

This is the ratio of the explained sum of squares (ESS) to the residual sum 
of squares (RSS), adjusted for the number of independent variables (K) and 
the number of observations in the sample (N). In this case, the “constrained 
equation” to which we’re comparing the overall fit is:

 Yi = β0 + ei (5.12)

which is nothing more than saying YN i = Y. Thus the F-test of overall sig-
nificance is really testing the null hypothesis that the fit of the equation is no 
better than that provided by using the mean alone.

12. Note that we don’t hypothesize that β0 = 0. This would imply that E1Y2 = 0. Note also 
that for the test of overall significance, M = K.
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To see how this works, let’s test the overall significance of the Woody’s res-
taurant model of Equation 3.4. Since there are three independent variables, 
the null and alternative hypotheses are:

 H0: βN = βP = βI = 0
 HA: H0 is not true

To decide whether to reject or not reject this null hypothesis, we need to cal-
culate Equation 5.11 for the Woody’s example. There are three constraints in 
the null hypothesis, so K = 3. If we check the Stata output for the Woody’s 
equation on pages 76 and 77, we can see that N = 33, RSS = 6,133,300,000, 
and ESS = 9,928,900,000.13 Thus the appropriate F-ratio is:

 F =
ESS/K

RSS/1N - K - 12 =
9,928,900,000/3

6,133,300,000/29
= 15.65 (5.13)

In practice, this calculation is never necessary, since virtually every computer 
regression package routinely provides the computed F-ratio for a test of over-
all significance as a matter of course. On the Woody’s computer output, the 
value of the F-statistic can be found near the top of the right-hand column.

Our decision rule tells us to reject the null hypothesis if the calculated 
F-value is greater than the critical F-value. To determine that critical F-value, 
we need to know the level of significance and the degrees of freedom. If we 
assume a 5-percent level of significance, the appropriate table to use is  
Statistical Table B-2. The numerator degrees of freedom equal 3 (K), and the 
denominator degrees of freedom equal 29 1N - K - 12, so we need to look 
in Statistical Table B-2 for the critical F-value for 3 and 29 degrees of freedom. 
As the reader can verify,14 Fc = 2.93 is well below the calculated F-value of 
15.65, so we can reject the null hypothesis and conclude that the Woody’s 
equation does indeed have a significant overall fit.

Just as p-values provide an alternative approach to the t-test, so too can 
p-values provide an alternative approach to the F-test of overall significance. 

13. Stata calls the RSS the “Residual SS“ and calls the ESS the “Model SS.” The e + 09 indicates 
that you should move the decimal point nine places to the right.

14. Note that this critical F-value must be interpolated. The critical value for 30 denominator  
degrees of freedom is 2.92, and the critical value for 25 denominator degrees of freedom is 
2.99. Since both numbers are well below the calculated F-value of 15.65, however, the in-
terpolation isn’t necessary to reject the null hypothesis. As a result, many researchers don’t 
bother with such interpolations unless the calculated F-value is inside the range of the inter-
polation.
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Most standard regression estimation programs report not only the F-value for 
the test of overall significance but also the p-value associated with that test. 
To see this for the Woody’s output, look for “Prob 7 F” in the right-hand 
column on the top of page 77. If the p-value is less than your chosen level of 
significance, you can reject the null hypothesis.

Other Uses of the F-Test

There are many other uses of the F-test besides the test of overall significance. 
For example, let’s take a look at the problem of testing the significance of 
seasonal dummies. Seasonal dummies are dummy variables that are used 
to account for seasonal variation in the data in time-series models. In a quar-
terly model, if:

X1t = e1 in quarter 1
0 otherwise

X2t = e1 in quarter 2
0 otherwise

X3t = e1 in quarter 3
0 otherwise

then:

 Yt = β0 + β1X1t + β2X2t + β3X3t + β4X4t + et (5.14)

where X4 is a nondummy independent variable and t is quarterly. Notice that 
only three dummy variables are required to represent four seasons. In this 
formulation β1 shows the extent to which the expected value of Y in the first 
quarter differs from its expected value in the fourth quarter, the omitted con-
dition. β2 and β3 can be interpreted similarly.

Inclusion of a set of seasonal dummies “deseasonalizes” Y. This procedure 
may be used as long as Y and X4 are not “seasonally adjusted” prior to esti-
mation. Many researchers avoid the type of seasonal adjustment done prior 
to estimation because they think it distorts the data in unknown and arbi-
trary ways, but seasonal dummies have their own limitations such as remain-
ing constant for the entire time period. As a result, there is no unambiguously 
best approach to deseasonalizing data.

To test the hypothesis of significant seasonality in the data, one must test 
the hypothesis that all the dummies equal zero simultaneously rather than 
test the dummies one at a time. In other words, the appropriate test of sea-
sonality in a regression model using seasonal dummies involves the use of 
the F-test instead of the t-test.
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In this case, the null hypothesis is that there is no seasonality:

 H0: β1 = β2 = β3 = 0
 HA: H0 is not true

The constrained equation would then be Y = β0 + β4X4 + e. To determine 
whether the whole set of seasonal dummies should be included, the fit of 
the estimated constrained equation would be compared to the fit of the 
estimated unconstrained equation by using the F-test in Equation 5.10. Note 
that this example uses the F-test to test null hypotheses that include only a 
subset of the slope coefficients. Also note that in this case M = 3, because 
three coefficients (β1, β2, and β3) have been eliminated from the equation.

The exclusion of some seasonal dummies because their estimated coefficients 
have low t-scores is not recommended. Seasonal dummy coefficients should 
be tested with the F-test instead of with the t-test because seasonality is usually 
a single compound hypothesis rather than 3 individual hypotheses (or 11 with 
monthly data) having to do with each quarter (or month). To the extent that 
a hypothesis is a joint one, it should be tested with the F-test. If the hypothesis 
of seasonal variation can be summarized into a single dummy variable, then 
the use of the t-test will cause no problems. Often, where seasonal dummies 
are unambiguously called for, no hypothesis testing at all is undertaken.

5.7  Summary

 1. Hypothesis testing makes inferences about the validity of specific eco-
nomic (or other) theories from a sample of the population for which 
the theories are supposed to be true. The four basic steps of hypoth-
esis testing (using a t-test as an example) are:
a. Set up the null and alternative hypotheses.
b. Choose a level of significance and, therefore, a critical t-value.
c. Run the regression and obtain an estimated t-value.
d. Apply the decision rule by comparing the calculated t-value with the 

critical t-value in order to reject or not reject the null hypothesis.

 2. The null hypothesis states the range of values that the regression coef-
ficient is expected to take on if the researcher’s theory is not correct. The 
alternative hypothesis is a statement of the range of values that the re-
gression coefficient is expected to take if the researcher’s theory is correct.

 3. The two kinds of errors we can make in such hypothesis testing are:

   Type I: We reject a null hypothesis that is true.
  Type II: We do not reject a null hypothesis that is false.
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 4. The t-test tests hypotheses about individual coefficients from regres-
sion equations. The form for the t-statistic is

tk =
1βN k - βH0

2
SE1βN k2

  1k = 1, 2, c, K2

  In many regression applications, βH0
 is zero. Once you have calculated 

a t-value and chosen a critical t-value, you reject the null hypothesis 
if the t-value is greater in absolute value than the critical t-value and if 
the t-value has the sign implied by the alternative hypothesis.

 5. The t-test is easy to use for a number of reasons, but care should be 
taken when using the t-test to avoid confusing statistical significance 
with theoretical validity or empirical evidence.

 6. The F-test is a formal hypothesis test designed to deal with a null 
hypothesis that contains multiple hypotheses or a single hypothesis 
about a group of coefficients. The most common use of the F-test is to 
test the overall significance of an estimated equation.

ExErcisEs

(The answers to the even-numbered exercises are in appendix a.)

 1. Write the meaning of each of the following terms without referring 
to the book (or your notes), and compare your definition with the 
version in the text for each.
a. alternative hypothesis (p. 117)
b. confidence interval (p. 139)
c. critical value (p. 119)
d. decision rule (p. 119)
e. F-Test (p. 142)
f. level of significance (p. 126) 
g. null hypothesis (p. 117)
h. one-sided test (p. 117)
i. p-value (p. 127)
j. seasonal dummies (p. 146)
k. t-statistic (p. 121)
l. two-sided test (p. 117)
m. Type I Error (p. 118)
n. Type II Error (p. 118)
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 2. Return to Section 5.3 and test the hypotheses implied by Equation 5.5 
with the results in Equation 5.6 for all three coefficients under the 
following circumstances:
a. 10 percent significance and 15 observations
b. 10 percent significance and 28 observations
c. 1 percent significance and 10 observations

 3. Create null and alternative hypotheses for the following coefficients:
a. the impact of height on weight (Section 1.4)
b. all the coefficients in Equation A in Exercise 5, Chapter 2
c. all the coefficients in Y = β0 + β1X1 + β2X2 + β3X3 + e, where Y is 

total gasoline used on a particular trip, X1 is miles traveled, X2 is 
the weight of the car, and X3 is the average speed traveled

d. the impact of the decibel level of the grunt of a shot-putter on the 
length of the throw involved (shot-putters are known to make loud 
noises when they throw, but there is little theory about the impact of 
this yelling on the length of the put). Assume all relevant “nongrunt” 
variables are included in the equation.

 4. Return to Section 5.2 and test the appropriate hypotheses with the 
results in Equation 5.4 for all three coefficients under the following 
circumstances:
a. 5 percent significance and 6 degrees of freedom
b. 10 percent significance and 29 degrees of freedom
c. 1 percent significance and 2 degrees of freedom

 5. Using the techniques of Section 5.3, test the following two-sided 
hypotheses:
a. For Equation 5.8, test the hypothesis that:

H0: β2 = 160.0
HA: β2 ≠ 160.0

 at the 5-percent level of significance.
b. For Equation 5.4, test the hypothesis that:

H0: β3 = 0
HA: β3 ≠ 0

 at the 1-percent level of significance.
c. For Equation 5.6, test the hypothesis that:

H0: β2 = 0
HA: β2 ≠ 0

 at the 5-percent level of significance.
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 6. Suppose that you estimate a model of house prices to determine the 
impact of having beach frontage on the value of a house.15 You do 
some research, and you decide to use the size of the lot instead of the 
size of the house for a number of theoretical and data availability 
reasons. Your results (standard errors in parentheses) are:

PRICEi = 40 + 35.0 LOTi - 2.0 AGEi + 10.0 BEDi - 4.0 FIREi + 100 BEACHi

15.02     11.02   110.02   14.02     1102
N = 30        R 

2 = .63

where: PRICEi  =  the price of the ith house (in thousands of 
dollars)

 LOTi  =  the size of the lot of the ith house (in thousands 
of square feet)

 AGEi  = the age of the ith house in years
 BEDi  = the number of bedrooms in the ith house
 FIREi  =  a dummy variable for a fireplace (1 = yes for 

the ith house)
 BEACHi =  a dummy for having beach frontage (1 = yes 

for the ith house)

a. You expect the variables LOT, BED, and BEACH to have positive 
coefficients. Create and test the appropriate hypotheses to evaluate 
these expectations at the 5-percent level.

b. You expect AGE to have a negative coefficient. Create and test 
the appropriate hypotheses to evaluate these expectations at the 
10-percent level.

c. At first you expect FIRE to have a positive coefficient, but one of 
your friends says that fireplaces are messy and are a pain to keep 
clean, so you’re not sure. Run a two-sided t-test around zero to test 
these expectations at the 5-percent level.

d. What problems appear to exist in your equation? (Hint: Do you 
have any unexpected signs? Do you have any coefficients that are 
not significantly different from zero?)

e. Which of the problems that you outlined in part d is the most wor-
risome? Explain your answer.

f. What explanation or solution can you think of for this problem?

h

15. This hypothetical result draws on Rachelle Rush and Thomas H. Bruggink, “The Value of 
Ocean Proximity on Barrier Island Houses,” The Appraisal Journal, April 2000, pp. 142–150.
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 7. Suppose that you’ve been asked by the San Diego Padres baseball 
team to evaluate the economic impact of their new stadium by ana-
lyzing the team’s attendance per game in the last year at their old 
stadium. After some research on the topic, you build the following 
model (standard errors in parentheses):

ATTi = 25000 + 15000 WINi + 4000 FREEi - 3000 DAYi - 12000 WEEKi

1150002   120002    130002     130002
N = 35       R 

2 = .41

where: ATTi  = the attendance at the ith game
 WINi  =  the winning percentage of the opponent in the 

ith game
 FREEi  =  a dummy variable equal to 1 if the ith game was 

a “promotion” game at which something was 
given free to each fan, 0 otherwise

 DAYi  =  a dummy variable equal to 1 if the ith game was 
a day game and equal to 0 if the game was a 
night or twilight game

 WEEKi =  a dummy variable equal to 1 if the ith game was 
during the week and equal to 0 if it was on the 
weekend

a. You expect the variables WIN and FREE to have positive coeffi-
cients. Create and test the appropriate hypotheses to evaluate these 
expectations at the 5-percent level.

b. You expect WEEK to have a negative coefficient. Create and test 
the appropriate hypotheses to evaluate these expectations at the 
1-percent level.

c. You’ve included the day game variable because your boss thinks it’s 
important, but you’re not sure about the impact of day games on 
attendance. Run a two-sided t-test around zero to test these expec-
tations at the 5-percent level.

d. What problems appear to exist in your equation? (Hint: Do you 
have any unexpected signs? Do you have any coefficients that are 
not significantly different from zero?)

e. Which of the problems that you outlined in part d is the most 
worrisome? Explain your answer.

f. What explanation or solution can you think of for this problem? 
(Hint: You don’t need to be a sports fan to answer this question. If 
you like music, think about attendance at outdoor concerts.)

h

M05_STUD2742_07_SE_C05.indd   151 1/6/16   5:08 PM



152 CHApTEr 5 HypotHesis testing and statistical inference

 8. Let’s return to the model of iPod prices on eBay that was developed in 
Exercise 7 in Chapter 3. That equation was:

PRICEi = 109.24 + 54.99NEWi - 20.44SCRATCHi + 0.73BIDRSi

15.342      15.112       10.592
t = 10.28    -4.00        1.23

N = 215    F = 55.09

where: PRICEi  = the price at which the ith iPod sold on eBay
   NEWi  =  a dummy variable equal to 1 if the ith iPod was 

new, 0 otherwise
   SCRATCHi =  a dummy variable equal to 1 if the ith iPod had a 

minor cosmetic defect, 0 otherwise
   BIDRSi  = the number of bidders on the ith iPod

a. Create and test hypotheses for the coefficients of NEW and 
SCRATCH at the 5-percent level. (Hint: Use the critical value for 
120 degrees of freedom.)

b. In theory, the more bidders there are on a given iPod, the higher 
the price should be. Create and test hypotheses at the 1-percent 
level to see if this theory can be supported by the results.

c. Based on the hypothesis tests you conducted in parts a and b, are 
there any variables that you think should be dropped from the 
equation? Explain.

d. If you could add one variable to this equation, what would it be? 
Explain. (Hint: All the iPods in the sample are silver-colored, 4 GB 
Apple iPod minis.)

e. Test the overall significance of this equation with the F-test at the 
5-percent level. Be sure to state the correct null and alternative hy-
potheses and to be specific with respect to your critical value.

 9. Frederick Schut and Peter VanBergeijk16 published an article in which 
they attempted to see if the pharmaceutical industry practiced inter-
national price discrimination by estimating a model of the prices of 
pharmaceuticals in a cross section of 32 countries. The authors felt 
that if price discrimination existed, then the coefficient of per capita 
income in a properly specified price equation would be strongly 
positive. The reason they felt that the coefficient of per capita income 

h

16. Frederick T. Schut and Peter A. G. VanBergeijk, “International Price Discrimination: The 
Pharmaceutical Industry,” World Development, Vol. 14, No. 9, pp. 1141–1150. The estimated 
coefficients we list are those produced by EViews using the original data and differ slightly from 
those in the original article.
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would measure price discrimination went as follows: the higher the 
ability to pay, the lower (in absolute value) the price elasticity of 
demand for pharmaceuticals and the higher the price a price dis-
criminator could charge. In addition, the authors expected that prices 
would be higher if pharmaceutical patents were allowed and that 
prices would be lower if price controls existed, if competition was 
encouraged, or if the pharmaceutical market in a country was rela-
tively large. Their estimates were (standard errors in parentheses):

 PN i = 38.22 + 1.43GDPNi - 0.6CVNi + 7.31PPi (5.15)
10.212    10.222   16.122

t =    6.69     -2.66     1.19

- 15.63DPCi -  11.38PCi

16.932       17.162
t = -  2.25    -  1.59

N = 32  R 

2 = .775

where: Pi  =  the pharmaceutical price level in the ith country 
divided by that of the United States

 GDPNi =  per capita domestic product in the ith country 
divided by that of the United States

 CVNi  =  per capita volume of consumption of pharma-
ceuticals in the ith country divided by that of 
the United States

 PPi  =  a dummy variable equal to 1 if patents for 
pharmaceutical products are recognized in the 
ith country, 0 otherwise

 DPCi  =  a dummy variable equal to 1 if the ith country 
applied strict price controls, 0 otherwise

 PCi  =  a dummy variable equal to 1 if the ith country 
encouraged price competition, 0 otherwise

a. Develop and test appropriate hypotheses concerning the regression 
coefficients using the t-test at the 5-percent level.

b. Set up 90-percent confidence intervals for each of the estimated 
slope coefficients.

c. Do you think Schut and VanBergeijk concluded that international 
price discrimination exists? Why or why not?

d. How would the estimated results have differed if the authors had 
not divided each country’s prices, per capita income, and per capita 
pharmaceutical consumption by that of the United States? Explain 
your answer.
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e. Reproduce their regression results by using the Stata computer pro-
gram (datafile DRUGS5) or your own computer program and the 
data from Table 5.2.

Table 5.2 data for the pharmaceutical price discrimination Exercise

Country p GDpN CV N CVN pp pC DpC

malawi 60.83   4.9   0.014   2.36   0.6 1 0 0
Kenya 50.63   6.56   0.07   6.27   1.1 1 0 0
india 31.71   6.56  18.66 282.76   6.6 0 0 1
pakistan 38.76   8.23   3.42  32.9  10.4 0 1 1
sri lanka 15.22   9.3   0.42   6.32   6.7 1 1 1
Zambia 96.58  10.3   0.05   2.33   2.2 1 0 0
Thailand 48.01  13.0   2.21  19.60  11.3 0 0 0
philippines 51.14  13.2   0.77  19.70   3.9 1 0 0
south Korea 35.10  20.7   2.20  16.52  13.3 0 0 0
malaysia 70.74  21.5   0.50   5.58   8.9 1 0 0
colombia 48.07  22.4   1.56  11.09  14.1 0 1 0
Jamaica 46.13  24.0   0.21   0.96  22.0 1 0 0
Brazil 63.83  25.2  10.48  50.17  21.6 0 1 0
mexico 69.68  34.7   7.77  28.16  27.6 0 0 0
yugoslavia 48.24  36.1   3.83   9.42  40.6 0 1 1
iran 70.42  37.7   3.27  15.33  21.3 0 0 0
Uruguay 65.95  39.6   0.44   1.30  33.8 0 0 0
ireland 73.58  42.5   0.57   1.49  38.0 1 0 0
Hungary 57.25  49.6   2.36   4.94  47.8 0 1 1
poland 53.98  50.1   8.08  15.93  50.7 0 1 1
italy 69.01  53.8  12.02  26.14  45.9 0 0 1
spain 69.68  55.9   9.01  16.63  54.2 0 0 0
United Kingdom 71.19  63.9   9.96  26.21  38.0 1 1 1
Japan 81.88  68.4  28.58  52.24  54.7 0 0 1
austria 139.53  69.6   1.24   3.52  35.2 0 0 0
netherlands 137.29  75.2   1.54   6.40  24.1 1 0 0
Belgium 101.73  77.7   3.49   4.59  76.0 1 0 1
france 91.56  81.9  25.14  24.70 101.8 1 0 1
luxembourg 100.27  82.0   0.10   0.17  60.5 1 0 1
denmark 157.56  82.4   0.70   2.35  29.5 1 0 0
germany, West 152.52  83.0  24.29  28.95  83.9 1 0 0
United states 100.00 100.0 100.00 100.00 100.0 1 1 0

source: frederick T. schut and peter a. g. VanBergeijk, “international price discrimination:  
The pharmaceutical industry,” World Development, Vol. 14, no. 9, p. 1144.
datafile = drUgs5
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5.8  Appendix: Econometric Lab #3

This lab focuses on hypothesis testing. You will estimate models of life expec-
tancy at birth across the 50 states and the District of Columbia using eco-
nomic and demographic variables. The data are in the dataset LIFE5 on the 
textbook’s website and include the following variables:

Table 5.3 variable listing

Variable Description

lifeexpecti life expectancy at birth, in years, in state i, 2010
medinci the median household income in state i  

(thousands of dollars), 2010
uninsuredi the percentage of the population (aged 0–64)  

in state i that was without health insurance  
coverage, 2008–2010

smokei the percentage of adults in state i who smoked, 
2006–2012

obesityi the percentage of adults in state i who were 
obese (Body Mass index greater than or  
equal to 30), 2006–2012

teenbirthi the number of births to teenaged mothers in 
state i per 1,000 females aged 15 to 19 years, 2010

gunlawi a dummy variable = 1 if state i had a firearm law 
protecting children, 0 otherwise, 2010

metroi the percentage of the population in state i that 
lived in a metropolitan statistical area, 2010

Step 1: Specify the Model

Specify (i.e., write out) a linear regression equation for lifeexpect with all 
seven independent variables included, using the format of Equation 5.1 in 
the text. Use proper subscripts and Greek letters where appropriate.

Step 2: Hypothesize the Signs of the Coefficients

For all seven independent variables, hypothesize the sign of each regression 
coefficient.
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Step 3: Summary Statistics

Check the means, maximums, and minimums for each of the variables. Do 
you spot any obvious anomalies? If so, what are they? If you see no anoma-
lies, go on to Step 4.

Step 4: Estimation

Run the regression using all seven independent variables and print out your 
regression results.

Step 5: Hypothesis Testing (t-statistics)

Test the slope coefficients of smoke, teenbirth, medinc, and uninsured at 
the 5-percent level of significance using the t-table in the textbook. Show your 
null and alternative hypotheses and list the critical t-statistic used for each 
hypothesis test. For which coefficients can you reject the null hypothesis?

Step 6: Hypothesis Testing (p-values)

Test the slope coefficients of gunlaw, metro, and obesity at the 5-percent 
level of significance using p-values. List the p-value used for each test. For 
which coefficients can you reject the null hypothesis?

Step 7: Overall F-test

Use the overall F-statistic to test whether the regression is significant at the 
5-percent level. Show your null and alternative hypotheses and your decision 
rule, and use the F-table.

Step 8: Drawing Conclusions

The absolute value of the coefficient of gunlaw is much larger than the abso-
lute value of the coefficient of smoke. Does this mean that passing a gun law 
to protect children will have a bigger impact on life expectancy than reducing 
smoking by three percentage points? Explain.
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Chapter 6

Specification: Choosing  
the Independent Variables

6.1 Omitted Variables

6.2 Irrelevant Variables

6.3 An Illustration of the Misuse of Specification Criteria

6.4 Specification Searches

6.5 An Example of Choosing Independent Variables

6.6 Summary and Exercises

6.7 Appendix: Additional Specification Criteria

Before any equation can be estimated, it must be specified. Specifying an 
econometric equation consists of three parts: choosing the correct indepen-
dent variables, the correct functional form, and the correct form of the 
stochastic error term.

A specification error results when any one of these choices is made 
incorrectly. This chapter is concerned with only the first of these, choosing 
the variables; the second and third choices will be taken up in later chapters.

The fact that researchers can decide which independent variables to 
include in regression equations is a source of both strength and weakness 
in econometrics. The strength is that the equations can be formulated to fit 
individual needs, but the weakness is that researchers can estimate many 
different specifications until they find the one that “proves” their point, 
even if many other results disprove it. A major goal of this chapter is to 
help you understand how to choose variables for your regressions with-
out falling prey to the various errors that result from misusing the ability  
to choose.

The primary consideration in deciding whether an independent variable 
belongs in an equation is whether the variable is essential to the regression 
on the basis of theory. If the answer is an unambiguous yes, then the vari-
able definitely should be included in the equation, even if it seems to be 
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lacking in statistical significance. If theory is ambivalent or less emphatic, 
a dilemma arises. Leaving a relevant variable out of an equation is likely 
to bias the remaining estimates, but including an irrelevant variable leads 
to higher variances of the estimated coefficients. Although we’ll develop 
statistical tools to help us deal with this decision, it’s difficult in practice 
to be sure that a variable is relevant, and so the problem often remains 
unresolved.

We devote the fourth section of the chapter to specification searches and 
the pros and cons of various approaches to such searches. For example, 
poorly done specification searches often cause bias or make the usual tests of 
significance inapplicable. Instead, we suggest trying to minimize the number 
of regressions estimated and relying as much as possible on theory rather 
than statistical fit when choosing variables. There are no pat answers, how-
ever, and so the final decisions must be left to each individual researcher.

6.1  Omitted Variables

Suppose that you forget to include one of the relevant independent variables 
when you first specify an equation (after all, no one’s perfect!). Or suppose 
that you can’t get data for one of the variables that you do think of. The result 
in both these situations is an omitted variable, defined as an important 
explanatory variable that has been left out of a regression equation.

Whenever you have an omitted (or left-out) variable, the interpretation and 
use of your estimated equation become suspect. Leaving out a relevant vari-
able, like price from a demand equation, not only prevents you from getting 
an estimate of the coefficient of price but also usually causes bias in the esti-
mated coefficients of the variables that are in the equation.

The bias caused by leaving a variable out of an equation is called omitted 
variable bias. In an equation with more than one independent variable, the 
coefficient βk represents the change in the dependent variable Y caused by a 
one-unit increase in the independent variable Xk, holding constant the other 
independent variables in the equation. If a variable is omitted, then it is not 
included as an independent variable, and it is not held constant for the calcu-
lation and interpretation of βN k. This omission can cause bias: It can force the 
expected value of the estimated coefficient away from the true value of the 
population coefficient.

Thus, omitting a relevant variable is usually evidence that the entire  
estimated equation is suspect, because of the likely bias in the coefficients 
of the variables that remain in the equation. Let’s look at this issue in 
more detail.
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the Consequences of an Omitted Variable

What happens if you omit an important variable from your equation (per-
haps because you can’t get the data for the variable or didn’t even think of 
the variable in the first place)? The major consequence of omitting a relevant 
independent variable from an equation is to cause bias in the regression coef-
ficients that remain in the equation. Suppose that the true regression model is:

 Yi = β0 + β1X1i + β2X2i + ei (6.1)

where ei is a classical error term. If you omit X2 from the equation, then the 
equation becomes:

 Yi = β0* + β1*X1i + ei* (6.2)

where ei* equals:

 ei* = ei + β2X2i (6.3)

because the stochastic error term includes the effects of any omitted vari-
ables, as mentioned in Section 1.2. Why does Equation 6.2 include β0* and 
β1* instead of β0 and β1? The answer lies in the meaning of a regression coef-
ficient. β1 is the impact of a one-unit increase in X1 on Y, holding X2 constant, 
but X2 isn’t in Equation 6.2, so OLS can’t hold it constant. As a result, β1* is 
the impact of a one-unit increase in X1 on Y, not holding X2 constant.

From Equations 6.2 and 6.3, it might seem as though we could get unbi-
ased estimates even if we left X2 out of the equation. Unfortunately, this is 
not the case,1 because the included coefficients almost surely pick up some of 
the effect of the omitted variable and therefore will change, causing bias. To 
see why, take another look at Equations 6.2 and 6.3. Most pairs of variables 
are correlated to some degree, so X1 and X2 almost surely are correlated. 
When X2 is omitted from the equation, the impact of X2 goes into e*, so e* 
and X2 are correlated. Thus if X2 is omitted from the equation and X1 and X2 
are correlated, both X1 and e* will change when X2 changes, and the error 
term will no longer be independent of the explanatory variable. That violates 
Classical Assumption III!

In other words, if we leave an important variable out of an equation, we 
violate Classical Assumption III (that the explanatory variables are indepen-
dent of the error term), unless the omitted variable is uncorrelated with all 
the included independent variables (which is extremely unlikely). In general, 

1. To avoid bias, X1 and X2 must be perfectly uncorrelated in the sample—an extremely unlikely 
result.

M06_STUD2742_07_SE_C06.indd   159 1/6/16   5:15 PM



160 ChAptEr 6 Specification: chooSing the independent VariableS 

when there is a violation of one of the Classical Assumptions, the Gauss–
Markov Theorem does not hold, and the OLS estimates are not BLUE. Given 
linear estimators, this means that the estimated coefficients are no longer 
unbiased or are no longer minimum variance (for all linear unbiased estima-
tors), or both. In such a circumstance, econometricians first determine the 
exact property (unbiasedness or minimum variance) that no longer holds 
and then suggest an alternative estimation technique that might be better 
than OLS.

An omitted variable causes Classical Assumption III to be violated in a way 
that causes bias. Estimating Equation 6.2 when Equation 6.1 is the truth will 
cause bias. This means that:

 E1βN 1*2 ≠ β1 (6.4)

Instead of having an expected value equal to the true β1, the estimate will 
compensate for the fact that X2 is missing from the equation. If X1 and X2 
are correlated and X2 is omitted from the equation, then the OLS estimation 
procedure will attribute to X1 variations in Y that are actually caused by X2, 
and a biased estimate of β1 will result.

To see how an omitted variable can cause bias, let’s look at an extremely 
early application of regression analysis.2 During World War II, the Allies were 
interested in improving the accuracy of their bombers, so they estimated 
an equation where the dependent variable was bomber accuracy and the 
independent variables included such things as the speed and altitude of the 
bombing group and the amount of enemy fighter opposition. As expected, 
the estimated coefficients supported the hypotheses that higher speeds and 
higher altitudes led to larger aiming errors, but the researchers were shocked 
to discover that more enemy fighter opposition appeared to improve the 
accuracy of the pilot and bombardier! What was going on?

The answer is omitted variable bias. It turns out that the equation didn’t 
include a variable for cloud cover over the target, and cloud cover typically 
prevented enemy fighters from flying. When it was cloudy, the bombers 
couldn’t see the ground and made large errors, but OLS attributed these 
errors to the lack of enemy fighter opposition because there was no variable 
for cloud cover in the equation and because few fighters could fly when it 
was cloudy. Put differently, the coefficient of enemy fighters picked up the 
impact of the omitted variable of cloud cover because the two variables were 
highly correlated. This is omitted variable bias!

2. Adapted from Frederick Mosteller and John Tukey, Data Analysis and Regression: A Second 
Course in Statistics (Reading, MA: Addison-Wesley, 1977), p. 318.
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To generalize for a model with two independent variables, the expected 
value of the coefficient of an included variable 1X12 when a relevant vari-
able 1X22 is omitted from the equation equals:

 E1βN 1*2 = β1 + β2
# αN 1 (6.5)

where αN 1 is an estimate of the slope coefficient of the secondary regression 
that relates X2 to X1:

 XN 2i = αN 0 + αN 1X1i (6.6)

If X1 and X2 are positively correlated, αN 1 will be positive. If X1 and X2 are 
negatively correlated, αN 1 will be negative. If X1 and X2 are uncorrelated, αN 1 
will be zero.

Let’s take a look at Equation 6.5. It states that the expected value of the 
included variable’s coefficient is equal to its true value plus the omitted 
variable’s true coefficient times a function of the correlation between the 
included and omitted variables.3 Since the expected value of an unbiased 
estimate equals the true value, the right-hand term in Equation 6.5 measures 
the omitted variable bias in the equation:

3. Equations 6.5 and 6.7 hold when there are exactly two independent variables, but the more 
general equations are quite similar.

 Bias = β2αN 1 (6.7)

In general terms, the bias thus equals the coefficient of the omitted variable 
times a function of the correlation between the included and omitted variables.

This bias exists unless:

1. the true coefficient equals zero, or

2. the included and omitted variables are uncorrelated in the sample.

The term β2αN 1 is the amount of expected bias introduced into the esti-
mate of the coefficient of the included variable by leaving out the omitted 
variable. Although it’s true that there is no bias if the included and excluded 
variables are uncorrelated, there almost always is some correlation between 
any two variables in the real world, and so bias is almost always caused by the 
omission of a relevant variable.
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An Example of Omitted Variable Bias

For an example of omitted variable bias, let’s go back to Equation 5.4, the 
Woody’s restaurants model that we first studied in Section 3.2:

 YN i = 102,192 - 9075Ni + 0.3547Pi + 1.288Ii (5.4)
120532   10.07272  10.5432

t = -4.42   4.88   2.37
N = 33  R 

2 = .579

where Y = customers (check volume), N = the number of competitive res-
taurants nearby, P = the population nearby, and I = the average household 
income nearby.

Let’s take a look at what happens if we drop population (P) from the 
equation:
 Yi = 84,439 - 1487Ni + 2.322Ii (6.8)

117782 10.6642
t =    -  0.84   +3.50
N = 33    R 

2 = .258

Stop for a minute and compare Equations 5.4 and 6.8. The most noticeable 
difference is that R 

2 has fallen from .579 to .258 because we’ve omitted 
population. However, check out the estimated coefficient and t-score for 
competition (N). The coefficient has changed from -9075 to -1487, and the 
t-score has changed from -4.42 to -0.84. What a disaster! The coefficient of 
N now is insignificantly different from zero! How could this have happened?

The answer is omitted variable bias. Population and competition are 
understandably quite correlated; the more people there are in an area, 
the more restaurants you’d expect to find. As a result, when population is 
dropped from the equation, OLS attributes the impact of the omitted vari-
able to the included variables to the extent that they’re correlated with the 
omitted variable. Was this positive or negative bias? Well, βN N increased from 
a large negative number to a smaller negative number, so the bias is posi-
tive. The positive impact of population almost completely offset the negative 
impact of competition, resulting in a coefficient not far from zero.

Note that we could have predicted that the bias was going to be positive by 
using our expected bias equation,4 Equation 6.7. Because the expected sign of 

4. It is important to note the distinction between expected bias and any actual observed dif-
ferences between coefficient estimates. Because of the random nature of the error term (and 
hence the βN s), the change in an estimated coefficient brought about by dropping a relevant 
variable from the equation will not necessarily be in the expected direction. Biasedness refers 
to the central tendency of the sampling distribution of the βN s, not to every single drawing from 
that distribution. However, we usually (and justifiably) rely on these general tendencies.
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βP is positive and because we’d expect αN 1 (related to the correlation between 
population and competition) to be positive, the expected bias in βN N is positive:

 Expected bias in βN N = βP
# αN 1 = 1+ 21+ 2 = +  (6.9)

Just as we would have predicted, omitting N caused positive bias. Leaving pop-
ulation out of the equation caused the coefficient of competition to pick up 
the impact of population to the extent that the two variables were correlated.

To sum, if a relevant variable is left out of a regression equation,

1. there is no longer an estimate of the coefficient of that variable in the 
equation, and

2. the coefficients of the remaining variables are likely to be biased.

Although the amount of the bias might not be very large in some cases 
(when, for instance, there is little correlation between the included and 
excluded variables), it is extremely likely that at least a small amount of omit-
ted variable bias will be present in all such situations.

Correcting for an Omitted Variable

In theory, the solution to a problem of omitted variable bias seems easy: Add 
the omitted variable to the equation! Unfortunately, that’s easier said than 
done, for a couple of reasons.

First, omitted variable bias is hard to detect. The amount of bias intro-
duced can be small and not immediately detectable. This is especially true 
when there is no reason to believe that you have misspecified the model. 
Some indications of specification bias are obvious (such as an estimated 
coefficient that is significant in the direction opposite from that expected), 
but others are not so clear. The best indicators of an omitted relevant variable 
are the theoretical underpinnings of the model itself. What variables must 
be included? What signs do you expect? Do you have any notions about the 
range into which the coefficient values should fall? The best way to avoid 
omitting an important variable is to invest the time in thinking carefully 
through the equation before the data are entered into the computer.

A second source of complexity is the problem of choosing which vari-
able to add to an equation once you decide that it is suffering from omitted 
variable bias. Some beginning researchers, when faced with this dilemma, 
will add all the possible relevant variables to the equation at once, but this 
process leads to less precise estimates, as will be discussed in the next section. 
Other beginning researchers will test a number of different variables and 
keep the one in the equation that does the best statistical job of appearing 
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to reduce the bias (by giving plausible signs and satisfactory t-values). This 
technique, adding a “left-out” variable to “fix” a strange-looking regression 
result, is invalid because the variable that best corrects a case of specification 
bias might do so only by chance rather than by being the true solution to the 
problem. In such an instance, the “fixed” equation may give superb statisti-
cal results for the sample at hand but then do terribly when applied to other 
samples because it does not describe the characteristics of the true population.

Dropping a variable will not help cure omitted variable bias. If the sign 
of an estimated coefficient is different from expected, it cannot be changed 
to the expected direction by dropping a variable that has a t-score lower (in 
absolute value) than the t-score of the coefficient estimate that has the unex-
pected sign. Furthermore, the sign in general will not likely change even if the 
variable to be deleted has a large t-score.5

If an unexpected result leads you to believe that you have an omitted 
variable, one way to decide which variable to add to the equation is to use 
expected bias analysis. If the sign of the expected bias (using Equation 6.7) 
is the same as the sign of your unexpected result, then the variable might 
be the source of the apparent bias. If the sign of the expected bias is not 
the same as the sign of your unexpected result, however, then the variable 
is extremely unlikely to have caused your unexpected result. Expected bias 
analysis should be used only when you’re choosing between theoretically 
sound potential variables.

Although you can never actually observe bias (since you don’t know the 
true β), the use of this technique to screen potential causes of specification 
bias should reduce the number of regressions run and increase the validity of 
the results.

A brief warning: It may be tempting to conduct what might be called 
“residual analysis” by examining a plot of the residuals in an attempt to find 
patterns that suggest variables that have been accidentally omitted. A major 
problem with this approach is that the coefficients of the estimated equation 
will possibly have some of the effects of the left-out variable already altering 
their estimated values. Thus, residuals may show a pattern that only vaguely 
resembles the pattern of the actual omitted variable. The chances are high 
that the pattern shown in the residuals may lead to the selection of an incor-
rect variable. In addition, care should be taken to use residual analysis only 
to choose between theoretically sound candidate variables rather than to 
generate those candidates.

5. Ignazio Visco, “On Obtaining the Right Sign of a Coefficient Estimate by Omitting a Variable 
from the Regression,” Journal of Econometrics, Vol. 7, No. 1, pp. 115–117.
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6.2  Irrelevant Variables

What happens if you include a variable in an equation that doesn’t belong 
there? This case, irrelevant variables, is the converse of omitted variables and 
can be analyzed using the model we developed in Section 6.1. The addition of a 
variable to an equation where it doesn’t belong does not cause bias, but it does 
increase the variances of the estimated coefficients of the included variables.

Impact of Irrelevant Variables

If the true regression specification is:

 Yi = β0 + β1X1i + ei (6.10)

but the researcher for some reason includes an extra variable,

 Yi = β0 + β1X1i + β2X2i + ei** (6.11)

the misspecified equation’s error term can be seen to be:

 ei** = ei - β2X2i (6.12)

Such a mistake won’t cause bias if the true coefficient of the irrelevant variable 
is zero. That is, an estimate of β1 in Equation 6.11 is unbiased when β2 = 0.

However, the inclusion of an irrelevant variable will increase the variance 
of the estimated coefficients, and this increased variance will tend to decrease 
the absolute magnitude of their t-scores. Also, an irrelevant variable usually 
will decrease the R 

2 (but not the R2).
Thus, although the irrelevant variable causes no bias, it causes problems 

for the regression because it reduces the t-scores and R 

2.

An Example of an Irrelevant Variable

Let’s return to the Woody’s equation and see what happens when we add an 
irrelevant variable to the model. The original equation was:

 YN i = 102,192 - 9075Ni + 0.3547Pi + 1.288Ii (5.4)
120532    10.07272  10.5432

t = -4.42   4.88   2.37
N = 33  R 

2 = .579

where Y = customers (check volume), N = the number of competitive res-
taurants nearby, P = the population nearby, and I = the average household 
income nearby.
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What’s the most irrelevant variable that you can think of? How about 
Ai = the last three digits of the street address of the ith Woody’s restaurant? 
That’s pretty random! If we add Ai to Equation 5.4, we get:

 YN i = 98,125 - 8975Ni + 0.360Pi + 1.301Ii + 58.07Ai (6.13)
120822    10.0742   10.5502  195.212

t =      - 4.31   + 4.86  + 2.37   + 0.61
N = 33     R 

2 = .569

A comparison of Equations 5.4 and 6.13 will make the theory in Section 6.2 
come to life. First of all, R 

2 has fallen slightly, indicating the reduction in fit 
adjusted for degrees of freedom. Second, none of the regression coefficients 
from the original equation changed very much; compare these results with the 
larger differences between Equations 5.4 and 6.9. Further, the standard errors 
of the estimated coefficients increased. Finally, the t-score for the potential 
variable (A) is small, indicating that it is not significantly different from zero. 
Given the theoretical shakiness of the new variable, these results indicate that 
it is irrelevant and never should have been included in the regression.

Four Important Specification Criteria

We have now discussed at least four valid criteria to help decide whether a 
given variable belongs in the equation. We think these criteria are so impor-
tant that we urge beginning researchers to work through them every time a 
variable is added or subtracted.

 1.  Theory: Is the variable’s place in the equation unambiguous and 
theoretically sound?

 2.  t-Test: Is the variable’s estimated coefficient significant in the  
expected direction?

 3.  R  

2: Does the overall fit of the equation (adjusted for degrees of  
freedom) improve when the variable is added to the equation?

 4.  Bias: Do other variables’ coefficients change significantly when the 
variable is added to the equation? 

If all these conditions hold, the variable belongs in the equation; if none of 
them do, the variable is irrelevant and can be safely excluded from the equa-
tion. When a typical omitted relevant variable is included in the equation, its 
inclusion probably will increase R 

2 and change at least one other coefficient.  
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If an irrelevant variable, on the other hand, is included, it will reduce R 

2, have 
an insignificant t-score, and have little impact on the other variables’ coefficients.

In many cases, all four criteria do not agree. It is possible for a variable to 
have an insignificant t-score that is greater than one, for example. In such a 
case, it can be shown that R 

2 will go up when the variable is added to the 
equation and yet the t-score still will be insignificant.

Whenever our four specification criteria disagree, the econometrician must 
use careful judgment and should not rely on a single criterion like R 

2 to deter-
mine the specification. Researchers should not misuse this freedom by testing 
various combinations of variables until they find the results that appear to sta-
tistically support the point they want to make. All such decisions are a bit easier 
when you realize that the single most important determinant of a variable’s rel-
evance is its theoretical justification. No amount of statistical evidence should 
make a theoretical necessity into an “irrelevant” variable. Once in a while, a 
researcher is forced to leave a theoretically important variable out of an equa-
tion for lack of data; in such cases, the usefulness of the equation is limited.

6.3  An Illustration of the Misuse of Specification Criteria

At times, the four specification criteria outlined in the previous section will 
lead the researcher to an incorrect conclusion if those criteria are applied to a 
problem without proper concern for economic principles or common sense. 
In particular, a t-score can often be insignificant for reasons other than the pres-
ence of an irrelevant variable. Since economic theory is the most important test 
for including a variable, an example of why a variable should not be dropped 
from an equation simply because it has an insignificant t-score is in order.

Suppose you believe that the demand for Brazilian coffee in the United 
States is a negative function of the real price of Brazilian coffee 1Pbc2 and a 
positive function of both the real price of tea 1Pt2 and real disposable income 
in the United States 1Yd2.6 Suppose further that you obtain the data, run the 
implied regression, and observe the following results:

 COFFEE = 9.1 + 7.8Pbc + 2.4Pt + 0.0035Yd (6.14)
115.62   11.22  10.00102

t = 0.5   2.0    3.5
R 

2 = .60  N = 25

®

6. This example was inspired by a similar one concerning Ceylonese tea published in Potluri 
Rao and Roger LeRoy Miller, Applied Econometrics (Belmont, CA: Wadsworth, 1971), pp. 38–40. 
This wonderful book is now out of print.
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The coefficients of the second and third variables, Pt and Yd, appear to be 
fairly significant in the direction you hypothesized, but the first variable, Pbc, 
appears to have an insignificant coefficient with an unexpected sign. If you 
think there is a possibility that the demand for Brazilian coffee is price-inelastic 
(that is, its coefficient is zero), you might decide to run the same equation 
without the price variable, obtaining:

 COFFEE = 9.3 + 2.6Pt + 0.0036Yd (6.15)
11.02   10.00092

t = 2.6    4.0
R 

2 = .61   N = 25

By comparing Equations 6.14 and 6.15, we can apply our four specification 
criteria for the inclusion of a variable in an equation that were outlined in 
the previous section:

1. Theory: If it’s possible that the demand for coffee could be price-inelastic, 
the theory behind dropping the variable seems plausible.

2. t-Test: The t-score of the possibly irrelevant variable is 0.5, insignificant 
at any level.

3. R  

2: R 

2 increases when the variable is dropped, indicating that the  
variable is irrelevant.

4. Bias: The remaining coefficients change only a small amount when 
Pbc is dropped, suggesting that there is little—if any—bias caused by 
excluding the variable.

Based upon this analysis, you might conclude that the demand for Brazilian 
coffee is indeed price-inelastic and that the variable is therefore irrelevant 
and should be dropped from the model. As it turns out, this conclusion 
would be unwarranted. Although the elasticity of demand for coffee in gen-
eral might be fairly low (actually, the evidence suggests that it is inelastic only 
over a particular range of prices), it is hard to believe that Brazilian coffee is 
immune to price competition from other kinds of coffee. Indeed, one would 
expect quite a bit of sensitivity in the demand for Brazilian coffee with 
respect to the price of, for example, Colombian coffee. To test this hypoth-
esis, the price of Colombian coffee 1Pcc2 should be added to the original  
Equation 6.14:

 COFFEE = 10.0 + 8.0Pcc - 5.6Pbc + 2.6Pt + 0.0030Yd (6.16)
14.02   12.02   11.32  10.00102

t = 2.0     -  2.8      2.0     3.0
R 

2 = .65 N = 25

®

®
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By comparing Equations 6.14 and 6.16, we can once again apply our four 
specification criteria:

1. Theory: Both prices should always have been included in the model; 
their logical justification is quite strong.

2. t-Test: The t-score of the new variable, the price of Colombian coffee, is 
2.0, significant at most levels.

3. R  

2: R 

2 increases with the addition of the variable, indicating that the 
variable was an omitted variable.

4. Bias: Although two of the coefficients remain virtually unchanged, 
indicating that the correlations between these variables and the price 
of Colombian coffee variable are low, the coefficient for the price of 
Brazilian coffee does change significantly, indicating bias in the  
original result.

The moral to be drawn is that theoretical considerations never should be 
discarded, even in the face of statistical insignificance. If a variable known to 
be extremely important from a theoretical point of view turns out to be statis-
tically insignificant in a particular sample, that variable should be left in the 
equation despite the fact that it makes the results look bad.

Don’t conclude that the particular path outlined in this example is the 
correct way to specify an equation. Trying a long string of possible variables 
until you get the particular one that makes the coefficient of Pbc turn nega-
tive and significant is not the way to obtain a result that will stand up well to 
other samples or alternative hypotheses. The original equation should never 
have been run without the Colombian coffee price variable. Instead, the 
problem should have been analyzed enough so that such errors of omission 
were unlikely before any regressions were attempted at all. The more thinking 
that’s done before the first regression is run, and the fewer alternative speci-
fications that are estimated, the better the regression results are likely to be.

6.4  Specification Searches

One of the weaknesses of econometrics is that a researcher potentially can 
manipulate a data set to produce almost any result by specifying different 
regressions until estimates with the desired properties are obtained. Because the 
integrity of all empirical work is thus open to question, the subject of how to 
search for the best specification is quite controversial among econometricians. 
Our goal in this section isn’t to summarize or settle this controversy; instead, 
we hope to provide some guidance and insight for beginning researchers.
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Best practices in Specification Searches

The issue of how best to choose a specification from among alternative pos-
sibilities is a difficult one, but our experience leads us to make the following 
recommendations:

 1.  Rely on theory rather than statistical fit as much as possible when 
choosing variables, functional forms, and the like.

 2.  Minimize the number of equations estimated (except for sensitivity 
analysis, to be discussed later in this section).

 3.  Reveal, in a footnote or appendix, all alternative specifications  
estimated.

If theory, not R 

2 or t-scores, is the most important criterion for the inclu-
sion of a variable in a regression equation, then it follows that most of the 
work of specifying a model should be done before you attempt to estimate 
the equation. Since it’s unreasonable to expect researchers to be perfect, there 
will be times when additional specifications must be estimated. However, 
these new estimates should be few in number and should be thoroughly 
grounded in theory. In addition, they should be explicitly taken into account 
when testing for significance and/or summarizing results. In this way, the 
danger of misleading the reader about the statistical properties of the final 
equation will be reduced.

Sequential Specification Searches

Most econometricians tend to specify equations by estimating an initial equa-
tion and then sequentially dropping or adding variables (or changing func-
tional forms) until a plausible equation is found with “good statistics.” Faced 
with knowing that a few variables are relevant (on the basis of theory) but 
not knowing whether other additional variables also are relevant, the gener-
ally accepted practice appears to be inspecting R 

2 and t-tests for all variables 
for each specification. Indeed, casual reading of the previous section might 
make it seem as if such a sequential specification search is the best way to go 
about finding the “truth.” Instead, as we shall see, there is a vast difference 
between a sequential specification search and our recommended approach.

The sequential specification search technique allows a researcher to esti-
mate an undisclosed number of regressions and then present a final choice 
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(which is based upon an unspecified set of expectations about the signs and 
significance of the coefficients) as if it were the only specification estimated. 
Such a method misstates the statistical validity of the regression results for 
two reasons:

1. The statistical significance of the results is overestimated because the 
estimations of the previous regressions are ignored.

2. The expectations used by the researcher to choose between various  
regression results rarely, if ever, are disclosed. Thus the reader has no 
way of knowing whether all the other regression results had opposite 
signs or insignificant coefficients for the important variables.

Unfortunately, there is no universally accepted way of conducting sequen-
tial searches, primarily because the appropriate test at one stage in the pro-
cedure depends on which tests previously were conducted, and also because 
the tests have been very difficult to invent.

Instead we recommend trying to keep the number of regressions estimated 
as low as possible; to focus on theoretical considerations when choosing 
variables or functional forms; and to document all the various specifications 
investigated. That is, we recommend combining parsimony (using theory 
and analysis to limit the number of specifications estimated) with disclosure 
(reporting all the equations estimated).

Not everyone agrees with our advice. Some researchers feel that the true 
model will show through if given the chance and that the best statistical 
results (including signs of coefficients, etc.) are most likely to have come 
from the true specification. In addition, reasonable people often disagree as 
to what the “true” model should look like. As a result, different researchers 
can look at the same data set and come up with very different “best” equa-
tions. Because this can happen, the distinction between good and bad econo-
metrics is not always as clear-cut as is implied by the previous paragraphs. As 
long as researchers have a healthy respect for the dangers inherent in specifi-
cation searches, they are very likely to proceed in a reasonable way.

Bias Caused by relying on the t-test or r  

2 to Choose Variables

In the previous section, we stated that sequential specification searches are 
likely to mislead researchers about the statistical properties of their results. 
In particular, the practice of dropping a potential independent variable 
simply because its coefficient has a low t-score or because it lowers R 

2 will 
cause systematic bias in the estimated coefficients (and their t-scores) of the 
remaining variables.
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Let’s say the hypothesized model is:

 Yi = β0 + β1X1i + β2X2i + ei (6.17)

Assume further that, on the basis of theory, we are certain that X1 belongs in 
the equation but that we are not as certain that X2 belongs. Many inexperi-
enced researchers use only the t-test on βN 2 to determine whether X2 should be 
included. If this preliminary t-test indicates that βN 2 is significantly different 
from zero, then these researchers leave X2 in the equation. If, however, the 
t-test does not indicate that βN 2 is significantly different from zero, then such 
researchers drop X2 from the equation and consider Y to be a function of X1.

Two kinds of mistakes can be made using such a system. First, X2 some-
times can be left in the equation when it does not belong there, but such a 
mistake does not change the expected value of βN 1.

Second, X2 sometimes can be dropped from the equation when it belongs. 
In this second case, the estimated coefficient of X1 will be biased. In other 
words, βN 1 will be biased every time X2 belongs in the equation and is left out, 
and X2 will be left out every time that its estimated coefficient is not signifi-
cantly different from zero. We will have systematic bias in our equation!

To summarize, the t-test is biased by sequential specification searches. 
Since most researchers consider a number of different variables before set-
tling on the final model, someone who relies on the t-test or R 

2 is likely to 
encounter this problem systematically.

Data Mining

Data mining involves estimating a wide variety of alternative specifications 
before a “best” equation is chosen. Readers of this text will not be surprised to 
hear that we urge extreme caution when data mining. Improperly done data 
mining is worse than doing nothing at all.

Done properly, data mining involves exploring a data set not for the pur-
pose of testing hypotheses or finding a specification, but for the purpose of 
uncovering empirical regularities that can inform economic theory.7 After all, 
we can’t expect economic theorists to think of everything!

Be careful, however! If you develop a hypothesis using data mining tech-
niques, you must test that hypothesis on a different data set (or in a different 
context) than the one you used to develop the hypothesis. A new data set 

7. For an excellent presentation of this approach, see Lawrence H. Summers, “The Scientific 
Illusion in Empirical Macroeconomics,” Scandinavian Journal of Economics, Vol. 93, No. 2,  
pp. 129–148.
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must be used because our typical statistical tests have little meaning if the 
new hypothesis is tested on the data set that was used to generate it. After all, 
the researcher already knows ahead of time what the results will be! The use 
of dual data sets is easiest when there is a plethora of data. This sometimes 
is the case in cross-sectional research projects but rarely is the case for time 
series research.

Data mining without using dual data sets is almost surely the worst way 
to choose a specification. In such a situation, a researcher could estimate 
virtually every possible combination of the various alternative independent 
variables, could choose the results that “look” the best, and then could report 
the “best” equation as if no data mining had been done. This improper use of 
data mining ignores the fact that a number of specifications have been exam-
ined before the final one is reported.

In addition, data mining will cause you to choose specifications that 
reflect the peculiarities of your particular data set. How does this happen? 
Suppose you have 100 true null hypotheses and you run 100 tests of these 
hypotheses. At the 5-percent level of significance, you’d expect to reject about 
five true null hypotheses and thus make about five Type I Errors. By look-
ing for high t-values, a data mining search procedure will find these Type I 
Errors and incorporate them into your specification. As a result, the reported 
t-scores will overstate the statistical significance of the estimated coefficients.

In essence, improper data mining to obtain desired statistics for the final 
regression equation is a potentially unethical empirical research method. 
Whether the improper data mining is accomplished by estimating one 
equation at a time or by estimating batches of equations or by techniques 
like stepwise regression procedures,8 the conclusion is the same. Hypotheses 
developed by data mining should always be tested on a data set different from 
the one that was used to develop the hypothesis. Otherwise, the researcher 
hasn’t found any scientific evidence to support the hypothesis; rather, a speci-
fication has been chosen in a way that is essentially misleading. As put by one 
econometrician, “if you torture the data long enough, they will confess.”9

8. A stepwise regression involves the use of an automated computer program to choose the 
independent variables in an equation. The researcher specifies a “shopping list” of possible 
independent variables, and then the computer estimates a number of equations until it finds 
the one that maximizes R 

2. Such stepwise techniques are deficient in the face of multicollinearity 
(to be discussed in Chapter 8) and they run the risk that the chosen specification will have little 
theoretical justification and/or will have coefficients with unexpected signs. Because of these 
pitfalls, econometricians avoid stepwise procedures.
9. Thomas Mayer, “Economics as a Hard Science: Realistic Goal or Wishful Thinking?” Economic 
Inquiry, Vol. 18, No. 2, p. 175. (This quote also has been attributed to Ronald Coase.)
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Sensitivity Analysis

Throughout this text, we’ve encouraged you to estimate as few specifications 
as possible and to avoid depending on fit alone to choose between those 
specifications. If you read the current economics literature, however, it won’t 
take you long to find well-known researchers who have estimated five or more 
specifications and then have listed all their results in an academic journal 
article. What’s going on?

In almost every case, these authors have employed a technique called 
sensitivity analysis. Sensitivity analysis consists of purposely running a 
number of alternative specifications to determine whether particular results 
are robust (not statistical flukes). In essence, we’re trying to determine how 
sensitive a potential “best” equation is to a change in specification because 
the true specification isn’t known. Researchers who use sensitivity analysis 
run (and report on) a number of different reasonable specifications and 
tend to discount a result that appears significant in some specifications and 
insignificant in others. Indeed, the whole purpose of sensitivity analysis is to 
gain confidence that a particular result is significant in a variety of alternative 
specifications, functional forms, variable definitions, and/or subsets of the 
data.

6.5  An Example of Choosing Independent Variables

It’s time to get some experience choosing independent variables. After all, 
every equation so far in the text has come with the specification already 
determined, but once you’ve finished this course you’ll have to make all such 
specification decisions on your own. In future chapters, we’ll use a technique 
called “interactive regression learning exercises” to allow you to make your 
own actual specification choices and get feedback on your choices. To start, 
though, let’s work through a specification together.

To keep things as simple as possible, we’ll begin with a topic near and dear 
to your heart—your GPA! Suppose a friend who attends a small liberal arts 
college surveys all 25 members of her econometrics class, obtains data on the 
variables listed here, and asks for your help in choosing a specification:

GPAi  = the cumulative college grade point average of the ith student on a 
four-point scale

HGPAi = the cumulative high school grade point average of the ith student 
on a four-point scale

MSATi  = the highest score earned by the ith student on the math section of 
the SAT test (800 maximum)
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VSATi  = the highest score earned by the ith student on the verbal section 
of the SAT test (800 maximum)

SATi  = MSATi + VSATi

GREKi  = a dummy variable equal to 1 if the ith student is a member of a 
fraternity or sorority, 0 otherwise

HRSi  = the ith student’s estimate of the average number of hours spent 
studying per course per week in college

PRIVi  = a dummy variable equal to 1 if the ith student graduated from a 
private high school, 0 otherwise

JOCKi  = a dummy variable equal to 1 if the ith student is or was a member 
of a varsity intercollegiate athletic team for at least one season,  
0 otherwise

lnEXi  = the natural log of the number of full courses that the ith student 
has completed in college

Assuming that GPAi is the dependent variable, which independent vari-
ables would you choose? Before you answer, think through the possibilities 
carefully. What does the literature tell us on this subject? (Is there literature?) 
What are the expected signs of each of the coefficients? How strong is the 
theory behind each variable? Which variables seem obviously important? 
Which variables seem potentially irrelevant or redundant? Are there any 
other variables that you wish your friend had collected?

To get the most out of this example, you should take the time to write down 
the exact specification that you would run:

 GPAi = f1?, ?, ?, ?, ?2 + e 

It’s hard for most beginning econometricians to avoid the temptation of 
including all of these variables in a GPA equation and then dropping any 
variables that have insignificant t-scores. Even though we mentioned in the 
previous section that such a specification search procedure will result in 
biased coefficient estimates, most beginners don’t trust their own judgment 
and tend to include too many variables. With this warning in mind, do you 
want to make any changes in your proposed specification?

No? OK, let’s compare notes. We believe that grades are a function of a 
student’s ability, how hard the student works, and the student’s experience 
taking college courses. Consequently, our specification would be:

 +  +  +
 GPAi = β0 + β1HGPAi + β2HRSi + β3lnEXi + ei

We can already hear you complaining! What about SATs, you say? Everyone 
knows they’re important. How about jocks and Greeks? Don’t they have lower 
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GPAs? Don’t prep schools grade harder and prepare students better than 
public high schools?

Before we answer, it’s important to note that we think of specification 
choice as choosing which variables to include, not which variables to exclude. 
That is, we don’t assume automatically that a given variable should be 
included in an equation simply because we can’t think of a good reason for 
dropping it.

Given that, however, why did we choose the variables we did? First, we 
think that the best predictor of a student’s college GPA is his or her high 
school GPA. We have a hunch that once you know HGPA, SATs are redun-
dant, at least at a liberal arts college10 where there are few multiple choice 
tests. In addition, we’re concerned that possible racial and gender bias in the 
SAT test makes it a questionable measure of academic potential, but we rec-
ognize that we could be wrong on this issue.

As for the other variables, we’re more confident. For example, we feel 
that once we know how many hours a week a student spends studying, we 
couldn’t care less what that student does with the rest of his or her time, 
so JOCK and GREK are superfluous once HRS is included. In addition, the 
higher lnEX is, the better student study habits are and the more likely stu-
dents are to be taking courses in their major. Finally, while we recognize that 
some private schools are superb and that some public schools are not, we’d 
guess that PRIV is irrelevant; it probably has only a minor effect.

If we estimate this specification on the 25 students, we obtain:

 GPAi = -0.26 + 0.49HGPAi + 0.06HRSi + 0.42lnEXi (6.18)
10.212   10.022      10.142

t = 2.33        3.00    3.00
N = 25 R 

2 = .585

Since we prefer this specification on theoretical grounds, since the overall fit 
seems reasonable, and since each coefficient meets our expectations in terms 
of sign, size, and significance, we consider this an acceptable equation. The 
only circumstance under which we’d consider estimating a second specifica-
tion would be if we had theoretical reasons to believe that we had omitted a 

h

10. In contrast, SATs tend to have a statistically significant effect on GPAs at large research 
universities. For example, see Andrew Barkley and Jerry Forst, “The Determinants of First-Year 
Academic Performance in the College of Agriculture at Kansas State University, 1990–1999,” 
Journal of Agricultural and Applied Economics, Vol. 36, No 2, pp. 437–448.
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relevant variable. The only variable that might meet this description is SATi 
(which we prefer to the individual MSAT and VSAT):

 GPAi = -0.92 + 0.47HGPAi + 0.05HRSi (6.19)
10.222      10.022

t = 2.12     2.50
+ 0.44lnEXi   + 0.00060SATi

10.142   10.000642
t = 3.12    0.93

N = 25 R 

2 = .583

Let’s use our four specification criteria to compare Equations 6.18 and 6.19:

1. Theory: As discussed previously, the theoretical validity of SAT tests is 
a matter of some academic controversy, but they still are one of the 
most-cited measures of academic potential in this country.

2. t-Test: The coefficient of SAT is positive, as we’d expect, but it’s not  
significantly different from zero.

3. R  

2: As you’d expect (since SAT’s t-score is under 1), R 

2 falls slightly 
when SAT is added.

4. Bias: None of the estimated slope coefficients changes substantially 
when SAT is added, though some of the t-scores do change because of 
the increase in the SE1βN 2s caused by the addition of SAT.

Thus, the statistical criteria do not convincingly contradict our theoretical 
contention that SAT is irrelevant.

Finally, it’s important to recognize that different researchers could come 
up with different final equations on this topic. A researcher whose prior 
expectation was that SAT unambiguously belonged in the equation would 
have estimated Equation 6.19 and accepted that equation without bothering 
to estimate Equation 6.18. Other researchers, in the spirit of sensitivity analy-
sis, would report both equations.

6.6  Summary

 1. The omission of a variable from an equation will cause bias in the 
estimates of the remaining coefficients to the extent that the omitted 
variable is correlated with included variables.

 2. The bias to be expected from leaving a variable out of an equation 
equals the coefficient of the excluded variable times a function of the 
simple correlation coefficient between the excluded variable and the 
included variable in question.

h
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 3. Including a variable in an equation in which it is actually irrelevant 
does not cause bias, but it will usually increase the variances of the 
included variables’ estimated coefficients, thus lowering their t-values, 
widening their confidence intervals, and lowering R 

2.

 4. Four useful criteria for the inclusion of a variable in an equation are:
a. theory
b. t-test
c. R 

2

d. bias

 5. Theory, not statistical fit, should be the most important criterion for 
the inclusion of a variable in a regression equation. To do otherwise 
runs the risk of producing incorrect and/or disbelieved results.

ExErcisEs

(the answers to the even-numbered exercises are in appendix a.)

 1. Write the meaning of each of the following terms without referring to 
the book (or your notes), and compare your definition with the ver-
sion in the text for each:
a. expected bias (p. 161)
b. irrelevant variable (p. 165)
c. omitted variable (p. 158)
d. omitted variable bias (p. 158)
e. sensitivity analysis (p. 174)
f. sequential specification search (p. 170)
g. specification error (p. 157)
h. the four specification criteria (p. 166)

 2. You’ve been hired by “Indo,” the new Indonesian automobile manu-
facturer, to build a model of U.S. car prices in order to help the com-
pany undercut U.S. prices. Allowing Friedmaniac zeal to overwhelm 
any patriotic urges, you build the following model of the price of 
35 different American-made 2016 U.S. sedans (standard errors in 
parentheses):

Model A: PN i = 9.0 + 0.28Wi + 1.2Ti + 5.8Ci + 0.19Li

10.072    10.42   12.92    10.202
R 

2 = .92
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where: Pi  = the list price of the ith car (thousands of dollars)
   Wi = the weight of the ith car (hundreds of pounds)
   Ti  =  a dummy equal to 1 if the ith car has an automatic trans-

mission, 0 otherwise
   Ci  =  a dummy equal to 1 if the ith car has cruise control, 0 

otherwise
   Li  = the size of the engine of the ith car (in liters)

a. Your firm’s pricing expert hypothesizes positive signs for all the 
slope coefficients in Model A. Test her expectations at the 5-percent 
level.

b. What econometric problems appear to exist in Model A? In particu-
lar, does the size of the coefficient of C cause any concern? Why? 
What could be the problem?

c. You decide to test the possibility that L is an irrelevant variable by 
dropping it and rerunning the equation, obtaining the following 
Model T equation. Which model do you prefer? Why? (Hint: Be 
sure to use our four specification criteria.)

Model T: PN = 24 + 0.29Wi + 1.2Ti + 5.9Ci

10.072   10.302 12.92
       R 

2 = .93  

 3. Consider the following annual model of the death rate (per million 
population) due to coronary heart disease in the United States 1Yt2:

YN t = 140 + 10.0Ct + 4.0Et - 1.0Mt

12.52    11.02   10.52
t = 4.0        4.0   -  2.0

N = 31 11975-20052 R 

2 = .678

where: Ct  =  per capita cigarette consumption (pounds of tobacco) 
in year t

   Et  =  per capita consumption of edible saturated fats 
(pounds of butter, margarine, and lard) in year t

   Mt = per capita consumption of meat (pounds) in year t

a. Create and test appropriate hypotheses at the 10-percent level. What, 
if anything, seems to be wrong with the estimated coefficient of M?

b. The most likely cause of a coefficient that is significant in the un-
expected direction is omitted variable bias. Which of the following 
variables could possibly be an omitted variable that is causing βN M’s 
unexpected sign? Explain. (Hint: Be sure to analyze expected bias in 
your explanation.)
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Bt  = per capita consumption of hard liquor (gallons) in year t
Ft  =  the average fat content (percentage) of the meat that was 

consumed in year t
Wt = per capita consumption of wine and beer (gallons) in year t
Rt  = per capita number of miles run in year t
Ht = per capita open-heart surgeries in year t
Ot = per capita amount of oat bran eaten in year t

c. If you had to choose a variable not listed in part b to add to the 
equation, what would it be? Explain your answer.

 4. For each of the following situations, determine the sign (and, if pos-
sible, comment on the likely size) of the expected bias introduced by 
omitting a variable:
a. In an equation for the demand for peanut butter, the impact on the 

coefficient of disposable income of omitting the price of peanut 
butter variable. (Hint: Start by hypothesizing signs.)

b. In an earnings equation for workers, the impact on the coefficient 
of experience of omitting the variable for age.

c. In a production function for airplanes, the impact on the coeffi-
cient of labor of omitting the capital variable.

d. In an equation for daily attendance at outdoor concerts, the impact 
on the coefficient of the weekend dummy variable (1 = weekend) 
of omitting a variable that measures the probability of precipita-
tion at concert time.

 5. Let’s return to the model of financial aid awards at a liberal arts college 
that was first introduced in Section 2.2. In that section, we estimated 
the following equation (standard errors in parentheses):

 FINAIDi = 8927 - 0.36 PARENTi + 87.4 HSRANKi (6.20)
10.032     120.72

t =      -11.26        4.22
R 

2 = .73      N = 50

where: FINAIDi  =  the financial aid (measured in dollars of 
grant) awarded to the ith applicant

 PARENTi  =  the amount (in dollars) that the parents of 
the ith student are judged able to contribute 
to college expenses

 HSRANKi =  the ith student’s GPA rank in high school, 
measured as a percentage (ranging from a 
low of 0 to a high of 100)

®
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a. Create and test hypotheses for the coefficients of the independent 
variables.

b. What econometric problems do you see in the equation? Are there 
any signs of an omitted variable? Of an irrelevant variable? Explain 
your answer.

c. Suppose that you now hear a charge that financial aid awards at the 
school are unfairly tilted toward males, so you decide to attempt to 
test this charge by adding a dummy variable for gender (MALEi = 1 
if the ith student is a male, 0 if female) to your equation, getting the 
following results:

FINAIDi = 9813 - 0.34 PARENTi + 83.3 HSRANKi - 1570 MALEi (6.21)
10.032     120.12     17842

t =   -10.88        4.13      -2.00
R 

2 = .75     N = 50

d. Carefully explain the real-world meaning of the estimated coef-
ficient of MALE. What would Equation 6.21 look like if you used 
FEMALE (=  1 if the ith student is a female and 0 otherwise) instead 
of MALE in the equation? (Hint: Be specific.)

e. Which equation is better, Equation 6.20 or Equation 6.21? Care-
fully use our four specification criteria to make your decision, 
being sure to state which criteria support which equation and why.

 6. Suppose that you run a regression to determine whether gender or 
race has any significant impact on scores on a test of the economic 
understanding of children.11 You model the score of the ith student 
on the test of elementary economics 1Si2 as a function of the com-
posite score on the Iowa Tests of Basic Skills of the ith student, a 
dummy variable equal to 1 if the ith student is female (0 otherwise), 
the average number of years of education of the parents of the ith stu-
dent, and a dummy variable equal to 1 if the ith student is nonwhite  
(0 otherwise). Unfortunately, a rainstorm floods the computer center 
and makes it impossible to read the part of the computer output that 
identifies which variable is which. All you know is that the regression 
results are (standard errors in parentheses):

SN i = 5.7 - 0.63X1i - 0.22X2i + 0.16X3i + 1.20X4i

10.632   10.882   10.082   10.102
N = 24 R 

2 = .54

®

11. These results have been jiggled to meet the needs of this question, but this research actually 
was done. See Stephen Buckles and Vera Freeman, “Male-Female Differences in the Stock and 
Flow of Economic Knowledge,” Review of Economics and Statistics, Vol. 65, No. 2, pp. 355–357.
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a. Attempt to identify which result corresponds to which variable. Be 
specific.

b. Explain the reasoning behind your answer to part a.
c. Assuming that your answer is correct, create and test appropriate 

hypotheses (at the 5-percent level) and come to conclusions about 
the effects of gender and race on the test scores of this particular 
sample.

d. Did you use a one-tailed or two-tailed test in part c? Why?

 7. Let’s return to the model of Exercises 3-7 and 5-8 of the auction price 
of iPods on eBay. In that model, we used datafile IPOD3 to estimate 
the following equation:

PRICEi = 109.24 + 54.99NEWi - 20.44SCRATCHi + 0.73BIDRSi (6.22)
15.342     15.112       10.592

t =     10.28    -4.00        1.23
N = 215

where: PRICEi  = the price at which the ith iPod sold on eBay
   NEWi  =  a dummy variable equal to 1 if the ith iPod 

was new, 0 otherwise
   SCRATCHi =  a dummy variable equal to 1 if the ith iPod 

had a minor cosmetic defect, 0 otherwise
   BIDRSi  = the number of bidders on the ith iPod

  The dataset also includes a variable 1PERCENTi2 that measures the 
percentage of customers of the seller of the ith iPod who gave that seller 
a positive rating for quality and reliability in previous transactions.12 
In theory, the higher the rating of a seller, the more a potential bidder 
would trust that seller, and the more that potential bidder would be 
willing to bid. If you add PERCENT to the equation, you obtain

PRICEi = 82.67 + 55.42NEWi - 20.95SCRATCHi + 0.63BIDRSi + 0.28PERCENTi

15.342    15.122         10.592      10.202
t =     10.38   -4.10      1.07     1.40

N = 215 (6.23)

a. Use our four specification criteria to decide whether you think 
PERCENT belongs in the equation. Be specific. (Hint: R 

2 isn’t given, 
but you’re capable of determining which equation had the higher R 

2.)

h
h

12. For more on this dataset and this variable, see Leonardo Rezende, “Econometrics of Auctions 
by Least Squares,” Journal of Applied Econometrics, November/December 2008, pp. 925–948.
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b. Do you think that PERCENT is an accurate measure of the quality and 
reliability of the seller? Why or why not? (Hint: Among other things, 
consider the case of a seller with very few previous transactions.)

c. (optional) With datafile IPOD3, use Stata, EViews, or your own regres-
sion program to estimate the equation with and without PERCENT. 
What are the R 

2 figures for the two specifications? Were you correct in 
your determination (in part a) as to which equation had the higher R 

2?

 8. Look back at Exercise 9 in Chapter 5, the equation on international 
price discrimination in pharmaceuticals. In that cross-sectional study, 
Schut and VanBergeijk estimated two equations in addition to the 
one cited in the exercise.13 These two equations tested the possibility 
that CVi, total volume of consumption of pharmaceuticals in the ith 
country, and Ni, the population of the ith country, belonged in the 
original equation, Equation 5.15, repeated here:

 PN i = 38.22 + 1.43GDPNi - 0.6CVNi + 7.31PPi (5.15)
10.212      10.222    16.122

t =      6.69    -2.66    1.19

-15.63DPCi - 11.38PCi

16.932           17.162
t =      -2.25    -1.59

N = 32 R 

2 = .775

where: Pi  =  the pharmaceutical price level in the ith country 
divided by that of the United States

 GDPNi =  per capita domestic product in the ith country 
divided by that of the United States

 CVNi  =  per capita volume of consumption of pharma-
ceuticals in the ith country divided by that of 
the United States

 PPi  =  a dummy variable equal to 1 if patents for phar-
maceutical products are recognized in the ith 
country, 0 otherwise

 DPCi  =  a dummy variable equal to 1 if the ith country 
applied strict price controls, 0 otherwise

 PCi  =  a dummy variable equal to 1 if the ith country 
encouraged price competition, 0 otherwise

13. Frederick T. Schut and Peter A. G. VanBergeijk, “International Price Discrimination: The 
Pharmaceutical Industry,” World Development, Vol. 14, No. 9, pp. 1141–1150.
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a. Using Stata, or your own computer program, and datafile DRUG5 
(or Table 5.2), estimate:

  i. Equation 5.15 with CVi added, and
 ii. Equation 5.15 with Ni added
b. Use our four specification criteria to determine whether CV and N 

are irrelevant or omitted variables. (Hint: The authors expected that 
prices would be lower if market size were larger because of possible 
economies of scale and/or enhanced competition.)

c. Why didn’t the authors run Equation 5.15 with both CV and N  
included? (Hint: While you can estimate this equation yourself, 
you don’t have to do so to answer the question.)

d. Why do you think that the authors reported all three estimated 
specifications in their results when they thought that Equation 5.15 
was the best?

6.7  Appendix: Additional Specification Criteria

So far in this chapter, we’ve suggested four criteria for choosing the inde-
pendent variables (economic theory, R 

2, the t-test, and possible bias in the 
coefficients). Sometimes, however, these criteria don’t provide enough infor-
mation for a researcher to feel confident that a given specification is best. For 
instance, there can be two different specifications that both have excellent 
theoretical underpinnings. In such a situation, many econometricians use 
additional, often more formal, specification criteria to provide comparisons 
of the properties of the alternative estimated equations.

The use of formal specification criteria is not without problems, however. 
First, no test, no matter how sophisticated, can “prove” that a particular 
specification is the true one. The use of specification criteria, therefore, must 
be tempered with a healthy dose of economic theory and common sense. A 
second problem is that more than 20 such criteria have been proposed. How 
do we decide which one(s) to use? Because many of these criteria overlap 
with one another or have varying levels of complexity, a choice between the 
alternatives is a matter of personal preference.

In this section, we’ll describe the use of three of the most popular specifi-
cation criteria, J. B. Ramsey’s RESET test, Akaike’s Information Criterion, and 
the Bayesian Information Criterion. Our inclusion of just these techniques 
does not imply that other tests and criteria are not appropriate or useful. 
Indeed, the reader will find that most other formal specification criteria have 
quite a bit in common with at least one of the techniques that we include. We 
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think that you’ll be better able to use and understand other formal specifica-
tion criteria14 once you’ve mastered these three.

ramsey’s regression Specification Error test (rESEt)

One of the most-used formal specification criteria other than R 

2 is the 
Ramsey Regression Specification Error Test (RESET).15 The Ramsey RESET 
test is a general test that determines the likelihood of specification error by 
measuring whether the fit of a given equation can be significantly improved 
by the addition of YN 2, YN 3, and YN 4 terms.

What’s the intuition behind RESET? The additional terms act as proxies for 
any possible (unknown) omitted variables or incorrect functional forms. If the 
proxies can be shown by the F-test to have improved the overall fit of the original 
equation, then we have evidence that there is some sort of specification error in 
our equation. The YN 2, YN 3, and YN 4 terms form a polynomial functional form. Such 
a polynomial is a powerful curve-fitting device that has a good chance of acting 
as a proxy for a specification error if one exists. If there is no specification error, 
then we’d expect the coefficients of the added terms to be insignificantly different 
from zero because there is nothing for them to act as a proxy for.

The Ramsey RESET test involves three steps:

1. Estimate the equation to be tested using OLS:

 YN i = βN 0 + βN 1X1i + βN 2X2i (6.24)

2. Take the YN i values from Equation 6.24 and create YN 2
i , YN

3
i , and YN 4

i  terms. 
Then add these terms to the original equation as additional explanatory 
variables and estimate the new equation with OLS:

 Yi = β0 + β1X1i + β2X2i + β3YN
2
i + β4YN

3
i + β5YN

4
i + ei (6.25)

3. Compare the fits of Equations 6.24 and 6.25, using the F-test. Specifi-
cally, test the hypothesis that the coefficients of all three of the added 
terms are equal to zero:

H0: β3 = β4 = β5 = 0
HA: otherwise

14. For example, the likelihood ratio test can be used as a specification test. For an introduc-
tory level summary of six other specification criteria, see Ramu Ramanathan, Introductory Econo-
metrics (Fort Worth: Harcourt Brace Jovanovich, 1998, pp. 164–166).

15. J. B. Ramsey, “Tests for Specification Errors in Classical Linear Squares Regression Analysis,” 
Journal of the Royal Statistical Society, Vol. 31, No. 2, pp. 350–371.
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 If the two equations are significantly different in overall fit, we can con-
clude that it’s likely that Equation 6.24 is misspecified.

The appropriate F-statistic to use is Equation 5.10 from Section 5.6:

 F =
1RSSM - RSS2/M

RSS/1N - K - 12  (5.10)

where RSSM is the residual sum of squares from the constrained equation 
(Equation 6.24), RSS is the residual sum of squares from the unconstrained 
equation16 (Equation 6.25), M is the number of constraints (3 in this case), 
and 1N - K - 12 is the number of degrees of freedom in the unconstrained 
equation. If F is greater than the critical F-value with M and 1N - K - 12 
degrees of freedom, then we can reject the null hypothesis and conclude that 
there is a specification error in Equation 6.24. Many econometric software 
programs, including Stata,17 have a command that will automatically run 
Equation 6.25 and calculate the F-statistic using Equation 5.10.

While the Ramsey RESET test is fairly easy to use, it does little more than 
signal when a major specification error might exist. If you encounter a sig-
nificant Ramsey RESET test, then you face the daunting task of figuring out 
exactly what the error is! Thus, the test often ends up being more useful in 
“supporting” (technically, not refuting) a researcher’s contention that a given 
specification has no major specification errors than it is in helping find an 
otherwise undiscovered flaw.18

16. Because of the obvious correlation between the three YN  values, Equation 6.25 (with most 
RESET equations) suffers from extreme multicollinearity. Since the purpose of the RESET equation 
is to see whether the overall fit can be improved by adding in proxies for an omitted variable 
(or other specification error), this extreme multicollinearity is not a concern.

17. To carry out the Ramsey RESET test in Stata, estimate Equation 6.24 and then run the 
“ovtest” command. For details, see the Using Stata guide on the textbook’s website at http://
www.pearsonhighered.com/studenmund.

18. The particular version of the Ramsey RESET test we describe in this section is only one of a 
number of possible formulations of the test. For example, some researchers delete the YN 4 term 
from Equation 6.25. At present, there is a mild split among econometricians about RESET. Jeff 
Wooldridge, “Score Diagnostics for Linear Models Estimated by Two Stage Least Squares,” in G.S. 
Maddala, P.C.B. Phillips, and T.N. Srinivasan (eds.), Advances in Econometrics and Quantitative 
Economics (Oxford: Blackwell, 1995), pp. 66–87, argues that RESET is primarily a functional 
form test. However, many applied econometricians continue to rely on RESET for a variety of 
specification tests, some even going so far as to use RESET in an to attempt to distinguish be-
tween pure and impure serial correlation and heteroskedasticity (to be discussed in Chapters 9 
and 10).
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Akaike’s Information Criterion and the Bayesian  
Information Criterion

A second category of formal specification criteria involves adjusting the 
summed squared residuals (RSS) by one factor or another to create an index 
of the fit of an equation. The most popular criterion of this type is R 

2, but a 
number of interesting alternatives have been proposed.

Akaike’s Information Criterion (AIC) and the Bayesian Information  
Criterion (BIC) are methods of comparing alternative specifications by 
adjusting RSS for the sample size (N) and the number of independent  
variables (K).19 These criteria can be used to augment our four basic speci-
fication criteria when we try to decide if the improved fit caused by an 
additional variable is worth the decreased degrees of freedom and increased 
complexity caused by the addition. Their equations are:

  AIC = Log1RSS/N2 + 21K + 12/N  (6.26)

  BIC = Log1RSS/N2 + Log1N21K + 12/N (6.27)

In practice, these calculations may not be necessary because AIC and BIC are 
automatically calculated by some regression software packages, including Stata.

To use AIC and BIC, estimate two alternative specifications and calculate 
AIC and BIC for each equation. The lower AIC or BIC are, the better the 
specification. Note that even though the two criteria were developed inde-
pendently to maximize different object functions, their equations are quite 
similar. Both criteria tend to penalize the addition of another explanatory 
variable more than R 

2 does. As a result, AIC and BIC will quite often20 be 

19. Hirotogu Akaike, “Likelihood of a Model and Information Criteria,” Journal of Econometrics, 
Vol. 16, No. 1, pp. 3–14 and G. Schwarz, “Estimating the Dimension of a Model,” The Annals of 
Statistics, Vol. 6, pp. 461–464. (The BIC is sometimes called the Schwarz Criterion.) The defini-
tions of AIC and BIC we use produce slightly different numbers than the versions used by Stata, 
but the versions map on a one-to-one basis and therefore produce identical conclusions.

20. Using a Monte Carlo study, Judge et al. showed that (given specific simplifying assumptions) 
a specification chosen by maximizing R 

2 is more than 50 percent more likely to include an ir-
relevant variable than is one chosen by minimizing AIC or BIC. See George C. Judge, R. Carter 
Hill, W. E. Griffiths, Helmut Lutkepohl, and Tsoung-Chao Lee, Introduction to the Theory and 
Practice of Econometrics (New York: Wiley, 1988), pp. 849–850. At the same time, minimizing 
AIC or BIC will omit a relevant variable more frequently than will maximizing R 

2
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minimized by an equation with fewer independent variables than the ones 
that maximize R 

2.
AIC and BIC require the researcher to come up with a particular alternative 

specification, whereas Ramsey’s RESET does not. Such a distinction makes 
RESET easier to use, but it makes AIC and BIC more informative if a specifica-
tion error is found. Thus our additional specification criteria serve different 
purposes. RESET is useful as a general test of the existence of a specification 
error, whereas AIC and BIC are useful as means of comparing two or more 
alternative specifications.
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Chapter 7

Specification: Choosing  
a Functional Form

7.1 The Use and Interpretation of the Constant Term

7.2 Alternative Functional Forms

7.3 Lagged Independent Variables

7.4 Slope Dummy Variables

7.5 Problems with Incorrect Functional Forms

7.6 Summary and Exercises

7.7 Appendix: Econometric Lab #4

Even after you’ve chosen your independent variables, the job of specifying 
the equation is not over. The next step is to choose the functional form of the 
relationship between each independent variable and the dependent variable. 
Should the equation go through the origin? Do you expect a curve instead 
of a straight line? Does the effect of a variable peak at some point and then 
start to decline? An affirmative answer to any of these questions suggests that 
an equation other than the standard linear model of the previous chapters 
might be appropriate. Such alternative specifications are important for two 
reasons: a correct explanatory variable may well appear to be insignificant or 
to have an unexpected sign if an inappropriate functional form is used, and 
the consequences of an incorrect functional form for interpretation and fore-
casting can be severe.

Theoretical considerations usually dictate the form of a regression model. 
The basic technique involved in deciding on a functional form is to choose 
the shape that best exemplifies the expected underlying economic or business 
principles and then to use the mathematical form that produces that shape. 
To help with that choice, this chapter contains plots of the most commonly 
used functional forms along with the mathematical equations that corre-
spond to each.
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The chapter begins with a brief discussion of the constant term. In particu-
lar, we suggest that the constant term should be retained in equations and 
that estimates of the constant term should not be relied on for inference or 
analysis. The chapter concludes with a discussion of slope dummy variables.

7.1  The Use and Interpretation of the Constant Term

In the linear regression model, β0 is the intercept or constant term. It is the 
expected value of Y when all the explanatory variables (and the error term) 
equal zero. An estimate of β0 has at least three components:

1. the true β0,

2. the constant impact of any specification errors (an omitted variable, 
for example), and

3. the mean of e for the correctly specified equation (if not equal to zero).

Unfortunately, these components can’t be distinguished from one another 
because we can observe only βN 0, the sum of the three components. The result 
is that we have to analyze βN 0 differently from the way we analyze the other 
coefficients in the equation.1

At times, β0 is of theoretical importance. Consider, for example, the 
following cost equation:

 Ci = β0 + β1Qi + ei

where Ci is the total cost of producing output Qi. The term β1Qi represents 
the total variable cost associated with output level Qi, and β0 represents the 
total fixed cost, defined as the cost when output Qi = 0. Thus, a regression 
equation might seem useful to a researcher who wanted to determine the 
relative magnitudes of fixed and variable costs. This would be an example of 
relying on the constant term for inference.

On the other hand, the product involved might be one for which it is 
known that there are few—if any—fixed costs. In such a case, a researcher 
might want to eliminate the constant term; to do so would conform to the 
notion of zero fixed costs and would conserve a degree of freedom (which 
would presumably make the estimate of β1 more precise). This would be an 
example of suppressing the constant term.

1. If the second and third components of β0 are small compared to the first component, then 
this difference diminishes. See R. C. Allen and J. H. Stone, “Textbook Neglect of the Constant 
Coefficient,” The Journal of Economic Education, Fall 2005, pp. 379–384.
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Neither suppressing the constant term nor relying on it for inference is 
advisable, however, and the reasons for these conclusions are explained in 
the following sections.

Do Not Suppress the Constant Term

In most cases, suppressing the constant term leads to a violation of the Classi-
cal Assumptions, because it’s very rare that economic theory implies that the 
true intercept, β0, equals zero. If you omit the constant term, then the impact 
of the constant is forced into the estimates of the other coefficients, causing 
potential bias. This is demonstrated in Figure 7.1. Given the pattern of the 
X and Y observations, estimating a regression equation with a constant term 
would likely produce an estimated regression line very similar to the true 
regression line, which has a constant term (β0) quite different from zero. 
The slope of this estimated line is very low, and the t-score of the estimated 
slope coefficient may be very close to zero.

However, if the researcher were to suppress the constant term, which 
implies that the estimated regression line must pass through the origin, then 
the estimated regression line shown in Figure 7.1 would result. The slope 

Figure 7.1 the harmful effect of Suppressing the constant term

If the constant (or intercept) term is suppressed, the estimated regression will go through 
the origin. Such an effect potentially biases the βN s and inflates their t-scores. In this par-
ticular example, the true slope is close to zero in the range of the sample, but forcing the 
regression through the origin makes the slope appear to be significantly positive.

Y

0 X

Estimated Relationship
Suppressing the Intercept

True Relation

Observationsb0
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coefficient is biased upward compared with the true slope coefficient. The 
t-score is biased upward as well, and it may very well be large enough to indi-
cate that the estimated slope coefficient is statistically significantly positive. 
Such a conclusion would be incorrect.

Thus, even though some regression packages allow the constant term to be 
suppressed (set to zero), the general rule is: Don’t!

Do Not rely on Estimates of the Constant Term

It would seem logical that if it’s a bad idea to suppress the constant term, 
then the constant term must be an important analytical tool to use in evalu-
ating the results of the regression. Unfortunately, there are at least two rea-
sons that suggest that the intercept should not be relied on for purposes of 
analysis or inference.

First, the error term is generated, in part, by the omission of a number 
of marginal independent variables, the mean effect of which is placed in 
the constant term. The constant term acts as a garbage collector, with an 
unknown amount of this mean effect being dumped into it. The constant 
term’s estimated coefficient may be different from what it would have been 
without performing this task, which is done for the sake of the equation as a 
whole. As a result, it’s meaningless to run a t-test on βN 0.

Second, the constant term is the value of the dependent variable when 
all the independent variables and the error term are zero, but the variables 
used for economic analysis are usually positive. Thus, the origin often lies 
outside the range of sample observations (as can be seen in Figure 7.1). Since 
the constant term is an estimate of Y when the Xs are outside the range of the 
sample observations, estimates of it are tenuous.

7.2  Alternative Functional Forms

The choice of a functional form for an equation is a vital part of the specifica-
tion of that equation. Before we can talk about those functional forms, how-
ever, we need to make a distinction between an equation that is linear in the 
coefficients and one that is linear in the variables.

An equation is linear in the variables if plotting the function in terms of 
X and Y generates a straight line. For example, Equation 7.1:

 Y = β0 + β1X + e (7.1)

is linear in the variables, but Equation 7.2:

 Y = β0 + β1X
2 + e (7.2)

M07_STUD2742_07_SE_C07.indd   192 1/6/16   5:19 PM



193 alternative functional formS

is not linear in the variables, because if you were to plot Equation 7.2 it 
would be a quadratic, not a straight line.

An equation is linear in the coefficients only if the coefficients (the βs) 
appear in their simplest form—they are not raised to any powers (other than 
one), are not multiplied or divided by other coefficients, and do not them-
selves include some sort of function (like logs or exponents). For example, 
Equation 7.1 is linear in the coefficients, but Equation 7.3:

 Y = β0 + Xβ1 (7.3)

is not linear in the coefficients β0 and β1. Equation 7.3 is not linear because 
there is no rearrangement of the equation that will make it linear in the βs 
of original interest, β0 and β1. In fact, of all possible equations for a single 
explanatory variable, only functions of the general form:

 f(Y) = β0 + β1f(X) (7.4)

are linear in the coefficients β0 and β1. Linear regression analysis can be 
applied to an equation that is nonlinear in the variables as long as the equa-
tion is linear in the coefficients. Indeed, when econometricians use the 
phrase “linear regression” (for example, in the Classical Assumptions), they 
usually mean “regression that is linear in the coefficients.”

The use of OLS requires that the equation be linear in the coefficients, but 
there is a wide variety of functional forms that are linear in the coefficients 
while being nonlinear in the variables. Indeed, in previous chapters we’ve 
already used several equations that are linear in the coefficients and nonlin-
ear in the variables, but we’ve said little about when to use such nonlinear 
equations. The purpose of the current section is to present the details of the 
most frequently used functional forms to help the reader develop the ability 
to choose the correct one when specifying an equation.

The choice of a functional form almost always should be based on 
the underlying theory and only rarely on which form provides the best 
fit. The logical form of the relationship between the dependent variable 
and the independent variable in question should be compared with the 
properties of various functional forms, and the one that comes closest to 
that underlying theory should be chosen. To allow such a comparison, 
the paragraphs that follow characterize the most frequently used forms in 
terms of graphs, equations, and examples. In some cases, more than one 
functional form will be applicable, but usually a choice between alterna-
tive functional forms can be made on the basis of the information we’ll 
present.
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Linear Form

The linear regression model, used almost exclusively in this text thus far, is 
based on the assumption that the slope of the relationship between the inde-
pendent variable and the dependent variable is constant:2

 
∆Y
∆Xk

= βk  k = 1, 2, . . . , K

If the hypothesized relationship between Y and X is such that the slope of the 
relationship can be expected to be constant, then the linear functional form 
should be used.

Since the slope is constant, the elasticity of Y with respect to X (the per-
centage change in the dependent variable caused by a 1-percent increase in 
the independent variable, holding the other variables in the equation con-
stant) can be calculated fairly easily:

 ElasticityY, Xk
=

∆Y/Y

∆Xk/Xk
=

∆Y
∆Xk

# Xk

Y
= βk 

Xk

Y

Unless theory, common sense, or experience justifies using some other 
functional form, you should use the linear model. Because, in effect, it’s 
being used by default, the linear model is sometimes referred to as the default 
functional form.

Double-Log Form

The double-log form is the most common functional form that is nonlinear in 
the variables while still being linear in the coefficients. Indeed, the double-log 
form is so popular that some researchers use it as their default functional form 
instead of the linear form. In a double-log functional form, the natural log of 
Y is the dependent variable and the natural log of X is the independent variable:

 lnY = β0 + β1 lnX1 + β2 lnX2 + e (7.5)

where lnY refers to the natural log of Y, and so on. For a brief review of the 
meaning of a natural log, see the boxed feature on pages 196 and 197.

2. Throughout this section, the “delta” notation (∆) will be used instead of the calculus notation 
to make for easier reading. The specific definition of ∆ is “change,” and it implies a small change 
in the variable it is attached to. For example, the term ∆X should be read as “change in X.” Since 
a regression coefficient represents the change in the expected value of Y brought about by a one-
unit increase in Xk (holding constant all other variables in the equation), then βk = ∆Y/∆Xk. 
Those comfortable with calculus should substitute partial derivative signs for ∆s.
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The double-log form, sometimes called the log-log form, often is used 
because a researcher has specified that the elasticities of the model are con-
stant and the slopes are not. This is in contrast to the linear model, in which 
the slopes are constant but the elasticities are not.

In a double-log equation, an individual regression coefficient can be inter-
preted as an elasticity because:

 βk =
∆(lnY)

∆(lnXk)
=

∆Y/Y

∆Xk/Xk
= ElasticityY, Xk

 (7.6)

Since regression coefficients are constant, the condition that the model have 
a constant elasticity is met by the double-log equation.

The way to interpret βk in a double-log equation is that if Xk increases by 
1 percent while the other Xs are held constant, then Y will change by βk per-
cent. Since elasticities are constant, the slopes are now no longer constant.

Figure 7.2 is a graph of the double-log function (ignoring the error term). 
The panel on the left shows the economic concept of an isoquant or an indif-
ference curve. Isoquants from production functions show the different com-
binations of factors X1 and X2, probably capital and labor, that can be used to 
produce a given level of output Y. The panel on the right of Figure 7.2 shows 

Figure 7.2 double-log functions

Depending on the values of the regression coefficients, the double-log functional form 
can take on a number of shapes. The left panel shows the use of a double-log function 
to depict a shape useful in describing the economic concept of an isoquant or an indif-
ference curve. The right panel shows various shapes that can be achieved with a double-
log function if X2 is held constant or is not included in the equation.

X2

0 X1

Y1

Y2

 lnY 5 b0 1 b1lnX1 1 b2lnX2

Y

0 X1

(Holding X2 constant)

b1 . 1

b1 , 0

0 , b1 , 1
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the relationship between Y and X1 that would exist if X2 were held constant 
or were not included in the model. Note that the shape of the curve depends 
on the sign and magnitude of coefficient β1. If β1 is negative, a double-log 
functional form can be used to model a typical demand curve.

Double-log models should be run only when the logged variables take 
on positive values. Dummy variables, which can take on the value of zero, 
should not be logged.

Semilog Form

The semilog functional form is a variant of the double-log equation in 
which some but not all of the variables (dependent and independent) are 
expressed in terms of their natural logs. For example, you might choose to 
use the logarithm of one of the original independent variables, as in:

 Yi = β0 + β1 ln X1i + β2X2i + ei (7.7)

In this case, the economic meanings of the two slope coefficients are differ-
ent, since X2 is linearly related to Y while X1 is nonlinearly related to Y.

What Is a Log?

What the heck is a log? If e (a constant equal to 2.71828) to the “bth power” 
produces x, then b is the log of x:

b is the log of x to the base e if: eb = x

Thus, a log (or logarithm) is the exponent to which a given base must be taken 
in order to produce a specific number. While logs come in more than one variety, 
we’ll use only natural logs (logs to the base e) in this text. The symbol for a natu-
ral log is “ln,” so ln1x2 = b means that 12.718282b = x or, more simply,

ln1x2 = b  means that  eb = x

For example, since e2 = 12.7182822 = 7.389, we can state that:

ln17.3892 = 2

Thus, the natural log of 7.389 is 2! Two is the power of e that produces 7.389. 
Let’s look at some other natural log calculations:

ln11002  = 4.605
ln110002  = 6.908
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The right-hand side of Figure 7.3 shows the relationship between Y and X1 in 
this kind of semilog equation when X2 is held constant. Note that if β1 is greater 
than zero, the impact of changes in X1 on Y decreases as X1 gets bigger. Thus, the 
semilog functional form should be used when the relationship between X1 and 
Y is hypothesized to have this “increasing at a decreasing rate” form.4

Applications of the semilog form are quite frequent. For example, 
most consumption functions tend to increase at a decreasing rate past 

ln1100002  = 9.210
ln11000002  = 11.513
ln110000002 = 13.816

Note that as a number goes from 100 to 1,000,000, its natural log goes from 
4.605 to only 13.816! Since logs are exponents, even a small change in a log 
can mean a big change in impact. As a result, logs can be used in economet-
rics if a researcher wants to reduce the absolute size of the numbers associ-
ated with the same actual meaning.

One useful property of natural logs in econometrics is that they make 
it easier to figure out impacts in percentage terms. If you run a double-log 
regression, the meaning of a slope coefficient is the percentage change in the 
dependent variable caused by a one percentage point increase in the inde-
pendent variable, holding the other independent variables in the equation 
constant.3 It’s because of this percentage change property that the slope coef-
ficients in a double-log equation are elasticities.

3. This is because the derivative of a natural log of X equals dX/X (or ∆X/X), which is the same 
as percentage change.

4. Another functional form that can be used when you anticipate that the relationship between 
X and Y has an “increasing at a decreasing rate” shape is the inverse functional form. This form 
expresses Y as a function of the reciprocal (or inverse) of one or more of the independent vari-
ables (in this case X1):

Yi = β0 + β1(1/X1i) + β2X2i + ei

The inverse functional form should be used when the impact of a particular independent vari-
able is expected to approach zero as that independent variable approaches infinity. To see this, 
note that as X1 gets larger, its impact on Y decreases.

Be careful, however, because X1 cannot equal zero, since if X1 equaled zero, dividing it into 
anything would result in infinite or undefined values.
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some level of income. These Engel curves tend to flatten out because as 
incomes get higher, a smaller percentage of income goes to consumption 
and a greater percentage goes to saving. Consumption thus increases at a 
decreasing rate. If Y is the consumption of an item and X1 is disposable 
income (with X2 standing for all the other independent variables), then 
the use of the semilog functional form is justified whenever the item’s 
consumption can be expected to increase at a decreasing rate as income 
increases.

For example, recall the beef demand equation, Equation 2.7, from Chapter 2:

  CBt = 37.54 -  0.88Pt +  11.9Ydt (2.7)
   (0.16)  (1.76)
 t =  -5.36  6.75
 R 

2 = 0.631 N = 28 (annual)

where: CB = per capita consumption of beef 

 P  = the price of beef in cents per pound

 Yd = U.S. disposable income in thousands of dollars

8

Figure 7.3 Semilog functions

The semilog functional form on the right (lnX) can be used to depict a situation in 
which the impact of X1 on Y is expected to increase at a decreasing rate as X1 gets bigger 
as long as β1 is greater than zero (holding X2 constant). The semilog functional form 
on the left (lnY) can be used to depict a situation in which an increase in X1 causes Y to 
increase at an increasing rate.

Y 5 (b0 1 b2X2)
1 b1lnX1

Y

0 X1

(Holding X2 constant)

b1 . 0

b1 , 0

b1 . 0
Y

0 X1

(Holding X2 constant)

b1 , 0

lnY 5 b0 1 b1X1 1 b2X2
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If we substitute the log of disposable income (lnYdt) for disposable income 
in Equation 2.7, we get:

 CBt = -71.75 - 0.87Pt + 98.87lnYdt (7.8)
 10.132 111.112
 t =  -6.93 8.90
 R 

2 = .750 N = 28 1annual2
In Equation 7.8, the independent variables include the price of beef and the log 
of disposable income. Equation 7.8 would be appropriate if we hypothesize 
that as income rises, consumption will increase at a decreasing rate. For other 
products, perhaps like yachts or summer homes, no such decreasing rate could 
be hypothesized, and the semilog function would not be appropriate.

Not all semilog functions have the log on the right-hand side of the equa-
tion, as in Equation 7.7. The alternative semilog form is to have the log on 
the left-hand side of the equation. This would mean that the natural log of Y 
would be a function of unlogged values of the Xs, as in:

 lnY = β0 + β1X1 + β2X2 + e (7.9)

This model has neither a constant slope nor a constant elasticity, but the coef-
ficients do have a very useful interpretation. If X1 increases by one unit, then 
Y will change in percentage terms. Specifically, Y will change by β1

# 100 per-
cent for every unit that X1 increases, holding X2 constant. The left-hand side 
of Figure 7.3 shows such a semilog function.

This fact means that the lnY semilog function of Equation 7.9 is perfect 
for any model in which the dependent variable adjusts in percentage terms 
to a unit change in an independent variable. The most common economic 
and business application of Equation 7.9 is in a model of the earnings of 
individuals, where firms often give annual raises in percentage terms. In such 
a model, Y would be the salary or wage of the ith employee, and X1 would be 
the experience of the ith worker. Each year X1 would increase by one, and β1 
would measure the percentage raises given by the firm.

Note that we now have two different kinds of semilog functional forms, 
creating possible confusion. As a result, many econometricians use phrases like 
“right-side semilog” or “lin-log functional form” to refer to Equation 7.7 while 
using “left-side semilog” or “log-lin functional form” to refer to Equation 7.9.

Polynomial Form

In most average cost functions, the slope of the cost curve changes sign as output 
changes. If the slopes of a relationship are expected to depend on the level of 
the variable itself, then a polynomial model should be considered. Polynomial 

8
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functional forms express Y as a function of independent variables, some of which 
are raised to powers other than 1. For example, in a second-degree polynomial 
(also called a quadratic) equation, at least one independent variable is squared:

 Yi = β0 + β1X1i + β2(X1i)
2 + β3X2i + ei (7.10)

Such a model can indeed produce slopes that change sign as the independent 
variables change. The slope of Y with respect to X1 in Equation 7.10 is:

 
∆Y
∆X1

= β1 + 2β2X1 (7.11)

Note that the slope depends on the level of X1. For small values of X1, β1 might 
dominate, but for large values of X1, β2 will always dominate. If this were a cost 
function, with Y being the average cost of production and X1 being the level of 
output of the firm, then we would expect β1 to be negative and β2 to be positive if 
the firm has the typical U-shaped cost curve depicted in the left half of Figure 7.4.

For another example, consider a model of annual employee earnings as 
a function of the age of each employee and a number of other measures of 
productivity such as education. What is the expected impact of age on earn-
ings? As a young worker gets older, his or her earnings will typically increase. 

Figure 7.4 polynomial functions

Quadratic functional forms (polynomials with squared terms) take on U or inverted U 
shapes, depending on the values of the coefficients (holding X2 constant). The left panel 
shows the shape of a quadratic function that could be used to show a typical cost curve; 
the right panel allows the description of an impact that rises and then falls (like the 
impact of age on earnings).

Y 5 (b0 1 b3X2) 1 (b1X1 1 b2X1)2

Y

0 X1(Holding X2 constant)

b2 . 0
b1 , 0

Y

0 X1(Holding X2 constant)

b2 , 0
b1 . 0

M07_STUD2742_07_SE_C07.indd   200 1/6/16   5:19 PM



201 alternative functional formS

Beyond some point, however, an increase in age will not increase earnings by 
very much at all, and around retirement we’d expect earnings to start to fall 
abruptly with age. As a result, a logical relationship between earnings and age 
might look something like the right half of Figure 7.4; earnings would rise, 
level off, and then fall as age increased. Such a theoretical relationship could 
be modeled with a quadratic equation:

 Earningsi = β0 + β1Agei + β2Age 

2
i + g + ei (7.12)

What would the expected signs of βN 1 and βN 2 be? Since you expect the impact 
of age to rise and fall, you’d thus expect βN 1 to be positive and βN 2 to be nega-
tive (all else being equal). In fact, this is exactly what many researchers in 
labor economics have observed.

With polynomial regressions, the interpretation of the individual regres-
sion coefficients becomes difficult, and the equation may produce unwanted 
results for particular ranges of X. Great care must be taken when using a poly-
nomial regression equation to ensure that the functional form will achieve 
what is intended by the researcher and no more.

Choosing a Functional Form

The best way to choose a functional form for a regression model is to select 
the specification that best matches the underlying theory of the equation. 
In a majority of cases, the linear form will be adequate, and for most of the 
rest, common sense will point out a fairly easy choice from the alternatives 
outlined above. Table 7.1 contains a summary of the properties of the various 
alternative functional forms.

Table 7.1 Summary of alternative functional forms

Functional Form Equation (one X only) The Change in Y when X Changes

linear Yi = β0 + β1Xi + ei if X increases by one unit, Y will 
change by β1 units.

double-log lnYi = β0 + β1 lnXi + ei if X increases by one percent, Y will 
change by β1 percent. (thus  β1 is 
the elasticity of Y with respect to X.)

Semilog (lnX) Yi = β0 + β1 lnXi + ei if X increases by one percent, Y will 
change by β1>100 units.

Semilog (lnY) lnYi = β0 + β1Xi + ei if X increases by one unit, Y will 
change by roughly 100β1 percent.

polynomial Yi = β0 + β1Xi + β2X  

2
i + ei if X increases by one unit, Y will 

change by 1β1 + 2β2X2 units.
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7.3  Lagged Independent Variables

Virtually all the regressions we’ve studied so far have been “instantaneous” in 
nature. In other words, they have included independent and dependent vari-
ables from the same time period, as in:

 Yt = β0 + β1X1t + β2X2t + et (7.13)

where the subscript t is used to refer to a particular point in time. If all vari-
ables have the same subscript, then the equation is instantaneous.

However, not all economic or business situations imply such instanta-
neous relationships between the dependent and independent variables. In 
many cases time elapses between a change in the independent variable and 
the resulting change in the dependent variable. The period of time between 
the cause (the change in X) and the effect (the change in Y) is called a lag. 
Time periods can be measured in days, months, years, etc. Many econo-
metric equations include one or more lagged independent variables like 
X1t-1, where the subscript t - 1 indicates that the observation of X1 is from 
the time period previous to time period t, as in the following equation:

 Yt = β0 + β1X1t-1 + β2X2t + et (7.14)

In this equation, X1 has been lagged by one time period, but the relationship 
between Y and X2 is still instantaneous. While this one-time-period lag is 
the most frequent lag in economics, lags of two or more time periods can be 
used when justified by the underlying theory.

For an example of a lagged independent variable, think about the process 
by which the supply of an agricultural product is determined. Since agri-
cultural goods take time to grow, decisions on how many acres to plant or 
how many eggs to let hatch into egg-producing hens (instead of selling them 
immediately) must be made months, if not years, before the product is actu-
ally supplied to the consumer. Any change in an agricultural market, such as 
an increase in the price that the farmer can earn for providing cotton, has a 
lagged effect on the supply of that product:

 +  -
 Ct = β0 + β1PCt - 1 + β2PFt + et (7.15)

where: Ct  = the quantity of cotton supplied in year t
 PCt - 1 = the price of cotton in year t - 1
 PFt  = the price of farm labor in year t

Note that this equation hypothesizes a lag between the price of cotton and 
the production of cotton, but not between the price of farm labor and the 
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production of cotton. It’s reasonable to think that if cotton prices change, 
farmers won’t be able to react immediately because it takes a while for cotton 
to be planted and to grow.

The meaning of the regression coefficient of a lagged variable is not the 
same as the meaning of the coefficient of an unlagged variable. The estimated 
coefficient of a lagged X measures the change in this year’s Y attributed to a 
one-unit increase in last year’s X (holding constant the other Xs in the equa-
tion). Thus β1 in Equation 7.15 measures the extra number of units of cot-
ton that would be produced this year as a result of a one-unit increase in last 
year’s price of cotton, holding this year’s price of farm labor constant.

If the lag structure is hypothesized to take place over more than one time 
period, or if a lagged dependent variable is included on the right-hand side 
of an equation, the question becomes significantly more complex. Such 
cases, called distributed lags, will be dealt with in Chapter 12.

7.4  Slope Dummy Variables

In Section 3.3 we introduced the concept of a dummy variable, which we 
defined as one that takes on the values of 0 or 1, depending on a qualita-
tive attribute such as gender. In that section our sole focus was on the use of 
a dummy variable as an intercept dummy, which changes the constant or 
intercept term, depending on whether the qualitative condition is met. These 
take the general form:

 Yi = β0 + β1Xi + β2Di + ei (7.16)

 where Di = e1 if the ith observation meets a particular condition
0 otherwise

Until now, every independent variable in this text has been multiplied by 
exactly one other item: the slope coefficient. To see this, take another look at 
Equation 7.16. As you can see, X is multiplied only by β1, and D is multiplied 
only by β2, and there are no other factors involved.

This restriction does not apply to a new kind of variable called an interac-
tion term. An interaction term is an independent variable in a regression 
equation that is the multiple of two or more other independent variables. 
Each interaction term has its own regression coefficient, so the end result is 
that the interaction term has three or more components, as in β3XiDi. Such 
interaction terms are used when the change in Y with respect to one indepen-
dent variable (in this case X) depends on the level of another independent 
variable (in this case D). For an example of the use of interaction terms, see 
Exercise 8.
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Interaction terms can involve two quantitative variables (β3X1X2) or two 
dummy variables (β3D1D2), but the most frequent application of interaction 
terms involves one quantitative variable and one dummy variable (β3X1D1), 
a combination that is typically called a slope dummy. Slope dummy variables 
allow the slope of the relationship between the dependent variable and an 
independent variable to be different depending on whether the condition 
specified by a dummy variable is met. This is in contrast to an intercept 
dummy variable, which changes the intercept, but does not change the slope, 
when a particular condition is met.

In general, a slope dummy is introduced by adding to the equation a vari-
able that is the multiple of the independent variable that has a slope you 
want to change and the dummy variable that you want to cause the changed 
slope. The general form of a slope dummy equation is:

 Yi = β0 + β1Xi + β2Di + β3XiDi + ei (7.17)

Note that Equation 7.17 is the same as Equation 7.16, except that we have 
added an interaction term in which the dummy variable is multiplied by an 
independent variable (β3XiDi). Let’s check to make sure that the slope of Y 
with respect to X does indeed change if D changes:

 When D = 0, ∆Y/∆X = β1

 When D = 1, ∆Y/∆X = (β1 + β3)

In essence, the coefficient of X changes when the condition specified by 
D is met. To see this, substitute D = 0 and D = 1, respectively, into 
Equation 7.17 and factor out X.

Note that Equation 7.17 includes both a slope dummy and an intercept 
dummy. It turns out that whenever a slope dummy is used, it’s vital to also 
have β1Xi and β2D in the equation to avoid bias in the estimate of the coef-
ficient of the slope dummy term. If there are other Xs in an equation, they 
should not be multiplied by D unless you hypothesize that their slopes 
change with respect to D as well.

Take a look at Figure 7.5, which has both a slope dummy and an intercept 
dummy. In Figure 7.5 the intercept will be β0 when D = 0 and β0 + β2 when 
D = 1. In addition, the slope of Y with respect to X will be β1 when D = 0 
and β1 + β3 when D = 1. As a result, there really are two equations:

 Yi =  β0  + β1Xi + ei  [when D = 0]
  Yi =  (β0 + β2) + (β1 + β3)Xi + ei  [when D = 1]

In practice, slope dummies have many realistic uses. For example, consider 
the question of earnings differentials between men and women. Although 
there is little argument that these differentials exist, there is quite a bit of 
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controversy over the extent to which these differentials are caused by sexual 
discrimination (as opposed to other factors). Suppose you decide to build a 
model of earnings to get a better view of this controversy. If you hypothesized 
that men earn more than women on average, then you would want to use an 
intercept dummy variable for gender in an earnings equation that included 
measures of experience, special skills, education, and so on, as independent 
variables:

 ln(Earningsi) = β0 + β1Di + β2EXPi + g + ei (7.18)

where: Di  = 1 if the ith worker is male and 0 otherwise
 EXPi = the years experience of the ith worker
 ei  = a classical error term

In Equation 7.18, βN 1 would be an estimate of the average difference in earnings 
between males and females, holding constant their experience and the other 
factors in the equation. Equation 7.18 also forces the impact of increases in 
experience (and the other factors in the equation) to have the same effect for 
females as for males because the slopes are the same for both genders.

Figure 7.5 Slope and intercept dummies

If slope dummy (β3XiDi) and intercept dummy (β2Di) terms are added to an equation, 
a graph of the equation will have different intercepts and different slopes depending on 
the value of the qualitative condition specified by the dummy variable. The difference 
between the two intercepts is β2, whereas the difference between the two slopes is β3.

Y

0 X

Di 5 0

b2

b0

b0 1 b2
(b2 . 0)

Di 5 1

Slope 5 b1

Slope 5 b1 1 b3
(b3 . 0)

Yi 5 b0 1 b1Xi 1 b2Di 1 b3XiDi
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If you hypothesized that men also increase their earnings more per year of 
experience than women, then you would include a slope dummy as well as 
an intercept dummy in such a model:

 ln(Earningsi) = β0 + β1Di + β2EXPi + β3DiEXPi + g + ei (7.19)

In Equation 7.19, βN 3 would be an estimate of the differential impact of an 
extra year of experience on earnings between men and women. We could test 
the possibility of a positive true β3 by running a one-tailed t-test on βN 3. If βN 3 
were significantly different from zero in a positive direction, then we could 
reject the null hypothesis of no difference due to gender in the impact of 
experience on earnings, holding constant the other variables in the equation.

7.5  Problems with Incorrect Functional Forms

Once in a while a circumstance will arise in which the model is logically non-
linear in the variables, but the exact form of this nonlinearity is hard to spec-
ify. In such a case, the linear form is not correct, and yet a choice between the 
various nonlinear forms cannot be made on the basis of economic theory. 
Even in these cases, however, it still pays (in terms of understanding the true 
relationships) to avoid choosing a functional form on the basis of fit alone.

If functional forms are similar, and if theory does not specify exactly which 
form to use, why should we try to avoid using goodness of fit over the sample 
to determine which equation to use? This section will highlight two answers 
to this question:

1. R 

2s are difficult to compare if the dependent variable is transformed.

2. An incorrect functional form may provide a reasonable fit within the 
sample but have the potential to make large forecast errors when used 
outside the range of the sample.

r2s Are Difficult to Compare When Y Is Transformed

When the dependent variable is transformed from its linear version, the over-
all measure of fit, the R2, cannot be used for comparing the fit of the non-
linear equation with the original linear one.5 This problem is not especially 
important in most cases because the emphasis in applied regression analysis 

5. This warning also applies to other measures of overall fit, for example Akaike’s Information 
Criterion (AIC) and the Bayesian Information Criterion (BIC) of Section 6.7, the appendix on 
additional specification criteria.
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is usually on the coefficient estimates. However, if R 

2s are ever used to com-
pare the fit of two different functional forms, then it becomes crucial that this 
lack of comparability be remembered. For example, suppose you were trying 
to compare a linear equation:

 Y = β0 + β1X1 + β2X2 + e (7.20)

with a semilog version of the same equation (using the version of a semilog 
function that takes the log of the dependent variable):

 lnY = β0 + β1X1 + β2X2 + e (7.21)

Notice that the only difference between Equations 7.20 and 7.21 is the 
functional form of the dependent variable. The reason that the R 

2s of the 
respective equations cannot be used to compare overall fits of the two equa-
tions is that the total sum of squares (TSS) of the dependent variable around 
its mean is different in the two formulations. That is, the R 

2s are not com-
parable because the dependent variables are different. There is no reason to 
expect that different dependent variables will have the identical (or easily 
comparable) degrees of dispersion around their means.

Incorrect Functional Forms Outside the range of the Sample

If an incorrect functional form is used, then the probability of mistaken 
inferences about the true population parameters will increase. Using an 
incorrect functional form is a kind of specification error that is similar to the 
omitted variable bias discussed in Section 6.1. Even if an incorrect functional 
form provides good statistics within a sample, large residuals almost surely 
will arise when the misspecified equation is used on data that were not part 
of the sample used to estimate the coefficients.

In general, the extrapolation of a regression equation to data that are out-
side the range over which the equation was estimated runs increased risks of 
large forecasting errors and incorrect conclusions about population values. 
This risk is heightened if the regression uses a functional form that is inap-
propriate for the particular variables being studied.

Two functional forms that behave similarly over the range of the sample 
may behave quite differently outside that range. If the functional form is cho-
sen on the basis of theory, then the researcher can take into account how the 
equation would act over any range of values, even if some of those values are 
outside the range of the sample. If functional forms are chosen on the basis 
of fit, then extrapolating outside the sample becomes tenuous.

Figure 7.6 contains a number of hypothetical examples. As can be seen, 
some functional forms have the potential to fit quite poorly outside the 
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sample range. Such graphs are meant as examples of what could happen, 
not as statements of what necessarily will happen, when incorrect func-
tional forms are pushed outside the range of the sample over which they 
were estimated. Do not conclude from these diagrams that nonlinear func-
tions should be avoided. If the true relationship is nonlinear, then the 

Figure 7.6 incorrect functional forms outside the Sample range

If an incorrect form is applied to data outside the range of the sample on which it was 
estimated, the probability of large mistakes increases. In particular, note how the poly-
nomial functional form can change slope rapidly outside the sample range (panel b) 
and that even a linear form can cause mistakes if the true functional form is nonlinear 
(panel d).

Y

0 X

(a) Double-Log (b , 0)

Sample

Y

0 X

Out of Sample

(b) Polynomial

Sample

Y

0 X

Out of Sample

Out of Sample

(c) Semilog Right

Sample

Out of Sample

Y

0 X

(d) Linear

Sample

M07_STUD2742_07_SE_C07.indd   208 1/6/16   5:19 PM



209 summAry

linear functional form will make large forecasting errors outside the sample. 
Instead, the researcher must take the time to think through how the equation 
will act for values both inside and outside the sample before choosing a func-
tional form to use to estimate the equation. If the theoretically appropriate 
nonlinear equation appears to work well over the relevant range of possible 
values, then it should be used without concern over this issue.

7.6  Summary

 1. Do not suppress the constant term. On the other hand, don’t rely on 
estimates of the constant term for inference even if it appears to be 
statistically significant.

 2. The choice of a functional form should be based on the underlying 
economic theory to the extent that theory suggests a shape similar to 
that provided by a particular functional form. A form that is linear 
in the variables should be used unless a specific hypothesis suggests 
otherwise.

 3. Functional forms that are nonlinear in the variables include the 
double-log form, the semilog form, and the polynomial form. 
The double-log form is especially useful if the elasticities involved are 
expected to be constant. The semilog form has the advantage of al-
lowing the effect of an independent variable to tail off as that variable 
increases. The polynomial form is useful if the slopes are expected to 
change sign, depending on the level of an independent variable.

 4. A slope dummy is a dummy variable that is multiplied by an in-
dependent variable to allow the slope of the relationship between 
the dependent variable and the particular independent variable to 
change, depending on whether a particular condition is met.

 5. The use of nonlinear functional forms has a number of potential 
problems. In particular, the R 

2s are difficult to compare if Y has 
been transformed, and the residuals are potentially large if an incor-
rect functional form is used for forecasting outside the range of the 
sample.
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ExErcisEs

(the answers to the even-numbered exercises are in Appendix A.)

 1. Write the meaning of each of the following terms without referring to 
the book (or your notes), and compare your definition with the ver-
sion in the text for each.
a. double-log functional form (p. 194)
b. elasticity (p. 194)
c. interaction term (p. 203)
d. intercept dummy (p. 203)
e. lag (p. 202)
f. linear in the coefficients (p. 193)
g. linear in the variables (p. 192)
h. log (p. 196)
i. natural log (p. 196)
j. polynomial functional form (p. 199)
k. semilog functional form (p. 196)
l. slope dummy (p. 204)

 2. For each of the following pairs of dependent (Y) and independent 
(X) variables, pick the functional form that you think is likely to be 
appropriate, and then explain your reasoning (assume that all other 
relevant independent variables are included in the equation):
a. Y =  sales of shoes
 X =  disposable income
b. Y =   the attendance at the Hollywood Bowl outdoor symphony 

concerts on a given night
 X =   whether the orchestra’s most famous conductor was sched-

uled to conduct that night
c. Y =   aggregate consumption of goods and services in the United 

States
 X =  aggregate disposable income in the United States
d. Y =  the money supply in the United States
 X =  the interest rate on Treasury Bills (in a demand function)
e. Y =  the average production cost of a box of pasta
 X =  the number of boxes of pasta produced

 3. Look over the following equations and decide whether they are linear 
in the variables, linear in the coefficients, both, or neither:
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a. Yi = β0 + β1X 

3
i + ei

b. Yi = β0 + β1ln Xi + ei

c. ln Yi = β0 + β1ln Xi + ei

d. Yi = β0 + β1X 

β2
i + ei

e. Y 

β0
i = β1 + β2X 

2
i + ei

 4. In 2003, Ray Fair6 analyzed the relationship between stock prices and 
risk aversion by looking at the 1996–2000 performance of the 65 
companies that had been a part of Standard and Poor’s famous index 
(the S&P 500) since its inception in 1957. Fair focused on the P/E 
ratio (the ratio of a company’s stock price to its earnings per share) 
and its relationship to the beta coefficient (a measure of a company’s 
riskiness—a high beta implies high risk). Hypothesizing that the 
stock price would be a positive function of earnings growth and divi-
dend growth, he estimated the following equation:

LNPEi = 2.74 - 0.22BETAi + 0.83EARNi + 2.81DIVi

 10.112 10.572 10.842
 t =  -1.99 1.44 3.33
 N = 65 R2 = .232 R 

2 = .194

where: LNPEi  =  the log of the median P/E ratio of the ith com-
pany from 1996 to 2000

   BETAi  =  the mean beta coefficient of the ith company 
from 1958 to 1994

   EARNi =  the median percentage earnings growth rate for 
the ith company from 1996 to 2000

   DIVi  =  the median percentage dividend growth rate for 
the ith company from 1996 to 2000

a. Create and test appropriate hypotheses about the slope coefficients 
of this equation at the 5-percent level.

b. One of these variables is lagged and yet this is a cross-sectional equa-
tion. Explain which variable is lagged and why you think Fair lagged it.

c. Is one of Fair’s variables potentially irrelevant? Which one? Use 
Stata, EViews, or your own regression program on the data in 
Table 7.2 to estimate Fair’s equation without your potentially 

h

6. Ray C. Fair, “Risk Aversion and Stock Prices,” Cowles Foundation Discussion Papers 1382, 
Cowles Foundation: Yale University, revised February 2003 © 2003. Most of the article is well 
beyond the scope of this text, but Fair generously included the data (including proprietary data 
that he generated) necessary to replicate his regression results. Note that the beta coefficient is 
not the same as the β regression coefficient used in econometrics.
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Table 7.2 data for the Stock price example

COMPANY PE BETA EArN DIV

  1 alcan 12.64 0.466 0.169 -0.013

  2 tXu corp. 10.80 0.545 0.016 0.014

  3 procter & gamble 19.90 0.597 0.066 0.050

  4 pg&e 11.30 0.651 0.021 0.014

  5 phillips petroleum 13.27 0.678 0.071 0.006

  6 at&t 13.71 0.697 -0.004 -0.008

  7 minnesota mining & mfg. 17.61 0.781 0.054 0.051

  8 alcoa 15.97 0.795 0.120 -0.015

  9 american electric power 10.68 0.836 -0.001 -0.021

10 public Service entrp 9.63 0.845 -0.018 -0.011

11 hercules 16.07 0.851 0.077 -0.008

12 air products & chemicals 16.20 0.865 0.051 0.074

13 bristol myers Squibb 17.01 0.866 0.068 0.110

14 Kimberly-clark 13.42 0.869 0.063 0.018

15 aetna 8.98 0.894 -0.137 0.007

16 wrigley 14.49 0.898 0.062 0.044

17 halliburton 17.84 0.906 0.120 -0.011

18 deere & co. 12.15 0.916 -0.010 0.004

19 Kroger 11.82 0.931 0.010 0.000

20 intl business machines 16.08 0.944 0.081 0.045

21 caterpillar 16.95 0.952 -0.043 -0.005

22 goodrich 12.06 0.958 0.028 -0.015

23 general mills 17.16 0.965 0.060 0.048

24 winn-dixie Stores 16.10 0.973 0.045 0.047

25 heinz (h J) 13.49 0.979 0.079 0.079

26 eastman Kodak 28.28 0.983 0.023 0.009

27 campbell Soup 16.33 0.986 0.028 0.025

28 philip morris 12.25 0.993 0.129 0.130

29 Southern co. 11.26 0.995 0.034 0.000

30 du pont 14.16 0.996 0.099 0.001

31 phelps dodge 11.47 1.008 0.186 -0.011

32 pfizer inc. 17.63 1.019 0.052 0.062

33 hershey foods 14.66 1.022 0.025 0.058

34 ingersoll-rand 14.24 1.024 0.045 -0.018

(continued )
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COMPANY PE BETA EArN DIV

35 fpl group 11.86 1.048 0.038 0.019

36 pitney bowes 16.11 1.064 0.049 0.086

37 archer-daniels-midland 14.43 1.073 0.073 -0.011

38 rockwell 9.42 1.075 0.062 0.020

39 dow chemical 15.25 1.081 0.042 0.026

40 general electric 15.16 1.091 0.051 0.015

41 abbott laboratories 17.58 1.097 0.114 0.098

42 merck & co. 23.29 1.122 0.066 0.072

43 J c penney 13.14 1.133 0.094 -0.003

44 union pacific corp. 12.99 1.136 0.010 0.021

45 Schering-plough 18.18 1.137 0.112 0.060

46 pepsico 18.94 1.147 0.082 0.046

47 mcgraw-hill 16.93 1.150 0.051 0.052

48 household international 8.36 1.184 0.019 0.008

49 emerson electric 17.52 1.196 0.047 0.044

50 general motors 11.21 1.206 0.052 -0.023

51 colgate-palmolive 16.60 1.213 0.067 0.025

52 eaton corp. 10.64 1.216 0.137 0.001

53 dana corp. 10.26 1.222 0.069 -0.011

54 Sears roebuck 12.41 1.256 0.030 -0.014

55 corning inc. 19.33 1.258 0.052 -0.013

56 general dynamics 9.06 1.285 0.056 -0.023

57 coca-cola 21.68 1.290 0.085 0.055

58 boeing 11.93 1.306 0.169 0.017

59 ford 8.62 1.308 0.016 0.026

60 peoples energy 9.58 1.454 0.000 0.005

61 goodyear 12.02 1.464 0.022 0.012

62 may co. 11.32 1.525 0.050 0.006

63 itt industries 9.92 1.630 0.038 0.018

64 raytheon 11.75 1.821 0.112 0.050

65 cooper industries 12.41 1.857 0.108 0.037

Source: ray c. fair, “risk aversion and Stock prices,” cowles foundation discussion papers 
1382, cowles foundation: Yale university, revised february 2003 © 2003.

datafile = StocK7

Table 7.2 (continued)
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irrelevant variable and then use our four specification criteria to 
determine whether the variable is indeed irrelevant.

d. What functional form does Fair use? Does this form seem appro-
priate on the basis of theory? (Hint: A review of the literature would 
certainly help you answer this question, but before you start that 
review, think through the meaning of the slope coefficients in this 
functional form.)

e. (optional) Suppose that your review of the literature makes you 
concerned that Fair should have used a double-log functional form 
for his equation. Use the data in Table 7.2 to estimate that func-
tional form on Fair’s data. What is your estimated result? Does it 
support your concern? Explain.

 5. In an effort to explain regional wage differentials, you collect wage 
data from 7,338 unskilled workers, divide the country into four 
regions (Northeast, South, Midwest, and West), and estimate the fol-
lowing equation (standard errors in parentheses):

  YN i = 4.78 - 0.038Ei -  0.041Si -  0.048Wi

  (0.019)  (0.010)  (0.012)
 R 

2 = .49  N = 7,338

where: Yi  =  the hourly wage (in dollars) of the ith unskilled 
worker

   Ei  =  a dummy variable equal to 1 if the ith worker lives in 
the Northeast, 0 otherwise

   Si  =  a dummy variable equal to 1 if the ith worker lives in 
the South, 0 otherwise

   Wi =  a dummy variable equal to 1 if the ith worker lives in 
the West, 0 otherwise

a. What is the omitted condition in this equation?
b. If you add a dummy variable for the omitted condition to the 

equation without dropping Ei, Si, or Wi, what will happen?
c. If you add a dummy variable for the omitted condition to the 

equation and drop Ei, what will the sign of the new variable’s esti-
mated coefficient be?

d. Which of the following three statements is most correct? Least cor-
rect? Explain your answers.

  i.  The equation explains 49 percent of the variation of Y 
around its mean with regional variables alone, so there must 
be quite a bit of wage variation by region.
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  ii.  The coefficients of the regional variables are virtually identi-
cal, so there must not be much wage variation by region.

  iii.  The coefficients of the regional variables are quite small 
compared with the average wage, so there must not be much 
wage variation by region.

 6. Suggest the appropriate functional forms for the relationships 
between the following variables. Be sure to explain your reasoning:
a. The age of the ith house in a cross-sectional equation for the sales 

price of houses in Cooperstown, New York. (Hint: Cooperstown is 
known as a lovely town with a number of elegant historic homes.)

b. The price of natural gas in year t in a demand-side time-series equa-
tion for the consumption of natural gas in the United States.

c. The income of the ith individual in a cross-sectional equation for 
the number of suits owned by individuals.

d. A dummy variable for being a student (1 = yes) in the equation 
specified in part c.

 7. V. N. Murti and V. K. Sastri7 investigated the production character-
istics of various Indian industries, including cotton and sugar. They 
specified Cobb–Douglas production functions for output (Q) as a 
double-log function of labor (L) and capital (K):

 lnQi = β0 + β1lnLi + β2lnKi + ei

  and obtained the following estimates (standard errors in parentheses):

Industry   �N 0    �N 1    �N 2  R2

Cotton 0.97   0.92   0.12 .98
 (0.03) (0.04)

Sugar 2.70   0.59   0.33 .80
(0.14) (0.17)

a. What are the elasticities of output with respect to labor and capital 
for each industry?

b. What economic significance does the sum (βN 1 + βN 2) have?
c. Murti and Sastri expected positive slope coefficients. Test their hy-

potheses at the 5-percent level of significance. (Hint: This is much 
harder than it looks!)

7.  V. N. Murti and V. K. Sastri, “Production Functions for Indian Industry,” Econometrica, Vol. 
25, No. 2, pp. 205–221.
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 8. Richard Fowles and Peter Loeb studied the interactive effect of drink-
ing and altitude on traffic deaths.8 The authors hypothesized that 
drunk driving fatalities are more likely at high altitude than at low 
altitude because higher elevations diminish the oxygen intake of the 
brain, increasing the impact of a given amount of alcohol. To test 
this hypothesis, they used an interaction variable between altitude 
and beer consumption. They estimated the following cross-sectional 
model (by state for the continental United States) of the motor vehi-
cle fatality rate (Note: t-scores in parentheses):

  FNi = -  3.36 - 0.002Bi +  0.17Si -  0.31Di +  0.011Bi Ai (7.22)
  1-  0.082  11.852 1-  1.292  14.052
 N = 48  R 

2 = .499

where: Fi  =  traffic fatalities per motor vehicle mile driven in the 
ith state

   Bi  =  per capita consumption of beer (malt beverages) in 
state i

   Si  =  average highway driving speed in state i
   Di =  a dummy variable equal to 1 if the ith state had a 

vehicle safety inspection program, 0 otherwise
   Ai  =  the average altitude of metropolitan areas in state i (in 

thousands)
a. Carefully state and test appropriate hypotheses about the coeffi-

cients of B, S, and D at the 5-percent level. Do these results give any 
indication of econometric problems in the equation? Explain.

b. Think through the interaction variable. What is it measuring? Care-
fully state the meaning of the coefficient of B*A.

c. Create and test appropriate hypotheses about the coefficient of the 
interaction variable at the 5-percent level.

d. Note that Ai is included in the equation in the interaction vari-
able but not as an independent variable on its own. If an equation 
includes an interaction variable, should both components of the 

8. Richard Fowles and Peter D. Loeb, “The Interactive Effect of Alcohol and Altitude on Traffic 
Fatalities,” Southern Economic Journal, Vol. 59, pp. 108–111. To focus the analysis, we have omit-
ted the coefficients of three other variables (the minimum legal drinking age, the percent of the 
population between 18 and 24, and the variability of highway driving speeds) that were insig-
nificant in Equations 7.22 and 7.23.
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interaction be independent variables in the equation as a matter of 
course? Why or why not? (Hint: Recall that with slope dummies, 
we emphasized that both the intercept dummy term and the slope 
dummy variable term should be in the equation.)

e. When the authors included Ai in their model, the results were as 
in Equation 7.23 (with t-scores once again in parenthesis). Which 
equation do you prefer? Explain.

  FNi = -2.33 - 0.024Bi +  0.14Si -  0.24Di -  0.35Ai +  0.023Bi Ai (7.23)
  (-  0.80)  (1.53) (-  0.96)  (-  1.07)  (1.97)

 N = 48 R 

2 = .501

7.7  appendix: econometric Lab #4

This lab is an exercise in specification: choosing the variables and the func-
tional form. It also will give you experience in transforming variables and 
conducting joint hypothesis tests in Stata or your computer’s econometric 
software program. The dependent variable that we’re going to study is the 
price of a used farm tractor that was sold at auction in the United States.

Step 1: review the Literature

Since you’re probably not an expert on the prices of used tractors, let’s start with 
a quick review of the literature. This is a model of the price of a used tractor 
as a function of the attributes of that tractor and the time of the sale, so this is 
another example of a hedonic model. For more on hedonic models, see page 358.

Believe it or not, there have been a number of econometric studies of trac-
tor prices. Most significantly, in 2008 Diekmann et al.9 studied used tractor 
prices utilizing a semilog left functional form and found that key indepen-
dent variables included make, horsepower, age, hours of use, sale date, drive 
(four-wheel drive or two-wheel drive), automatic transmission, and fuel 
(diesel or gas). This provides a useful starting point.

9. Florian Diekmann, Brian E. Roe, and Marvin T. Batte, “Tractors on eBay: Differences between 
Internet and In-Person Auctions.” American Journal of Agricultural Economics, Vol. 90, No. 2, pp. 
306–320. Also see Gregory Perry, Ahmet Bayaner, and Clair J. Nixon, “The Effect of Usage and Size 
on Tractor Depreciation,” American Journal of Agricultural Economics, Vol. 72, No. 2, pp. 317–325.

M07_STUD2742_07_SE_C07.indd   217 19/01/16   5:40 PM



218 ChAPTEr 7 Specification: chooSing a functional form 

Step 2: Estimate the Basic Model

As our basic model, let’s estimate a variation of Diekmann’s model using a 
more current dataset. Table 7.3 contains the definitions of the variables we’ll 
need to attempt to replicate Diekmann’s regression. The dependent variable 
is the price of a used farm tractor that was sold at auction in the United States 
between June 1, 2011 and May 31, 2012. The data10 are available on this text’s 
website as dataset TRACTOR7. Table 7.3 also has the hypothesized expected 
sign of the coefficient of each variable, given the underlying theory. Now:

10. The data were collected by Preston Cahill of Centre College.

Table 7.3 variable definitions for the used tractor price model

Variable Description hypoth. Sign of Coef.

Yi =  salepricei the price paid for tractor i in dollars n/a

tractor Specifications:

horsepoweri the horsepower of tractor i +
agei the number of years since tractor i was 

manufactured
-

enghoursi the number of hours of use recorded 
on tractor i

-

dieseli a dummy variable =  1 if tractor i runs 
on diesel fuel, 0 otherwise

+

fwdi a dummy variable =  1 if tractor i has 
four-wheel drive, 0 otherwise

+

manuali a dummy variable =  1 if tractor i trans-
mission is manual, 0 otherwise

-

johndeerei a dummy variable =  1 if tractor i is man-
ufactured by John deere, 0 otherwise

+

cabi a dummy variable =  1 if tractor i has an 
enclosed cab, 0 otherwise

+

time of year:

springi a dummy variable =  1 if tractor i was 
sold in april or may, 0 otherwise

?

summeri a dummy variable =  1 if tractor i was 
sold June–September, 0 otherwise

?

winteri a dummy variable =  1 if tractor i was 
sold december–march, 0 otherwise

?
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a. Estimate an equation with the natural log of the sale price (salepricei) 
as the dependent variable and all the other variables in Table 7.3 as 
the independent variables. (Hints: Don’t forget to generate lnsaleprice 
before you run your regression, and make sure not to include any vari-
ables that are not listed in Table 7.3.)

b. Take a look at your regression results. What is R2? Does this seem rea-
sonable? Explain your thinking.

c. Do any of your estimated coefficients have unexpected signs? If so, 
which ones?

d. Run one-sided 5-percent t-tests on the coefficients of all your indepen-
dent variables except for the seasonal dummies. For which coefficients 
can you reject the null hypothesis?

e. Carefully interpret the coefficient of johndeere. What does it mean in 
real-world terms?

f. What econometric problems (if any) appear to exist in the basic model?

Step 3: Consider a Polynomial Functional Form for horsepower

Suppose you show the results of your basic model to a used tractor dealer 
who happened to take econometrics in college. He says that your results are 
promising, but he’s found it very difficult to sell overpowered used tractors 
because these tractors waste fuel and provide no extra benefit to the buyer. He 
thinks that new tractor buyers often overestimate how much power they’ll need 
and that used tractor buyers don’t make this mistake as often. He therefore 
suggests that it could be that as horsepower increases, the price increases, at 
least up to a point, but beyond that point, further increases in horsepower start 
to have a negative effect on price. You decide to take his advice and consider 
changing the functional form of horsepower to a polynomial.

a. Generate the new variable and run the new regression. (Hint: Did you 
remember to hypothesize the signs of the coefficients of horsepower 
and its square before you ran the regression?)

b. Run 5-percent one-sided t-tests on your hypotheses for the coefficients 
of horsepower and its square.

c. At what horsepower (to the nearest round number) does the value of 
a tractor reach an extreme (other things being equal)? Is the extreme a 
minimum or a maximum?

d. Which equation do you prefer between the basic equation and the poly-
nomial equation? Why? (Be sure to cite evidence to support your choice.)
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Step 4: Add a Potential Omitted Variable to Your Step 3 Model

As you’re leaving the used tractor lot, you happen to notice that quite a few of 
the tractors have enclosed cabs. Since such a cab would come in handy in bad 
weather, you have a sudden sinking feeling that you might have an omitted 
variable! To test this, you find the data for cab (luckily also in TRACTOR7).
Now:

a. Add cab to the model you preferred in Step 3, part d, and re-estimate 
the equation.

b. Use our four specification criteria to decide whether cab belongs in the 
equation. (Hint: Write out specific answers for all four criteria and then 
justify your conclusion.)

Step 5: Joint hypothesis Testing

Go back to the basic model of Step 2, and test at the 5-percent level the 
joint hypothesis that the time of year of the sale has no effect on the price of 
tractors:

a. What is the omitted condition in this seasonal model? What’s unusual 
about this?

b. Carefully write out your null and alternative hypotheses.
c. Estimate your constrained equation.
d. Run the appropriate F-test at the 5-percent level. Calculate F and look 

up the appropriate critical F-value.
e. What’s your conclusion? Do used tractor prices have a seasonal 

pattern?

(Optional) Step 6: Consider a Slope Dummy That Interacts Diesel 
with Use

It is well known that diesel engines tend to be more durable than gasoline 
engines. That fact raises the question of whether an additional hour of use 
affects the value of a diesel tractor differently than for a gasoline tractor. 
Generate the variable you need to test this hypothesis, add this variable to 
the basic model of Step 2, estimate the revised slope dummy model, and test 
the appropriate slope dummy hypothesis at the 5-percent level. What is your 
t-value? Can you reject the null hypothesis?
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Chapter 8

Multicollinearity

8.1 Perfect versus Imperfect Multicollinearity

8.2 The Consequences of Multicollinearity

8.3 The Detection of Multicollinearity

8.4 Remedies for Multicollinearity

8.5 An Example of Why Multicollinearity Often Is Best Left Unadjusted

8.6 Summary and Exercises

8.7 Appendix: The SAT Interactive Regression Learning Exercise

The next three chapters deal with violations of the Classical Assumptions 
and remedies for those violations. This chapter addresses multicollinearity, 
and the next two chapters address serial correlation and heteroskedasticity. 
For each of these three problems, we will attempt to answer the following 
questions:

1. What is the nature of the problem?

2. What are the consequences of the problem?

3. How is the problem diagnosed?

4. What remedies for the problem are available?

Strictly speaking, perfect multicollinearity is the violation of Classical 
Assumption VI—that no independent variable is a perfect linear function of 
one or more other independent variables. Perfect multicollinearity is rare, but 
severe imperfect multicollinearity, although not violating Classical Assump-
tion VI, still causes substantial problems.

Recall that the coefficient βk can be thought of as the impact on the depen-
dent variable of a one-unit increase in the independent variable Xk, holding 
constant the other independent variables in the equation. If two explanatory 
variables are significantly related, then the OLS computer program will find 
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it difficult to distinguish the effects of one variable from the effects of the 
other.

In essence, the more highly correlated two (or more) independent vari-
ables are, the more difficult it becomes to accurately estimate the coefficients 
of the true model. If two variables move identically, then there is no hope of 
distinguishing between their impacts, but if the variables are only roughly 
correlated, then we still might be able to estimate the two effects accurately 
enough for most purposes.

8.1  Perfect versus Imperfect Multicollinearity

Perfect Multicollinearity

Perfect multicollinearity1 violates Classical Assumption VI, which specifies 
that no explanatory variable is a perfect linear function of any other explana-
tory variable. The word perfect in this context implies that the variation in one 
explanatory variable can be completely explained by movements in another 
explanatory variable. Such a perfect linear function between two indepen-
dent variables would be:

 X1i = α0 + α1X2i (8.1)

where the αs are constants and the Xs are independent variables in:

 Yi = β0 + β1X1i + β2X2i + ei (8.2)

Notice that there is no error term in Equation 8.1. This implies that X1 can 
be exactly calculated given X2 and the equation. Typical equations for such 
perfect linear relationships would be:

 X1i = 3X2i (8.3)

 X1i = 2 + 4X2i (8.4)

What are some real-world examples of perfect multicollinearity? The sim-
plest examples involve the same variable measured in different units. Think 
about the distance between two cities measured in miles with X1 and in 
kilometers with X2. The data for the variables look quite different, but they’re 

1. The word collinearity describes a linear correlation between two independent variables, and 
multicollinearity indicates that more than two independent variables are involved. In common 
usage, multicollinearity is used to apply to both cases, and so we’ll typically use that term in 
this text even though many of the examples and techniques discussed relate, strictly speaking, 
to collinearity.
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perfectly correlated! A more subtle example is when the two variables always 
add up to the same amount, for instance P1, the percent of voters who voted 
in favor of a proposition, and P2, the percent who voted against it (assuming 
no abstentions), would always add up to 100% and therefore would be per-
fectly (negatively) correlated.

Figure 8.1 shows a graph of explanatory variables that are perfectly cor-
related. As can be seen in Figure 8.1, a perfect linear function has all data 
points on the same straight line. There is none of the variation that accompa-
nies the data from a typical regression.

What happens to the estimation of an econometric equation where there 
is perfect multicollinearity? OLS is incapable of generating estimates of the 
regression coefficients, and most OLS computer programs will print out an 
error message in such a situation. Using Equation 8.2 as an example, we theo-
retically would obtain the following estimated coefficients and standard errors:

 βN 1 = indeterminate  SE(βN 1) = ∞  (8.5)

 βN 2 = indeterminate  SE(βN 2) = ∞  (8.6)

Perfect multicollinearity ruins our ability to estimate the coefficients because 
the two variables cannot be distinguished. You cannot “hold all the other 
independent variables in the equation constant” if every time one variable 
changes, another changes in an identical manner.

Figure 8.1 Perfect Multicollinearity

With perfect multicollinearity, an independent variable can be completely explained by the 
movements of one or more other independent variables. Perfect multicollinearity can usu-
ally be avoided by careful screening of the independent variables before a regression is run.

X1

0 X2
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Fortunately, instances in which one explanatory variable is a perfect linear 
function of another are rare. More important, perfect multicollinearity should 
be fairly easy to discover before a regression is run. You can detect perfect mul-
ticollinearity by asking whether one variable equals a multiple of another or 
if one variable can be derived by adding a constant to another or if a variable 
equals the sum of two other variables. If so, then one of the variables should be 
dropped because there is no essential difference between the two.

A special case related to perfect multicollinearity occurs when a variable 
that is definitionally related to the dependent variable is included as an inde-
pendent variable in a regression equation. Such a dominant variable is by 
definition so highly correlated with the dependent variable that it completely 
masks the effects of all other independent variables in the equation. In a 
sense, this is a case of perfect collinearity between the dependent variable and 
an independent variable.

For example, if you include a variable measuring the amount of raw mate-
rials used by the shoe industry in a production function for that industry, the 
raw materials variable would have an extremely high t-score, but otherwise 
important variables like labor and capital would have quite insignificant 
t-scores. Why? In essence, if you knew how much leather was used by a shoe 
factory, you could predict the number of pairs of shoes produced without 
knowing anything about labor or capital. The relationship is definitional, and 
the dominant variable should be dropped from the equation to get reason-
able estimates of the coefficients of the other variables.

Be careful, though! Dominant variables shouldn’t be confused with highly 
significant or important explanatory variables. Instead, they should be rec-
ognized as being virtually identical to the dependent variable. While the fit 
between the two is superb, knowledge of that fit could have been obtained 
from the definitions of the variables without any econometric estimation.

Imperfect Multicollinearity

Since perfect multicollinearity is fairly easy to avoid, econometricians rarely 
talk about it. Instead, when we use the word multicollinearity, we really are 
talking about severe imperfect multicollinearity. Imperfect multicollinearity 
can be defined as a linear functional relationship between two or more inde-
pendent variables that is so strong that it can significantly affect the estima-
tion of the coefficients of the variables.

In other words, imperfect multicollinearity occurs when two (or more) 
explanatory variables are imperfectly linearly related, as in:

 X1i = α0 + α1X2i + ui (8.7)
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Compare Equation 8.7 to Equation 8.1; notice that Equation 8.7 includes ui, 
a stochastic error term. This implies that although the relationship between 
X1 and X2 might be fairly strong, it is not strong enough to allow X1 to 
be completely explained by X2; some unexplained variation still remains. 
Figure 8.2 shows the graph of two explanatory variables that might be consid-
ered imperfectly multicollinear. Notice that although all the observations in 
the sample are fairly close to the straight line, there is still some variation in 
X1 that cannot be explained by X2.

Imperfect multicollinearity is a strong linear relationship between the 
explanatory variables. The stronger the relationship is between the two 
(or more) explanatory variables, the more likely it is that they’ll be con-
sidered significantly multicollinear. Two variables that might be only 
slightly related in one sample might be so strongly related in another that 
they could be considered to be imperfectly multicollinear. In this sense, it 
is fair to say that multicollinearity is a sample phenomenon as well as a 
theoretical one. This contrasts with perfect multicollinearity because two 
variables that are perfectly related probably can be detected on a logical 
basis. The detection of multicollinearity will be discussed in more detail in 
Section 8.3.

Figure 8.2 imperfect Multicollinearity

With imperfect multicollinearity, an independent variable is a strong but not perfect 
linear function of one or more other independent variables. Imperfect multicollinearity 
varies in degree from sample to sample.

X1

0 X2
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8.2  The Consequences of Multicollinearity

If the multicollinearity in a particular sample is severe, what will happen 
to estimates calculated from that sample? The purpose of this section is to 
explain the consequences of multicollinearity and then to explore some 
examples of such consequences.

Recall the properties of OLS estimators that might be affected by this or 
some other econometric problem. In Chapter 4, we stated that the OLS esti-
mators are BLUE (or MvLUE) if the Classical Assumptions hold. This means 
that OLS estimates can be thought of as being unbiased and having the mini-
mum variance possible for unbiased linear estimators.

What Are the Consequences of Multicollinearity?

The major consequences of multicollinearity are:

1. Estimates will remain unbiased. Even if an equation has significant mul-
ticollinearity, the estimates of the βs still will be centered around the 
true population βs if the first six Classical Assumptions are met for a 
correctly specified equation.

2. The variances and standard errors of the estimates will increase. This is the 
principal consequence of multicollinearity. Since two or more of the 
explanatory variables are significantly related, it becomes difficult to 
precisely identify the separate effects of the multicollinear variables. 
When it becomes hard to distinguish the effect of one variable from 
the effect of another, we’re much more likely to make large errors in 
estimating the βs than we were before we encountered multicollinear-
ity. As a result, the estimated coefficients, although still unbiased, now 
come from distributions with much larger variances and, therefore, 
larger standard errors.
 Even though the variances and standard errors are larger with mul-
ticollinearity than they are without it, OLS is still BLUE when multicol-
linearity exists. That is, no other linear unbiased estimation technique 
can get lower variances than OLS even in the presence of multicol-
linearity. Thus, although the effect of multicollinearity is to increase the 
variance of the estimated coefficients, OLS still has the property of mini-
mum variance. These “minimum variances” are just fairly large.
 Figure 8.3 compares a distribution of βN s from a sample with severe 
multicollinearity to one with virtually no correlation between any of 
the independent variables. Notice that the two distributions have the 
same mean, indicating that multicollinearity does not cause bias. Also 
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note how much wider the distribution of βN  becomes when multicol-
linearity is severe; this is the result of the increase in the standard error 
of βN  that is caused by multicollinearity.
 Because of this larger variance, multicollinearity increases the likeli-
hood of obtaining an unexpected sign2 for a coefficient even though, 
as mentioned earlier, multicollinearity causes no bias.

3. The computed t-scores will fall. Multicollinearity tends to decrease the 
t-scores of the estimated coefficients mainly because of the formula for 
the t-statistic:

 tk =
1βN k - βH0

2
SE1βN k2

 (8.8)

Figure 8.3 severe Multicollinearity increases the variances of the �N s

Severe multicollinearity produces a distribution of the βN s that is centered around the 
true β but that has a much wider variance. Thus, the distribution of βN s with multicol-
linearity is much wider than otherwise.

b b

With Severe
Multicollinearity

Without Severe
Multicollinearity

2. These unexpected signs generally occur because the distribution of the βN s with multicol-
linearity is wider than it would be without it, increasing the chance that a particular observed βN  
will be on the other side of zero from the true β (have an unexpected sign).
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Notice that this equation is divided by the standard error of the es-
timated coefficient. Multicollinearity increases the standard error of 
the estimated coefficient, and if the standard error increases, then the 
t-score must fall, as can be seen from Equation 8.8. Not surprisingly, 
it’s quite common to observe low t-scores in equations with severe 
multicollinearity.
 Similarly, the computed confidence intervals will widen. Because 
multicollinearity increases the standard error of the estimated coef-
ficient, it makes the confidence interval wider (see Equation 5.9). Put 
differently, since βN  is likely to be farther from the true β, the confi-
dence interval is forced to increase.

4. Estimates will become very sensitive to changes in specification. The addi-
tion or deletion of an explanatory variable or of a few observations 
will often cause major changes in the values of the βN s when significant 
multicollinearity exists. If you drop a variable, even one that appears to 
be statistically insignificant, the coefficients of the remaining variables 
in the equation sometimes will change dramatically.
 These large changes occur because OLS estimation is sometimes 
forced to emphasize small differences between variables in order 
to distinguish the effect of one multicollinear variable from that of 
another. If two variables are virtually identical throughout most of 
the sample, the estimation procedure relies on the observations in 
which the variables move differently in order to distinguish between 
them. As a result, a specification change that drops a variable that 
has an unusual value for one of these crucial observations can cause 
the estimated coefficients of the multicollinear variables to change 
dramatically.

5. The overall fit of the equation and the estimation of the coefficients of 
nonmulticollinear variables will be largely unaffected. Even though the 
individual t-scores are often quite low in a multicollinear equation, 
the overall fit of the equation, as measured by R 

2, will not fall much, 
if at all, in the face of significant multicollinearity. Given this, one of 
the first indications of severe multicollinearity is the combination of 
a high R 

2 with no statistically significant individual regression coeffi-
cients. Similarly, if an explanatory variable in an equation is not multi-
collinear with the other variables, then the estimation of its coefficient 
and standard error usually will not be affected.
 Because the overall fit is largely unchanged, it’s possible for the 
F-test of overall significance to reject the null hypothesis even though 
none of the t-tests on individual coefficients can do so. Such a result is 
a clear indication of severe imperfect multicollinearity.
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 Finally, since multicollinearity has little effect on the overall fit of 
the equation, it also will have little effect on the use of that equation 
for prediction or forecasting, as long as the independent variables 
maintain the same pattern of multicollinearity in the forecast period 
that they demonstrated in the sample.

Two Examples of the Consequences of Multicollinearity

To see what severe multicollinearity does to an estimated equation, let’s look 
at a hypothetical example. Suppose you decide to estimate a “student con-
sumption function.” After the appropriate preliminary work, you come up 
with the following hypothesized equation:

 +  -
 COi = β0 + β1Ydi + β2LAi + ei (8.9)

where: COi =  the annual consumption expenditures of the ith student 
on items other than tuition and room and board

 Ydi  =  the annual disposable income (including gifts) of that 
student

 LAi  =  the liquid assets (savings, etc.) of the ith student
 ei  = a stochastic error term

You then collect a small amount of data from people who are sitting near you 
in class:

Student COi Ydi LAi

Mary $2000 $2500 $25000
Robby 2300 3000 31000
Bevin 2800 3500 33000
Lesley 3800 4000 39000
Brandon 3500 4500 48000
Bruce 5000 5000 54000
Harwood 4500 5500 55000
Datafile = CONS8

If you run an OLS regression on your data set for Equation 8.9, you obtain:

  COi = -367.83 + 0.5113Ydi +  0.0427LAi (8.10)
  11.03072  10.09422
  t = 0.496  0.453
 R2 = .835

8
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On the other hand, if you had consumption as a function of disposable 
income alone, then you would have obtained:

  COi = -  471.43 + 0.9714Ydi (8.11)
  10.1572
  t = 6.187
 R 

2 = .861

Notice from Equations 8.10 and 8.11 that the t-score for disposable income 
increases more than tenfold when the liquid assets variable is dropped from 
the equation. Why does this happen? First of all, the correlation between 
Yd and LA is quite high. This high degree of correlation causes the standard 
errors of the estimated coefficients to be very high when both variables are 
included. In the case of βN Yd, the standard error goes from 0.157 to 1.03 with 
the inclusion of LA! In addition, the coefficient estimate itself changes some-
what. Further, note that the R 

2s of the two equations are quite similar despite 
the large differences in the significance of the explanatory variables in the 
two equations. It’s quite common for R 

2 to stay virtually unchanged when 
multicollinear variables are dropped. All of these results are typical of equa-
tions with multicollinearity.

Which equation is better? If the liquid assets variable theoretically belongs 
in the equation, then to drop it will run the risk of omitted variable bias, but 
to include the variable will mean certain multicollinearity. There is no auto-
matic answer when dealing with multicollinearity. We’ll discuss this issue in 
more detail in Sections 8.4 and 8.5.

A second example of the consequences of multicollinearity is based on 
actual rather than hypothetical data. Suppose you’ve decided to build a cross-
sectional model of the demand for gasoline by state:
 +  -  +
 PCONi = β0 + β1UHMi + β2TAXi + β3REGi + ei (8.12)

where: PCONi =  petroleum consumption in the ith state (trillions of 
BTUs)

 UHMi  =  urban highway miles within the ith state
 TAXi  =  the gasoline tax rate in the ith state (cents per gallon)
 REGi  = motor vehicle registrations in the ith state (thousands)

Given the definitions, let’s move on to the estimation of Equation 8.12 
using a linear functional form (assuming a classical error term):

  PCONi = 389.6 +  60.8UHMi -  36.5TAXi -  0.061REGi (8.13)
  110.32  113.22  10.0432
  t = 5.92  -  2.77  -  1.43
 N = 50  R2 = .919 

8

h
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What’s wrong with this equation? The motor vehicle registrations variable 
has an insignificant coefficient with an unexpected sign, but it’s hard to 
believe that the variable is irrelevant. Is an omitted variable causing bias? It’s 
possible, but adding a variable is unlikely to fix things. Does it help to know 
that the correlation between REG and UHM is extremely high? Given that, it 
seems fair to say that one of the two variables is redundant; both variables are 
really measuring the size of the state, so we have multicollinearity.

Notice the impact of the multicollinearity on the equation. The coefficient 
of a variable such as motor vehicle registrations, which has a very strong theo-
retical relationship to petroleum consumption, is insignificant and has a sign 
contrary to our expectations. This is mainly because the multicollinearity has 
increased the variance of the distribution of the estimated βN s.

What would happen if we were to drop one of the multicollinear variables?

  PCONi = 551.7 - 53.6TAXi +  0.186REGi (8.14)
  116.92  10.0122
  t = -  3.18  15.88
 N = 50  R 

2 = .861 
Dropping UHM has made REG extremely significant. Why did this occur? 
The answer is that the standard error of the coefficient of REG has fallen 
substantially (from 0.043 to 0.012) now that the multicollinearity has been 
removed from the equation. Also note that the sign of the estimated coeffi-
cient has now become positive as hypothesized. The reason is that REG and 
UHM are virtually indistinguishable from an empirical point of view, and so 
the OLS program latched on to minor differences between the variables to 
explain the movements of PCON. Once the multicollinearity was removed, 
the direct positive relationship between REG and PCON was obvious.

Either UHM or REG could have been dropped with similar results because 
the two variables are, in a quantitative sense, virtually identical. In fact, our 
guess is that a majority of experienced econometricians, when faced with the 
results in Equation 8.13 and the high correlation between REG and UHM, 
would have dropped REG and kept UHM. Why did we do the opposite? Our 
opinion is that because UHM is an urban variable and REG is a statewide 
variable, REG is preferable from a theoretical standpoint if we’re trying to 
understand statewide petroleum consumption. Since the two are identical 
quantitatively and REG is preferable theoretically, we’d keep REG, but we rec-
ognize that others could look at the same results and come to a different con-
clusion. Even though R 

2 fell when UHM was dropped, Equation 8.14 should 
be considered superior to Equation 8.13. This is an example of the point, first 
made in Chapter 2, that the fit of the equation is not the most important cri-
terion to be used in determining its overall quality.

h
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8.3  The Detection of Multicollinearity

How do we decide whether an equation has a severe multicollinearity problem? 
A first step is to recognize that some multicollinearity exists in every equation. It’s 
virtually impossible in a real-world example to find a set of explanatory variables 
that are totally uncorrelated with each other (except for designed experiments). 
Our main purpose in this section will be to learn to determine how much multi-
collinearity exists in an equation, not whether any multicollinearity exists.

A second key point is that the severity of multicollinearity in a given equa-
tion can change from sample to sample depending on the characteristics of 
the sample. As a result, the theoretical underpinnings of the equation are 
not quite as important in the detection of multicollinearity as they are in the 
detection of an omitted variable or an incorrect functional form. Instead, 
we tend to rely more on data-oriented techniques to determine the severity 
of the multicollinearity in a given sample. Of course, we can never ignore the 
theory behind an equation. The trick is to find variables that are theoretically 
relevant (for meaningful interpretation) and that are also statistically non-
multicollinear (for meaningful inference).

Because multicollinearity is a sample phenomenon and the level of dam-
age of its impact is a matter of degree, many of the methods used to detect 
it are informal tests without critical values or levels of significance. Indeed, 
there are no generally accepted, true statistical tests for multicollinearity. 
Most researchers develop a general feeling for the severity of multicollinearity 
in an estimated equation by looking at a number of the characteristics of that 
equation. Let’s examine two of the most frequently used characteristics.

high Simple Correlation Coefficients

One way to detect severe multicollinearity is to examine the simple correla-
tion coefficients between the explanatory variables. The simple correlation 
coefficient, r, is a measure of the strength and direction of the linear relation-
ship between two variables.3 The range of r is from +1 to -1, and the sign 
of r indicates the direction of the correlation between the two variables. The 

3. The equation for r12, the simple correlation coefficient between X1 and X2, is:

 r12 =
g 31X1i - X121X2i - X2242g 1X1i - X122 g 1X2i - X222

Interestingly, it turns out that r and R2 are related if the estimated equation has exactly one in-
dependent variable. The square of r equals R2 for a regression where one of the two variables is 
the dependent variable and the other is the only independent variable.
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closer the absolute value of r is to 1, the stronger is the correlation between 
the two variables. Thus:

If two variables are perfectly positively correlated, then r = +1

If two variables are perfectly negatively correlated, then r = -1

If two variables are totally uncorrelated, then r = 0

If an r is high in absolute value, then we know that these two particular 
Xs are quite correlated and that multicollinearity is a potential problem. For 
example, in Equation 8.10, the simple correlation coefficient between dispos-
able income and liquid assets is 0.986. A simple correlation coefficient this 
high, especially in an equation with only two independent variables, is a cer-
tain indication of severe multicollinearity.

How high is high? Some researchers pick an arbitrary number, such as 
0.80, and become concerned about multicollinearity any time the absolute 
value of a simple correlation coefficient exceeds 0.80. A better answer might 
be that r is high if it causes unacceptably large variances in the coefficient esti-
mates in which we’re interested.

Be careful: The use of simple correlation coefficients as an indication of the 
extent of multicollinearity involves a major limitation if there are more than two 
explanatory variables. It is quite possible for groups of independent variables, 
acting together, to cause multicollinearity without any single simple correlation 
coefficient being high enough to indicate that multicollinearity is in fact severe. 
As a result, simple correlation coefficients must be considered to be sufficient but 
not necessary tests for multicollinearity. Although a high r does indeed indicate 
the probability of severe multicollinearity, a low r by no means proves otherwise.4

high Variance Inflation Factors (VIFs)

The use of tests to give an indication of the severity of multicollinearity in 
a particular sample is controversial. Some econometricians reject even the 
simple correlation coefficient, mainly because of the limitations cited. Others 
tend to use a variety of more formal tests.5

4. Most authors criticize the use of simple correlation coefficients to detect multicollinearity in 
equations with large numbers of explanatory variables, but many researchers continue to do so 
because a scan of the simple correlation coefficients is a “quick and dirty” way to get a feel for 
the degree of multicollinearity in an equation.
5. Perhaps the best of these is the Condition number. For more on the Condition number, 
which is a single index of the degree of multicollinearity in the overall equation, see D. A. 
Belsley, Conditioning Diagnostics (New York: Wiley, 1991).
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One measure of the severity of multicollinearity that is easy to use and that 
is gaining in popularity is the variance inflation factor. The variance infla-
tion factor (VIF) is a method of detecting the severity of multicollinearity by 
looking at the extent to which a given explanatory variable can be explained 
by all the other explanatory variables in the equation. There is a VIF for each 
explanatory variable in an equation. The VIF is an index of how much multi-
collinearity has increased the variance of an estimated coefficient. A high VIF 
indicates that multicollinearity has increased the estimated variance of the 
estimated coefficient by quite a bit, yielding a decreased t-score.

Suppose you want to use the VIF to attempt to detect multicollinearity in 
an original equation with K independent variables:

 Y = β0 + β1X1 + β2X2 + g + βKXK + e

Doing so requires calculating K different VIFs, one for each Xi. Calculating 
the VIF for a given Xi involves two steps:

1. Run an OLS regression that has Xi as a function of all the other explanatory 
variables in the equation. For i = 1, this equation would be:

 X1 = α1 + α2X2 + α3X3 + g + αKXK + v (8.15)

 where v is a classical stochastic error term. Note that X1 is not included 
on the right-hand side of Equation 8.15, which is referred to as an 
auxiliary or secondary regression. Thus there are K auxiliary regres-
sions, one for each independent variable in the original equation.

2. Calculate the variance inflation factor for βN i:

 VIF1βN i2 =
1

11 - R2
i 2  (8.16)

 where R2
i  is the coefficient of determination (the unadjusted R2) of the 

auxiliary regression in step one. Since there is a separate auxiliary re-
gression for each independent variable in the original equation, there 
also is an R2

i  and a VIF1βN i2 for each Xi. The higher the VIF, the more 
severe the effects of multicollinearity.

How high is high? An R2
i  of 1, indicating perfect multicollinearity, pro-

duces a VIF of infinity, whereas an R2
i  of 0, indicating no multicollinearity at 

all, produces a VIF of 1. While there is no table of formal critical VIF values, a 
common rule of thumb is that if VIF1βi2 7 5, the multicollinearity is severe. 
As the number of independent variables increases, it makes sense to increase 
this number slightly.

For example, let’s return to Equation 8.10 and calculate the VIFs for both 
independent variables. Both VIFs equal 36, confirming the quite severe 
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multicollinearity we already know exists. It’s no coincidence that the VIFs 
for the two variables are equal. In an equation with exactly two independent 
variables, the two auxiliary equations will have identical R2

i s, leading to equal 
VIFs.6

Some authors and statistical software programs replace the VIF with its 
reciprocal, 11 - R2

i 2, called tolerance, or TOL. Whether we calculate VIF or 
TOL is a matter of personal preference, but either way, the general approach 
is the most comprehensive multicollinearity detection technique we’ve dis-
cussed in this text.

Unfortunately, there are a couple of problems with using VIFs. First, as 
mentioned, there is no hard-and-fast VIF decision rule. Second, it’s pos-
sible to have multicollinear effects in an equation that has no large VIFs. For 
instance, if the simple correlation coefficient between X1 and X2 is 0.88, mul-
ticollinear effects are quite likely, and yet the VIF for the equation (assuming 
no other Xs) is only 4.4.

In essence, then, the VIF is a sufficient but not necessary test for multicol-
linearity, just like the other test described in this section. Indeed, as is prob-
ably obvious to the reader by now, there is no test that allows a researcher to 
reject the possibility of multicollinearity with any real certainty.

8.4  Remedies for Multicollinearity

What can be done to minimize the consequences of severe multicollinearity? 
There is no automatic answer to this question because multicollinearity is a 
phenomenon that could change from sample to sample even for the same 
specification of a regression equation. The purpose of this section is to out-
line a number of alternative remedies for multicollinearity that might be 
appropriate under certain circumstances.

Do Nothing

The first step to take once severe multicollinearity has been diagnosed is to 
decide whether anything should be done at all. As we’ll see, it turns out that 
every remedy for multicollinearity has a drawback of some sort, and so it 
often happens that doing nothing is the correct course of action.

One reason for doing nothing is that multicollinearity in an equation will 
not always reduce the t-scores enough to make them insignificant or change 

6. Another use for the R2s of these auxiliary equations is to compare them with the overall 
equation’s R2. If an auxiliary equation’s R2 is higher, it’s yet another sign of multicollinearity.
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the βN s enough to make them differ from expectations. In other words, the 
mere existence of multicollinearity does not necessarily mean anything. A 
remedy for multicollinearity should be considered only if the consequences 
cause insignificant t-scores or unreliable estimated coefficients. For example, 
it’s possible to observe a simple correlation coefficient of .97 between two 
explanatory variables and yet have each individual t-score be significant. It 
makes no sense to consider remedial action in such a case, as long as both 
variables belong in the equation on theoretical grounds, because any remedy 
for multicollinearity would probably cause other problems for the equation. 
In a sense, multicollinearity is similar to a non-life-threatening human dis-
ease that requires general anesthesia to operate on the patient: The risk of the 
operation should be undertaken only if the disease is causing a significant 
problem.

A second reason for doing nothing is that the deletion of a multicollinear 
variable that belongs in an equation will cause specification bias. If we drop 
a theoretically important variable, then we are purposely creating bias. Given 
all the effort typically spent avoiding omitted variables, it seems foolhardy 
to consider running that risk on purpose. As a result, experienced econo-
metricians often will leave multicollinear variables in equations despite low 
t-scores.

The final reason for considering doing nothing to offset multicollinearity 
is that every time a regression is rerun, we risk encountering a specification 
that fits because it accidentally works for the particular data set involved, not 
because it is the truth. The larger the number of experiments, the greater the 
chances of finding the accidental result. To make things worse, when there 
is significant multicollinearity in the sample, the odds of strange results 
increase rapidly because of the sensitivity of the coefficient estimates to slight 
specification changes.

To sum, it is often best to leave an equation unadjusted in the face of all 
but extreme multicollinearity. Such advice might be difficult for beginning 
researchers to take, however, if they think that it’s embarrassing to report that 
their final regression is one with insignificant t-scores. Compared to the alter-
natives of possible omitted variable bias or accidentally significant regression 
results, the low t-scores seem like a minor problem. For an example of “doing 
nothing” in the face of severe multicollinearity, see Section 8.5.

Drop a Redundant Variable

On occasion, the simple solution of dropping one of the multicollinear vari-
ables is a good one. For example, some inexperienced researchers include too 
many variables in their regressions, not wanting to face omitted variable bias. 
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As a result, they often have two or more variables in their equations that are 
measuring essentially the same thing. In such a case the multicollinear vari-
ables are not irrelevant, since any one of them is quite probably theoretically 
and statistically sound. Instead, the variables might be called redundant; 
only one of them is needed to represent the effect on the dependent variable 
that all of them currently represent. For example, in an aggregate demand 
function, it would not make sense to include disposable income and GDP 
because both are measuring the same thing: income. A bit more subtle is 
the inference that population and disposable income should not both be 
included in the same aggregate demand function because, once again, they 
really are measuring the same thing: the size of the aggregate market. As pop-
ulation rises, so too will income. Dropping these kinds of redundant multi-
collinear variables is doing nothing more than making up for a specification 
error; the variables should never have been included in the first place.

To see how this solution would work, let’s return to the student consump-
tion function example of Equation 8.10:

  COi = -367.83 + 0.5113Ydi +  0.0427LAi  (8.10)
  11.03072  10.09422
  t = 0.496  0.453  R 

2 = .835

where CO = consumption, Yd = disposable income, and LA = liquid 
assets. When we first discussed this example, we compared this result to the 
same equation without the liquid assets variable:

  COi = -471.43 + 0.9714Ydi  (8.11)
  10.1572
  t = 6.187  R 

2 = .861 

If we had instead dropped the disposable income variable, we would have 
obtained:

  COi = -199.44 + 0.08876LAi  (8.17)
  10.014432
  t = 6.153  R 

2 = .860 

Note that dropping one of the multicollinear variables has eliminated both 
the multicollinearity between the two explanatory variables and the low t-score 
of the coefficient of the remaining variable. By dropping Yd, we were able to 
increase tLA from 0.453 to 6.153. Since dropping a variable changes the mean-
ing of the remaining coefficient (because the dropped variable is no longer 
being held constant), such dramatic changes are not unusual. The coefficient 
of the remaining included variable also now measures almost all of the joint 
impact on the dependent variable of the multicollinear explanatory variables.

8

8
8
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Assuming you want to drop a variable, how do you decide which variable 
to drop? In cases of severe multicollinearity, it makes no statistical differ-
ence which variable is dropped. As a result, it doesn’t make sense to pick the 
variable to be dropped on the basis of which one gives superior fit or which 
one is more significant (or has the expected sign) in the original equation. 
Instead, the theoretical underpinnings of the model should be the basis for 
such a decision. In the example of the student consumption function, there 
is more theoretical support for the hypothesis that disposable income deter-
mines consumption than there is for the liquid assets hypothesis. Therefore, 
Equation 8.11 should be preferred to Equation 8.17.

Increase the Size of the Sample

Another way to deal with multicollinearity is to attempt to increase the size 
of the sample to reduce the degree of multicollinearity. Although such an 
increase may be impossible, it’s a useful alternative to be considered when 
feasible.

The idea behind increasing the size of the sample is that a larger data set 
(often requiring new data collection) will allow more accurate estimates than 
a small one, since the larger sample normally will reduce the variance of the 
estimated coefficients, diminishing the impact of the multicollinearity.

For most time series data sets, however, this solution isn’t feasible. After 
all, samples typically are drawn by getting all the available data that seem 
similar. As a result, new data are generally impossible or quite expensive to 
find. Going out and generating new data is much easier with a cross-sectional 
or experimental data set than it is when the observations must be generated 
by the passage of time.

8.5   An Example of Why Multicollinearity Often Is Best 
Left Unadjusted

Let’s look at an example of the idea that multicollinearity often should be left 
unadjusted. Suppose you work in the marketing department of a hypotheti-
cal soft drink company and you build a model of the impact on sales of your 
firm’s advertising:

  SN t = 3080 - 75,000Pt +  4.23At -  1.04Bt (8.18)
  125,0002  11.062  10.512
  t = -  3.00  3.99  -  2.04
 R 

2 = .825  N = 28 
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where: St  =  sales of the soft drink in year t
 Pt  =  average relative price of the drink in year t
 At =  advertising expenditures for the company in year t
 Bt =  advertising expenditures for the company’s main 

competitor in year t

Assume that there are no omitted variables. All variables are measured in real 
dollars; that is, the nominal values are divided, or deflated, by a price index.

On the face of it, this is a reasonable-looking result. Estimated coefficients 
are significant in the directions implied by the underlying theory, and both the 
overall fit and the size of the coefficients seem acceptable. Suppose you now 
were told that advertising in the soft drink industry is cut-throat in nature and 
that firms tend to match their main competitor’s advertising expenditures. This 
would lead you to suspect that significant multicollinearity was possible. Fur-
ther suppose that the simple correlation coefficient between the two advertis-
ing variables is .974 and that their respective VIFs are well over 5.

Such a correlation coefficient is evidence that there is severe multicol-
linearity in the equation, but there is no reason even to consider doing 
anything about it, because the coefficients are so powerful that their t-scores 
remain significant, even in the face of severe multicollinearity. Unless multi-
collinearity causes problems in the equation, it should be left unadjusted. To 
change the specification might give us better-looking results, but the adjust-
ment would decrease our chances of obtaining the best possible estimates of 
the true coefficients. Although it’s certainly lucky that there were no major 
problems due to multicollinearity in this example, that luck is no reason to 
try to fix something that isn’t broken.

When a variable is dropped from an equation, its effect will be absorbed 
by the other explanatory variables to the extent that they are correlated with 
the newly omitted variable. It’s likely that the remaining multicollinear 
variable(s) will absorb virtually all the bias, since the variables are highly cor-
related. This bias may destroy whatever usefulness the estimates had before 
the variable was dropped.

For example, if a variable, say B, is dropped from the equation to fix the 
multicollinearity, then the following might occur:

  SN t = 2586 - 78,000Pt +  0.52At (8.19)
  124,0002  14.322
  t = -  3.25  0.12
 R2 = .531  N = 28

What’s going on here? The company’s advertising coefficient becomes less 
significant instead of more significant when one of the multicollinear 
variables is dropped. To see why, first note that the expected bias on βN A is 
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negative because the product of the expected sign of the coefficient of B and 
of the correlation between A and B is negative:

 Bias = βB
# αN 1 = 1- 21+ 2 = -  (8.20)

Second, this negative bias is strong enough to decrease the estimated coef-
ficient of A until it is insignificant. Although this problem could have been 
avoided by using a relative advertising variable (A divided by B, for instance), 
that formulation would have forced identical absolute coefficients on A and 
1/B. Such identical coefficients will sometimes be theoretically expected or 
empirically reasonable but, in most cases, these kinds of constraints will force 
bias onto an equation that previously had none.

This example is simplistic, but its results are typical in cases in which equa-
tions are adjusted for multicollinearity by dropping a variable without regard 
to the effect that the deletion is going to have. The point here is that it’s quite 
often theoretically or operationally unwise to drop a variable from an equa-
tion and that multicollinearity in such cases is best left unadjusted.

8.6  Summary

 1. Perfect multicollinearity is the violation of the assumption that no 
explanatory variable is a perfect linear function of other explana-
tory variable(s). Perfect multicollinearity results in indeterminate 
estimates of the regression coefficients and infinite standard errors of 
those estimates, making OLS estimation impossible.

 2. Imperfect multicollinearity, which is what is typically meant when the 
word “multicollinearity” is used, is a linear relationship between two 
or more independent variables that is strong enough to significantly 
affect the estimation of the equation. Multicollinearity is a sample 
phenomenon as well as a theoretical one. Different samples can ex-
hibit different degrees of multicollinearity.

 3. The major consequence of severe multicollinearity is to increase 
the variances of the estimated regression coefficients and therefore 
decrease the calculated t-scores of those coefficients and expand the 
confidence intervals. Multicollinearity causes no bias in the estimated 
coefficients, and it has little effect on the overall significance of the 
regression or on the estimates of the coefficients of any nonmulticol-
linear explanatory variables.

 4. Since multicollinearity exists, to one degree or another, in virtually 
every data set, the question to be asked in detection is how severe the 
multicollinearity in a particular sample is.
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 5. Two useful methods for the detection of severe multicollinearity are:
a. Are the simple correlation coefficients between the explanatory 

variables high?
b. Are the variance inflation factors high?

  If either of these answers is yes, then multicollinearity certainly exists, 
but multicollinearity can also exist even if the answers are no.

 6. The three most common remedies for multicollinearity are:
a. Do nothing (and thus avoid specification bias).
b. Drop a redundant variable.
c. Increase the size of the sample.

 7. Quite often, doing nothing is the best remedy for multicollinearity. If 
the multicollinearity has not decreased t-scores to the point of insig-
nificance, then no remedy should even be considered as long as the 
variables are theoretically strong. Even if the t-scores are insignificant, 
remedies should be undertaken cautiously, because all impose costs 
on the estimation that may be greater than the potential benefit of 
ridding the equation of multicollinearity.

ExErcisEs

(The answers to the even-numbered exercises are in Appendix A.)

 1. Write the meaning of each of the following terms without referring to 
the book (or your notes), and compare your definition with the ver-
sion in the text for each.
a. dominant variable (p. 224)
b. imperfect multicollinearity (p. 224)
c. perfect multicollinearity (p. 222)
d. redundant variable (p. 237)
e. simple correlation coefficient (p. 232)
f. variance inflation factor (p. 234)

 2. A recent study of the salaries of elementary school teachers in a small 
school district in Northern California came up with the following 
estimated equation (Note: t-scores in parentheses!):

lnSALi = 10.5 -  0.006EMPi +  0.002UNITSi +  0.079LANGi +  0.020EXPi

 1-0.982  12.392  12.082  14.972
  R 

2 = .866   N = 25 (8.21)

h
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 where: SALi  =  the salary of the ith teacher (in dollars)
  EMPi  =  the years that the ith teacher has worked in 

this school district
  UNITSi =  the units of graduate work completed by the ith 

teacher
  LANGi  =  a dummy variable equal to 1 if the ith teacher 

speaks two languages
  EXPi  =  the total years of teaching experience of the ith 

teacher

a. Make up and test appropriate hypotheses for the coefficients of this 
equation at the 5-percent level.

b. What is the functional form of this equation? Does it seem appro-
priate? Explain.

c. What econometric problems (out of irrelevant variables, omitted 
variables, and multicollinearity) does this equation appear to have? 
Explain.

d. Suppose that you now are told that the simple correlation coef-
ficient between EMP and EXP is .89 and that the VIFs for EMP and 
EXP are both just barely over 5. Does this change your answer to 
part c above? How?

e. What remedy for the problem you identify in part d do you recom-
mend? Explain.

f. If you drop EMP from the equation, the estimated equation be-
comes Equation 8.22. Use our four specification criteria to decide 
whether you prefer Equation 8.21 or Equation 8.22. Which do you 
like better? Why?

 lnSALi = 10.5 +  0.002UNITSi +  0.081LANGi +  0.015EXPi (8.22)
   12.472   12.092   18.652
  R 

2 = .871  N = 25 

 3. A researcher once attempted to estimate an asset demand equa-
tion that included the following three explanatory variables: current 
wealth Wt, wealth in the previous quarter Wt-1, and the change in 
wealth ∆Wt = Wt - Wt-1. What problem did this researcher encoun-
ter? What should have been done to solve this problem?

 4. In each of the following situations, determine whether the variable 
involved is a dominant variable:
a. games lost in year t in an equation for the number of games won in 

year t by a baseball team that plays the same number of games each 
year

h
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b. number of Woody’s restaurants in a model of the total sales of the 
entire Woody’s chain of restaurants

c. disposable income in an equation for aggregate consumption 
expenditures

d. number of tires purchased in an annual model of the number of auto-
mobiles produced by an automaker that does not make its own tires

e. number of acres planted in an agricultural supply function

 5. In 1998, Mark McGwire hit 70 homers to break Roger Maris’s old 
record of 61, and yet McGwire wasn’t voted the Most Valuable Player 
(MVP) in his league. To try to understand how this happened, you 
collect the following data on MVP votes, batting average (BA), home 
runs (HR), and runs batted in (RBI) from the 1998 National League:

Name Votes BA HR RBI

Sosa 438 .308 66 158

McGwire 272 .299 70 147
Alou 215 .312 38 124
Vaughn 185 .272 50 119
Biggio 163 .325 20 88
Galarraga 147 .305 44 121
Bonds 66 .303 37 122
Jones 56 .313 34 107
Datafile = MVP8

  Just as you are about to run the regression, your friend warns you that 
you probably have multicollinearity.

a. What should you do about your friend’s warning before running 
the regression?

b. Run the regression implied in this example (votes as a function of 
BA, HR, and RBI), with positive expected signs for all three slope 
coefficients. What signs of multicollinearity are there?

c. What suggestions would you make for another run of this equation? 
In particular, what would you do about multicollinearity?

 6. Consider the following regression result paraphrased from a study 
conducted by the admissions office at the Stanford Business School 
(standard errors in parentheses):

  GN i = 1.00 + 0.005Mi +  0.20Bi -  0.10Ai +  0.25Si

  10.0012  10.202  10.102  10.102
 R 

2 = .20  N = 1000
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 where: Gi  =  the Stanford Business School GPA of the ith 
student (4 = high)

  Mi =  the score on the graduate management admission 
test of the ith student (800 = high)

  Bi  =  the number of years of business experience of the 
ith student

  Ai  = the age of the ith student
  Si  =  dummy equal to 1 if the ith student was an eco-

nomics major, 0 otherwise

a. Theorize the expected signs of all the coefficients (try not to look at 
the results) and test these expectations with appropriate hypotheses 
(including choosing a significance level).

b. Do any problems appear to exist in this equation? Explain your 
answer.

c. How would you react if someone suggested a polynomial func-
tional form for A? Why?

d. What suggestions (if any) would you have for another run of this 
equation?

 7. Calculating VIFs typically involves running sets of auxiliary regres-
sions, one regression for each independent variable in an equation. 
To get practice with this procedure, calculate the following:

a. the VIFs for N, P, and I from the Woody’s data in Table 3.1
b. the VIFs for BETA, EARN, and DIV from the stock price example 

data in Table 7.2
c. the VIF for X1 in an equation where X1 and X2 are the only inde-

pendent variables, given that the VIF for X2 is 3.8 and N = 28
d. the VIF for X1 in an equation where X1 and X2 are the only inde-

pendent variables, given that the simple correlation coefficient be-
tween X1 and X2 is 0.80 and N = 15

8.7   Appendix: The SAT Interactive Regression  
Learning Exercise

Econometrics is difficult to learn by reading examples, no matter how good 
they are. Most econometricians, the author included, had trouble under-
standing how to use econometrics, particularly in the area of specification 
choice, until they ran their own regression projects. This is because there’s an 
element of econometric understanding that is better learned by doing than by 
reading about what someone else is doing.
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Unfortunately, mastering the art of econometrics by running your own 
regression projects without any feedback is also difficult because it takes 
quite a while to learn to avoid some fairly simple mistakes. Probably the 
best way to learn is to work on your own regression project, analyzing your 
own problems and making your own decisions, but with a more experienced 
econometrician nearby to give you one-on-one feedback on exactly which of 
your decisions were inspired and which were flawed (and why).

This section is an attempt to give you an opportunity to make indepen-
dent specification decisions and to then get feedback on the advantages or 
disadvantages of those decisions. Using the interactive learning exercise of 
this section requires neither a computer nor a tutor, although either would 
certainly be useful. Instead, we have designed an exercise that can be used on 
its own to help to bridge the gap between the typical econometrics examples 
(which require no decision making) and the typical econometrics projects 
(which give little feedback). An additional interactive learning exercise is pre-
sented in Chapter 11.

STOP!

To get the most out of the exercise, it’s important to follow the instructions 
carefully. Reading the pages in order as with any other example will waste 
your time, because once you have seen even a few of the results, the benefits 
to you of making specification decisions will diminish. In addition, you 
shouldn’t look at any of the regression results until you have specified your 
first equation.

Building a Model of Scholastic Aptitude Test Scores

The dependent variable for this interactive learning exercise is the combined 
“two-test” SAT score, math plus verbal, earned by students in the senior class 
at Arcadia High School. Arcadia is an upper-middle-class suburban commu-
nity located near Los Angeles, California. Out of a graduating class of about 
640, a total of 65 students who had taken the SATs were randomly selected 
for inclusion in the data set. In cases in which a student had taken the test 
more than once, the highest score was recorded.

A review of the literature on the SAT shows many more psychological stud-
ies and popular press articles than econometric regressions. Many articles have 
been authored by critics of the SAT, who maintain (among other things) that 
it is biased against women and minorities. In support of this argument, these 
critics have pointed to national average scores for women and some minorities, 
which in recent years have been significantly lower than the national averages 

M08_STUD2742_07_SE_C08.indd   245 1/9/16   1:54 PM
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for white males. Any reader interested in reviewing a portion of the applicable 
literature should do so now before continuing on with the section.7

If you were going to build a single-equation linear model of SAT scores, 
what factors would you consider? First, you’d want to include some measures 
of a student’s academic ability. Three such variables are cumulative high 
school grade point average (GPA) and participation in advanced placement 
math and English courses (APMATH and APENG). Advanced placement (AP) 
classes are academically rigorous courses that may help a student do well 
on the SAT. More important, students are invited to be in AP classes on the 
basis of academic potential, and students who choose to take AP classes are 
revealing their interest in academic subjects, both of which bode well for SAT 
scores. GPAs at Arcadia High School are weighted GPAs; each semester that a 
student takes an AP class adds one extra point to his or her total grade points. 
(For example, a semester grade of “A” in an AP math class counts for five 
grade points as opposed to the conventional four points.)

A second set of important considerations includes qualitative factors that 
may affect performance on the SAT. Available dummy variables in this cat-
egory include measures of a student’s gender (GEND), ethnicity (RACE), and 
native language (ESL). All of the students in the sample are either Asian or 
Caucasian, and RACE is assigned a value of 1 if a student is Asian. Asian stu-
dents are a substantial proportion of the student body at Arcadia High. The 
ESL dummy is given a value of 1 if English is a student’s second language. In 
addition, studying for the test may be relevant, so a dummy variable indicat-
ing whether or not a student has attended an SAT preparation class (PREP) is 
also included in the data.

To sum, the explanatory variables available for you to choose for your 
model are:

GPAi  =  the weighted GPA of the ith student
APMATHi =  a dummy variable equal to 1 if the ith student has taken 

AP math, 0 otherwise
APENGi  =  a dummy variable equal to 1 if the ith student has taken 

AP English, 0 otherwise
APi  =  a dummy variable equal to 1 if the ith student has taken 

AP math and/or AP English, 0 if the ith student has taken 
neither

7. See, for example, James Fallows, “The Tests and the ‘Brightest’: How Fair Are the College 
Boards?” The Atlantic, Vol. 245, No. 2, pp. 37–48. We are grateful to former Occidental student 
Bob Sego for his help in preparing this interactive exercise.
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ESLi  =  a dummy variable equal to 1 if English is not the ith stu-
dent’s first language, 0 otherwise

RACEi  =  a dummy variable equal to 1 if the ith student is Asian, 0 
if the student is Caucasian

GENDi  =  a dummy variable equal to 1 if the ith student is male, 0 
if the student is female

PREPi  =  a dummy variable equal to 1 if the ith student has 
attended an SAT preparation course, 0 otherwise

The data for these variables are presented in Table 8.1.

Now:

1. Hypothesize expected signs for the coefficients of each of these vari-
ables in an equation for the SAT score of the ith student. Examine each 
variable carefully; what is the theoretical content of your hypothesis?

2. Choose carefully the best set of explanatory variables. Start off by 
including GPA, APMATH, and APENG; what other variables do you 
think should be specified? Don’t simply include all the variables, 
intending to drop the insignificant ones. Instead, think through the 
problem carefully and find the best possible equation.

Once you’ve specified your equation, you’re ready to move on. Keep fol-
lowing the instructions in the exercise until you have specified your equation 
completely. You may take some time to think over the questions or take a 
break, but when you return to the interactive exercise, make sure to go back 
to the exact point from which you left rather than starting all over again. To 
the extent you can do it, try to avoid looking at the hints until after you’ve 
completed the entire project. The hints are there to help you if you get stuck, 
not to allow you to check every decision you make.

One final bit of advice: Each regression result is accompanied by a series of 
questions. Take the time to answer all these questions, in writing if possible. 
Rushing through this interactive exercise will lessen its effectiveness.

The SAT Score Interactive Regression Exercise

To start, choose the specification you’d like to estimate, find the regression 
run number8 of that specification in the list on pages 250 and 251, and then 
turn to that regression. Note that the simple correlation coefficient matrix for 
this data set is in Table 8.2 just before the results begin.

8. All the regression results appear exactly as they are produced by the Stata regression package.
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Table 8.1 Data for the sat interactive learning exercise

SAT GPA APMATh APENG AP ESL GEND PREP RACE

1060 3.74 0 1 1 0 0 0 0

740 2.71 0 0 0 0 0 1 0

1070 3.92 0 1 1 0 0 1 0

1070 3.43 0 1 1 0 0 1 0

1330 4.35 1 1 1 0 0 1 0

1220 3.02 0 1 1 0 1 1 0

1130 3.98 1 1 1 1 0 1 0

770 2.94 0 0 0 0 0 1 0

1050 3.49 0 1 1 0 0 1 0

1250 3.87 1 1 1 0 1 1 0

1000 3.49 0 0 0 0 0 1 0

1010 3.24 0 1 1 0 0 1 0

1320 4.22 1 1 1 1 1 0 1

1230 3.61 1 1 1 1 1 1 1

840 2.48 1 0 1 1 1 0 1

940 2.26 1 0 1 1 0 0 1

910 2.32 0 0 0 1 1 1 1

1240 3.89 1 1 1 0 1 1 0

1020 3.67 0 0 0 0 1 0 0

630 2.54 0 0 0 0 0 1 0

850 3.16 0 0 0 0 0 1 0

1300 4.16 1 1 1 1 1 1 0

950 2.94 0 0 0 0 1 1 0

1350 3.79 1 1 1 0 1 1 0

1070 2.56 0 0 0 0 1 0 0

1000 3.00 0 0 0 0 1 1 0

770 2.79 0 0 0 0 0 1 0

1280 3.70 1 0 1 1 0 1 1

590 3.23 0 0 0 1 0 1 1

1060 3.98 1 1 1 1 1 0 1

1050 2.64 1 0 1 0 0 0 0

1220 4.15 1 1 1 1 1 1 1

(continued )
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SAT GPA APMATh APENG AP ESL GEND PREP RACE

930 2.73 0 0 0 0 1 1 0

940 3.10 1 1 1 1 0 0 1

980 2.70 0 0 0 1 1 1 1

1280 3.73 1 1 1 0 1 1 0

700 1.64 0 0 0 1 0 1 1

1040 4.03 1 1 1 1 0 1 1

1070 3.24 0 1 1 0 1 1 0

900 3.42 0 0 0 0 1 1 0

1430 4.29 1 1 1 0 1 0 0

1290 3.33 0 0 0 0 1 0 0

1070 3.61 1 0 1 1 0 1 1

1100 3.58 1 1 1 0 0 1 0

1030 3.52 0 1 1 0 0 1 0

1070 2.94 0 0 0 0 1 1 0

1170 3.98 1 1 1 1 1 1 0

1300 3.89 1 1 1 0 1 0 0

1410 4.34 1 1 1 1 0 1 1

1160 3.43 1 1 1 0 1 1 0

1170 3.56 1 1 1 0 0 0 0

1280 4.11 1 1 1 0 0 1 0

1060 3.58 1 1 1 1 0 1 0

1250 3.47 1 1 1 0 1 1 0

1020 2.92 1 0 1 1 1 1 1

1000 4.05 0 1 1 1 0 0 1

1090 3.24 1 1 1 1 1 1 1

1430 4.38 1 1 1 1 0 0 1

860 2.62 1 0 1 1 0 0 1

1050 2.37 0 0 0 0 1 0 0

920 2.77 0 0 0 0 0 1 0

1100 2.54 0 0 0 0 1 1 0

1160 3.55 1 0 1 1 1 1 1

1360 2.98 0 1 1 1 0 1 0

970 3.64 1 1 1 0 0 1 0

Datafile = sat8

Table 8.1 (continued)
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Table 8.2  Means, standard Deviations, and simple correlation coefficients 
for the sat interactive regression learning exercise

All the equations include SAT as the dependent variable and GPA, 
APMATH, and APENG as explanatory variables. Find the combination of 
explanatory variables (from ESL, GEND, PREP, and RACE) that you wish to 
include and go to the indicated regression:

None of them, go to regression run 8.1

ESL only, go to regression run 8.2

GEND only, go to regression run 8.3

PREP only, go to regression run 8.4

RACE only, go to regression run 8.5

ESL and GEND, go to regression run 8.6
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ESL and PREP, go to regression run 8.7

ESL and RACE, go to regression run 8.8

GEND and PREP, go to regression run 8.9

GEND and RACE, go to regression run 8.10

PREP and RACE, go to regression run 8.11

ESL, GEND, and PREP, go to regression run 8.12

ESL, GEND, and RACE, go to regression run 8.13

ESL, PREP, and RACE, go to regression run 8.14

GEND, PREP, and RACE, go to regression run 8.15

All four, go to regression run 8.16
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If 
you need feedback on your answer, see hint 2 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii. I would like to add ESL to the equation (go to run 8.2).
  iii. I would like to add GEND to the equation (go to run 8.3).
  iv. I would like to add PREP to the equation (go to run 8.4).
  v. I would like to add RACE to the equation (go to run 8.5).

If you need feedback on your answer, see hint 6 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If 
you need feedback on your answer, see hint 3 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii. I would like to drop ESL from the equation (go to run 8.1).
  iii. I would like to add GEND to the equation (go to run 8.6).
  iv. I would like to add RACE to the equation (go to run 8.8).
  v. I would like to add PREP to the equation (go to run 8.7).

If you need feedback on your answer, see hint 6 in the material on this chap-
ter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If you 
need feedback on your answer, see hint 5 in the material on this chap-
ter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to add ESL to the equation (go to run 8.6).
  iii.  I would like to add PREP to the equation (go to run 8.9).
  iv.  I would like to add RACE to the equation (go to run 8.10).

If you need feedback on your answer, see hint 19 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If you 
need feedback on your answer, see hint 8 in the material on this chap-
ter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop PREP from the equation (go to run 8.1).
  iii.  I would like to add ESL to the equation (go to run 8.7).
  iv.  I would like to add GEND to the equation (go to run 8.9).
  v.  I would like to replace APMATH and APENG with AP, a linear 

combination of the two variables (go to run 8.17).

If you need feedback on your answer, see hint 12 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If 
you need feedback on your answer, see hint 3 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop RACE from the equation (go to run 8.1).
  iii.  I would like to add ESL to the equation (go to run 8.8).
  iv.  I would like to add GEND to the equation (go to run 8.10).
  v.  I would like to add PREP to the equation (go to run 8.11).

If you need feedback on your answer, see hint 14 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If 
you need feedback on your answer, see hint 7 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop ESL from the equation (go to run 8.3).
  iii.  I would like to add PREP to the equation (go to run 8.12).
  iv.  I would like to add RACE to the equation (go to run 8.13).

If you need feedback on your answer, see hint 4 in the material on this chap-
ter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If 
you need feedback on your answer, see hint 8 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop ESL from the equation (go to run 8.4).
  iii.  I would like to drop PREP from the equation (go to run 8.2).
  iv.  I would like to add GEND to the equation (go to run 8.12).
  v.  I would like to add RACE to the equation (go to run 8.14).

If you need feedback on your answer, see hint 18 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If 
you need feedback on your answer, see hint 9 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop ESL from the equation (go to run 8.5).
  iii.  I would like to drop RACE from the equation (go to run 8.2).
  iv.  I would like to add GEND to the equation (go to run 8.13).
  v.  I would like to add PREP to the equation (go to run 8.14).

If you need feedback on your answer, see hint 15 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If 
you need feedback on your answer, see hint 8 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop PREP from the equation (go to run 8.3).
  iii.  I would like to add ESL to the equation (go to run 8.12).
  iv.  I would like to add RACE to the equation (go to run 8.15).

If you need feedback on your answer, see hint 17 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If you 
need feedback on your answer, see hint 10 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop RACE from the equation (go to run 8.3).
  iii.  I would like to add ESL to the equation (go to run 8.13).
  iv.  I would like to add PREP to the equation (go to run 8.15).

If you need feedback on your answer, see hint 4 in the material on this chap-
ter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If 
you need feedback on your answer, see hint 8 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop PREP from the equation (go to run 8.5).
  iii.  I would like to drop RACE from the equation (go to run 8.4).
  iv.  I would like to add GEND to the equation (go to run 8.15).
  v.  I would like to replace APMATH and APENG with AP, a linear 

combination of the two variables (go to run 8.18).

If you need feedback on your answer, see hint 18 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If 
you need feedback on your answer, see hint 8 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop ESL from the equation (go to run 8.9).
  iii.  I would like to drop PREP from the equation (go to run 8.6).
  iv.  I would like to add RACE to the equation (go to run 8.16).

If you need feedback on your answer, see hint 17 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If 
you need feedback on your answer, see hint 9 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop ESL from the equation (go to run 8.10).
  iii.  I would like to drop RACE from the equation (go to run 8.6).
  iv.  I would like to add PREP to the equation (go to run 8.16).

If you need feedback on your answer, see hint 15 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If 
you need feedback on your answer, see hint 9 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop ESL from the equation (go to run 8.11).
  iii.  I would like to drop PREP from the equation (go to run 8.8).
  iv.  I would like to add GEND to the equation (go to run 8.16).
  v.  I would like to replace APMATH and APENG with AP, a linear 

combination of the two variables (go to run 8.19).

If you need feedback on your answer, see hint 15 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If 
you need feedback on your answer, see hint 8 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop PREP from the equation (go to run 8.10).
  iii.  I would like to drop RACE from the equation (go to run 8.9).
  iv.  I would like to add ESL to the equation (go to run 8.16).

If you need feedback on your answer, see hint 17 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If 
you need feedback on your answer, see hint 9 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop ESL from the equation (go to run 8.15).
  iii.  I would like to drop PREP from the equation (go to run 8.13).
  iv.  I would like to drop RACE from the equation (go to run 8.12).

If you need feedback on your answer, see hint 15 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If you 
need feedback on your answer, see hint 11 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop PREP from the equation (go to run 8.20).
  iii.  I would like to add RACE to the equation (go to run 8.18).
  iv.  I would like to replace the AP combination variable with APMATH 

and APENG (go to run 8.4).

If you need feedback on your answer, see hint 16 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If you 
need feedback on your answer, see hint 11 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop RACE from the equation (go to run 8.17).
  iii.  I would like to add ESL to the equation (go to run 8.19).
  iv.  I would like to replace the AP combination variable with APMATH 

and APENG (go to run 8.11).

If you need feedback on your answer, see hint 16 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If you 
need feedback on your answer, see hint 11 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to drop ESL from the equation (go to run 8.18).
  iii.  I would like to replace the AP combination variable with APMATH 

and APENG (go to run 8.14).

If you need feedback on your answer, see hint 16 in the material on this 
chapter in Appendix A.
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Answer each of the following questions for this regression run.

a. Evaluate this result with respect to its economic meaning, overall fit, 
and the signs and significance of the individual coefficients.

b. What econometric problems (out of omitted variables, irrelevant 
variables, or multicollinearity) does this regression have? Why? If you 
need feedback on your answer, see hint 13 in the material on this 
chapter in Appendix A.

c. Which of the following statements comes closest to your recommenda-
tion for further action to be taken in the estimation of this equation?

  i.  No further specification changes are advisable (go to page 272).
  ii.  I would like to add PREP to the equation (go to run 8.17).
  iii.  I would like to replace the AP combination variable with APMATH 

and APENG (go to run 8.1).

If you need feedback on your answer, see hint 13 in the material on this 
chapter in Appendix A.
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Evaluating the Results from Your Interactive Exercise

Congratulations! If you’ve reached this section, you must have found a speci-
fication that met your theoretical and econometric goals. Which one did you 
pick? Our experience is that most beginning econometricians end up with 
either regression run 8.3, 8.6, or 8.10, but only after looking at three or more 
regression results (or a hint or two) before settling on that choice.

In contrast, we’ve found that most experienced econometricians gravitate 
to regression run 8.6, usually after inspecting, at most, one other specifica-
tion. What lessons can we learn from this difference?

1. Learn that a variable isn’t irrelevant simply because its t-score is low. In our 
opinion, ESL belongs in the equation for strong theoretical reasons, 
and a slightly insignificant t-score in the expected direction isn’t 
enough evidence to get us to rethink the underlying theory.

2. Learn to spot redundant (multicollinear) variables. ESL and RACE 
wouldn’t normally be redundant, but in this high school, with its par-
ticular ethnic diversity, they are. Once one is included in the equation, 
the other shouldn’t even be considered.

3. Learn to spot false variables. At first glance, PREP is a tempting vari-
able to include because prep courses almost surely improve the SAT 
scores of the students who choose to take them. The problem is that 
a student’s decision to take a prep course isn’t independent of his or 
her previous SAT scores (or expected scores). We trust the judgment of 
students who feel a need for a prep course, and we think that all the 
course will do is bring them up to the level of their peers who didn’t 
feel they needed a course. As a result, we wouldn’t expect a significant 
effect in either direction.

If you enjoyed and learned from this interactive regression learning exercise, 
you’ll be interested to know that there is another in Chapter 11. Good luck!
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9.1 Time Series

9.2 Pure versus Impure Serial Correlation

9.3 The Consequences of Serial Correlation

9.4 The Detection of Serial Correlation

9.5 Remedies for Serial Correlation

9.6 Summary and Exercises

9.7 Appendix: Econometric Lab #5

Serial Correlation

In the next two chapters we’ll investigate the final component of the specifi-
cation of a regression equation—choosing the correct form of the stochastic 
error term. Our first topic, serial correlation, is the violation of Classical 
Assumption IV that different observations of the error term are uncorrelated 
with each other. Serial correlation, also called autocorrelation, can exist in 
any research study in which the order of the observations has some meaning 
and occurs most frequently in time-series data sets. In essence, serial correla-
tion implies that the value of the error term from one time period depends 
in some systematic way on the value of the error term in other time periods. 
Since time-series data are used in many applications of econometrics, it’s 
important to understand serial correlation and its consequences for OLS 
estimators.

The approach of this chapter to the problem of serial correlation will be 
similar to that used in the previous chapter. We’ll attempt to answer the same 
four questions:

1. What is the nature of the problem?

2. What are the consequences of the problem?

3. How is the problem diagnosed?

4. What remedies for the problem are available?

Chapter 9
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9.1  Time Series

Virtually every equation in the text so far has been cross-sectional in nature, 
but that’s going to change dramatically in this chapter. As a result, it’s probably 
worthwhile to talk about some of the characteristics of time-series equations.

Time-series data involve a single entity (like a person, corporation, or state) 
over multiple points in time. Such a time-series approach allows researchers 
to investigate analytical issues that can’t be examined very easily with a cross-
sectional regression. For example, macroeconomic models and supply-and-
demand models are best studied using time-series, not cross-sectional, data.

The notation for a time-series study is different from that for a cross-
sectional one. Our familiar cross-sectional notation (for one time period and 
N different entities) is:

Yi = β0 + β1X1i + β2X2i + β3X3i + ei

 where  i  goes from 1 to N.

A time-series regression has one entity and T different time periods, however, 
so we’ll switch to this notation:

Yt = β0 + β1X1t + β2X2t + β3X3t + et

where  t  goes from 1 to T.

Thus:

Y1 = β0 + β1X11 + β2X21 + β3X31 + e1  refers to observations from the first 
time period

Y2 = β0 + β1X12 + β2X22 + β3X32 + e2  refers to observations from the  second 
time period

 g
YT = β0 + β1X1T + β2X2T + β3X3T + eT  refers to observations from the Tth 

time period

What’s so tough about that, you say? All we’ve done is change from i to t 
and change from N to T. Well, it turns out that time-series studies have some 
characteristics that make them more difficult to deal with than cross-sections:

1. The order of observations in a time series is fixed. With a cross-sectional data 
set, you can enter the observations in any order you want, but with time-
series data, you must keep the observations in chronological order.

2. Time-series samples tend to be much smaller than cross-sectional ones. Most 
time-series populations have many fewer potential observations than 
do cross-sectional ones, and these smaller data sets make statistical 
inference more difficult. In addition, it’s much harder to generate a 
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time-series observation than a cross-sectional one. After all, it takes a 
year to get one more observation in an annual time series!

3. The theory underlying time-series analysis can be quite complex. In part 
because of the problems mentioned above, time-series econometrics 
includes a number of complex topics that require advanced estimation 
techniques. We’ll tackle these topics in Chapters 12, 14, and 15.

4. The stochastic error term in a time-series equation is often affected by events 
that took place in a previous time period. This is serial correlation, the 
topic of our chapter, so let’s get started!

9.2  Pure versus Impure Serial Correlation

Pure Serial Correlation

Pure serial correlation occurs when Classical Assumption IV, which 
assumes uncorrelated observations of the error term, is violated in a correctly 
specified equation. If there is correlation between observations of the error 
term, then the error term is said to be serially correlated. When econometri-
cians use the term serial correlation without any modifier, they are referring 
to pure serial correlation.

The most commonly assumed kind of serial correlation is first-order 
serial correlation, in which the current value of the error term is a function 
of the previous value of the error term:

 et = ρet - 1 + ut (9.1)

where: e = the error term of the equation in question
 ρ = the first-order autocorrelation coefficient
 u = a classical (not serially correlated) error term

The functional form in Equation 9.1 is called a first-order Markov scheme. 
The new symbol, ρ (rho, pronounced “row”), called the first-order autocor-
relation coefficient, measures the functional relationship between the value 
of an observation of the error term and the value of the previous observation 
of the error term.

The magnitude of ρ indicates the strength of the serial correlation in an 
equation. If ρ is zero, then there is no serial correlation (because e would 
equal u, a classical error term). As ρ approaches 1 in absolute value, the 
value of the previous observation of the error term becomes more important 
in determining the current value of et, and a high degree of serial correlation 
exists. For ρ to be greater than 1 in absolute value is unreasonable because 
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it implies that the error term has a tendency to continually increase in abso-
lute value over time (“explode”). As a result of this, we can state that:

 -1 6 ρ 6 +1 (9.2)

The sign of ρ indicates the nature of the serial correlation in an equation. 
A positive value for ρ implies that the error term tends to have the same sign 
from one time period to the next; this is called positive serial correlation. 
Such a tendency means that if et happens by chance to take on a large value 
in one time period, subsequent observations would tend to retain a portion 
of this original large value and would have the same sign as the original. 
For example, in time-series models, the effects of a large external shock to 
an economy (like an earthquake) in one period may linger for several time 
periods. The error term will tend to be positive for a number of observations, 
then negative for several more, and then back positive again.

Figure 9.1 shows two different examples of positive serial correlation. 
The error term observations plotted in Figure 9.1 are arranged in chrono-
logical order, with the first observation being the first period for which data 
are available, the second being the second, and so on. To see the difference 
between error terms with and without positive serial correlation, compare 
the patterns in Figure 9.1 with the depiction of no serial correlation 1ρ = 02 
in Figure 9.2.

A negative value of ρ implies that the error term has a tendency to switch 
signs from negative to positive and back again in consecutive observations; 
this is called negative serial correlation. It implies that there is some sort 
of cycle (like a pendulum) behind the drawing of stochastic disturbances. 
Figure 9.3 shows two different examples of negative serial correlation. For 
instance, negative serial correlation might exist in the error term of an 
equation that is in first differences because changes in a variable often fol-
low a cyclical pattern. In most time-series applications, however, negative 
pure serial correlation is much less likely than positive pure serial correla-
tion. As a result, most econometricians analyzing pure serial correlation 
concern themselves primarily with positive serial correlation.

Serial correlation can take on many forms other than first-order serial cor-
relation. For example, in a quarterly model, the current quarter’s error term 
observation may be functionally related to the observation of the error term 
from the same quarter in the previous year. This is called seasonally based serial 
correlation:

 et = ρet - 4 + ut
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Similarly, it is possible that the error term in an equation might be a function 
of more than one previous observation of the error term:

 et = ρ1et - 1 + ρ2et - 2 + ut

Such a formulation is called second-order serial correlation.

2

1

0 Time
 e

2

1

0 Time
 e

Figure 9.1 Positive Serial Correlation

With positive first-order serial correlation, the current observation of the error term 
tends to have the same sign as the previous observation of the error term. An example  
of positive serial correlation would be external shocks to an economy that take more 
than one time period to completely work through the system.
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Impure Serial Correlation

By impure serial correlation we mean serial correlation that is caused by 
a specification error such as an omitted variable or an incorrect functional 
form. While pure serial correlation is caused by the underlying distribution 
of the error term of the true specification of an equation (which cannot be 
changed by the researcher), impure serial correlation is caused by a specifica-
tion error that often can be corrected.

How is it possible for a specification error to cause serial correlation? 
Recall that the error term can be thought of as the effect of omitted variables, 
nonlinearities, measurement errors, and pure stochastic disturbances on the 
dependent variable. This means, for example, that if we omit a relevant vari-
able or use the wrong functional form, then the portion of that omitted effect 
that cannot be represented by the included explanatory variables must be 
absorbed by the error term. The error term for an incorrectly specified equa-
tion thus includes a portion of the effect of any omitted variables and/or a 
portion of the effect of the difference between the proper functional form 
and the one chosen by the researcher. This new error term might be serially 
correlated even if the true one is not. If this is the case, the serial correlation 
has been caused by the researcher’s choice of a specification and not by the 
pure error term associated with the correct specification.

As you’ll see in Section 9.5, the proper remedy for serial correlation 
depends on whether the serial correlation is likely to be pure or impure. Not 

2

1

0 Time

e

Figure 9.2 no Serial Correlation

With no serial correlation, different observations of the error term are completely 
 uncorrelated with each other. Such error terms would conform to Classical Assumption IV.
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surprisingly, the best remedy for impure serial correlation is to attempt to 
find the omitted variable (or at least a good proxy) or the correct functional 
form for the equation. Both the bias and the impure serial correlation will 
disappear if the specification error is corrected. As a result, most econometri-
cians try to make sure they have the best specification possible before they 
spend too much time worrying about pure serial correlation.

2
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 e

2

1

0 Time
 e

Figure 9.3 negative Serial Correlation

With negative first-order serial correlation, the current observation of the error term 
tends to have the opposite sign from the previous observation of the error term. In most 
time-series applications, negative serial correlation is much less likely than positive 
 serial correlation.
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To see how an omitted variable can cause the error term to be serially 
 correlated, suppose that the true equation is:

 Yt = β0 + β1X1t + β2X2t + et (9.3)

where et is a classical error term. As shown in Section 6.1, if X2 is accidentally 
omitted from the equation (or if data for X2 are unavailable), then:

 Yt = β0 + β1X1t + e*t  where  e*t = β2X2t + et (9.4)

Thus, the error term in the omitted variable case is not the classical error 
term e. Instead, it’s also a function of one of the independent variables, X2. As 
a result, the new error term, e*, can be serially correlated even if the true error 
term e is not. In particular, the new error term e* will tend to exhibit detect-
able serial correlation when:

1. X2 itself is serially correlated (this is quite likely in a time series) and

2. the size of e is small1 compared to the size of β2X2.

These tendencies hold even if there are a number of included and/or omitted 
variables. Therefore:

 e*t = ρe*t - 1 + ut (9.5)

Another common kind of impure serial correlation is caused by an incor-
rect functional form. Here, the choice of the wrong functional form can cause 
the error term to be serially correlated. Let’s suppose that the true equation is 
polynomial in nature:

 Yt = β0 + β1X1t + β2X
2
1t + et (9.6)

but that instead a linear regression is run:

 Yt = α0 + α1X1t + e*t  (9.7)

The new error term e* is now a function of the true error term e and of the 
differences between the linear and the polynomial functional forms. As can 
be seen in Figure 9.4, these differences often follow fairly autoregressive pat-
terns. That is, positive differences tend to be followed by positive differences, 
and negative differences tend to be followed by negative differences. As a 

1. If typical values of e are significantly larger in absolute size than β2X2, then even a serially 
correlated omitted variable (X2) will not change e* very much. In addition, recall that the omit-
ted variable, X2, will cause bias in the estimate of β1, depending on the correlation between the 
two Xs. If βn1 is biased because of the omission of X2, then a portion of the β2X2 effect must have 
been absorbed by βn1 and will not end up in the residuals. As a result, tests for serial correlation 
based on those residuals may give incorrect readings. Such residuals may leave misleading clues 
as to possible specification errors.
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result, using a linear functional form when a nonlinear one is appropriate 
will usually result in positive impure serial correlation.

9.3  The Consequences of Serial Correlation

The consequences of serial correlation are quite different in nature from the 
consequences of the problems discussed so far in this text. Omitted variables, 
irrelevant variables, and multicollinearity all have fairly recognizable external 

0

Y

X1

Y 5 b0 1 b1X1

0e

1

2

X1

Figure 9.4 incorrect functional form as a Source of impure Serial Correlation

The use of an incorrect functional form tends to group positive and negative residuals 
together, causing positive impure serial correlation.
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symptoms. Each problem changes the estimated coefficients and standard 
errors in a particular way, and an examination of these changes (and the 
underlying theory) often provides enough information for the problem to 
be detected. As we shall see, serial correlation is more likely to have internal 
symptoms; it affects the estimated equation in a way that is not easily observ-
able from an examination of just the results themselves.

The existence of serial correlation in the error term of an equation violates 
Classical Assumption IV, and the estimation of the equation with OLS has at 
least three consequences:2

2. If the regression includes a lagged dependent variable as an independent variable, then the 
problems worsen significantly. For more on this topic (called a dynamic model), see Chapter 12.

 1.  Pure serial correlation does not cause bias in the coefficient 
 estimates.

 2.  Serial correlation causes OLS to no longer be the minimum variance 
estimator (of all the linear unbiased estimators).

 3.  Serial correlation causes the OLS estimates of the SE1βn 2s to be 
 biased, leading to unreliable hypothesis testing.

1. Pure serial correlation does not cause bias in the coefficient estimates. If the 
error term is serially correlated, one of the assumptions of the Gauss–
Markov Theorem is violated, but this violation does not cause the coef-
ficient estimates to be biased. If the serial correlation is impure, however, 
bias may be introduced by the use of an incorrect specification.

This lack of bias does not necessarily mean that the OLS estimates 
of the coefficients of a serially correlated equation will be close to the 
true coefficient values. A single estimate observed in practice can come 
from a wide range of possible values. In addition, the standard errors of 
these estimates will typically be increased by the serial correlation. This 
increase will raise the probability that a βn  will differ significantly from 
the true β value. What unbiased means in this case is that the distribu-
tion of the βns is still centered around the true β.

2. Serial correlation causes OLS to no longer be the minimum variance estimator 
(of all the linear unbiased estimators). Although the violation of Classical 
Assumption IV causes no bias, it does affect the other main conclusion 
of the Gauss–Markov Theorem, that of minimum variance. In particular, 

M09_STUD2742_07_SE_C09.indd   282 1/9/16   2:04 PM



283 the ConSequenCeS of Serial Correlation

we cannot prove that the distribution of the OLS βns is minimum vari-
ance (among the linear unbiased estimators) when Assumption IV is 
violated.

The serially correlated error term causes the dependent variable to 
fluctuate in a way that the OLS estimation procedure sometimes at-
tributes to the independent variables. Thus, OLS is more likely to mis-
estimate the true β in the face of serial correlation. On balance, the βns 
are still unbiased because overestimates are just as likely as underesti-
mates, but these errors increase the variance of the distribution of the 
estimates, increasing the amount that any given estimate is likely to dif-
fer from the true β.

3. Serial correlation causes the OLS estimates of the SE(bn)s to be biased, leading 
to unreliable hypothesis testing. With serial correlation, the OLS formula 
for the standard error produces biased estimates of the SE(βn)s. Because 
the SE(βn) is a prime component in the t-statistic, these biased SE(βn)s  
cause biased t-scores and unreliable hypothesis testing in general. In 
essence, serial correlation causes OLS to produce incorrect SE(βn)s and 
t-scores! Not surprisingly, most econometricians therefore are very hesi-
tant to put much faith in hypothesis tests that were conducted in the 
face of pure serial correlation.3

What sort of bias does serial correlation tend to cause? Typically, the 
bias in the estimate of SE(βn) is negative, meaning that OLS underes-
timates the size of the standard errors of the coefficients. This comes 
about because serial correlation usually results in a pattern of observa-
tions that allows a better fit than the actual (not serially correlated) 
observations would otherwise justify. This tendency of OLS to underes-
timate the SE(βn) means that OLS typically overestimates the t-scores of 
the estimated coefficients, since:

 t =
1βn - βH0

2
SE1βn 2  (9.8)

Thus the t-scores printed out by a typical software regression package in 
the face of serial correlation are likely to be too high. Similarly, confi-
dence intervals for the coefficients will tend to be too narrow.

What will happen to hypothesis testing if OLS underestimates the SE(βn)s 
and therefore overestimates the t-scores? Well, the “too low” SE(βn) will cause 

3. While our discussion here involves the t-test, the same conclusion of unreliability in the face 
of serial correlation applies to all other test statistics.
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a “too high” t-score for a particular coefficient, and this will make it more 
likely that we will reject a null hypothesis (for example H0: β … 0) when it 
is in fact true. This increased chance of rejecting H0 means that we’re more 
likely to reject a true null hypothesis, so we’re more likely to make the mis-
take of keeping an irrelevant variable in an equation because its coefficient’s 
t-score has been overestimated. In other words, hypothesis testing becomes 
unreliable when we have pure serial correlation.

9.4  The Detection of Serial Correlation

How can we detect serial correlation? While the first indication of serial cor-
relation often occurs when we observe a pattern in the residuals similar to 
Figure 9.1, most econometricians rely on more formal tests like the Durbin–
Watson test and the Lagrange Multiplier test.

The Durbin–Watson Test

The Durbin–Watson test is used to determine if there is first-order serial 
correlation in the error term of an equation by examining the residuals of a 
particular estimation of that equation.4 It’s important to use the Durbin–
Watson test only when the assumptions that underlie its derivation are met:

1. The regression model includes an intercept term.

2. The serial correlation is first-order in nature:

 et = ρet - 1 + ut (9.9)

 where ρ is the autocorrelation coefficient and u is a classical (normally 
distributed) error term.

3. The regression model does not include a lagged dependent variable 
(discussed in Chapter 12) as an independent variable.5

The equation for the Durbin–Watson statistic for T observations is:

 d = aT

2
1et - et - 122n aT

1
e2

t  (9.10)

4. J. Durbin and G. S. Watson, “Testing for Serial Correlation in Least-Squared Regression,” 
Biometrika, 1951, pp. 159–177.
5. In such a circumstance, the Durbin–Watson test is biased toward 2.
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where the ets are the OLS residuals. Note that the numerator has one fewer 
observation than the denominator because an observation must be used 
to calculate et-1. The Durbin–Watson statistic equals 0 if there is extreme 
positive serial correlation, 2 if there is no serial correlation, and 4 if there is 
extreme negative serial correlation. To see this, let’s put appropriate residual 
values into Equation 9.10 for these three cases:

1. Extreme Positive Serial Correlation: d = 0
 In this case, et = et-1, so 1et - et-12 = 0 and d = 0.

2. Extreme Negative Serial Correlation: d ≈ 4
 In this case, et = -et-1, and 1et - et-12 = 12et2. Substituting into 

Equation 9.10, we obtain d = g 12et22/g 1et22 and d ≈ 4.

3. No Serial Correlation: d ≈ 2
 When there is no serial correlation, the mean of the distribution of d 

is equal to 2.6 That is, if there is no serial correlation, d ≈ 2.

Using the Durbin–Watson Test

The Durbin–Watson test is unusual in two respects. First, econometricians 
almost never test the one-sided null hypothesis that there is negative serial 
correlation in the residuals because negative serial correlation, as mentioned 
previously, is quite difficult to explain theoretically in economic or business 
analysis. Its existence usually means that impure serial correlation has been 
caused by some specification error.

Second, the Durbin–Watson test is sometimes inconclusive. Whereas pre-
viously explained decision rules always have had only “acceptance” regions 
and rejection regions, the Durbin–Watson test has a third possibility, called 
the inconclusive region. For reasons outlined in Section 9.5, we do not rec-
ommend the application of a remedy for serial correlation if the Durbin–
Watson test is inconclusive.7

6. To see this, multiply out the numerator of Equation 9.10, obtaining

 d = c aT

2
e2

t - 2aT

2
1etet-12 + aT

2
e2

t-1 d n aT

1
e2

t ≈ c aT

2
e2

t + aT

2
e2

t-1 d n aT

1
e2

t ≈ 2 (9.11)

If there is no serial correlation, then et and et-1 are not related, and, on average, g 1etet-12 = 0.
7. This inconclusive region is troubling, but the development of exact Durbin–Watson tests may 
eliminate this problem in the future. Some computer programs allow the user the option of cal-
culating an exact Durbin–Watson probability (of first-order serial correlation). Alternatively, it’s 
worth noting that there is a growing trend toward the use of dU as a sole critical value. This trend 
runs counter to our view that if the Durbin–Watson test is inconclusive, then no remedial action 
should be taken except to search for a possible cause of impure serial correlation.
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With these exceptions, the use of the Durbin–Watson test is quite similar 
to the use of the t-test. To test for positive serial correlation, the following 
steps are required:

1. Obtain the OLS residuals from the equation to be tested and calculate 
the d statistic by using Equation 9.10.

2. Determine the sample size and the number of explanatory variables 
and then consult Statistical Table B-4 in Appendix B to find the upper 
critical d value, dU, and the lower critical d value, dL, respectively. In-
structions for the use of this table are also in that appendix.

3. Given the null hypothesis of no positive serial correlation and a one-
sided alternative hypothesis:

  H0: ρ … 0  (no positive serial correlation)
  HA: ρ 7 0  (positive serial correlation) 

(9.12)

 the appropriate decision rule is:

 If d 6 dL  Reject H0

 If d 7 dU  Do not reject H0

 If dL … d … dU  Inconclusive

 In rare circumstances, perhaps first differenced equations, a two-sided 
Durbin–Watson test might be appropriate. In such a case, steps 1 and 
2 are still used, but step 3 is now:

 Given the null hypothesis of no serial correlation and a two-sided 
 alternative hypothesis:

  H0: ρ = 0    1no serial correlation2
  HA: ρ ≠ 0   1serial correlation2  

(9.13)

 the appropriate decision rule is:

 if d 6 dL   Reject H0

 if d 7 4 - dL   Reject H0

 if 4 - dU 7 d 7 dU   Do not reject H0

  otherwise  Inconclusive

examples of the Use of the Durbin–Watson Statistic

Let’s work through some applications of the Durbin–Watson test. First, turn 
to Statistical Table B-4. Note that the upper and lower critical d values (dU 
and dL) depend on the number of explanatory variables (do not count the 
constant term), the sample size, and the level of significance of the test.
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Now let’s set up a one-sided 5-percent test for a regression with three 
explanatory variables and 25 observations. As can be seen from 5-percent 
table B-4, the critical values are dL = 1.12 and dU = 1.66. As a result, if the 
hypotheses are:

 H0: ρ … 0   1no positive serial correlation2
 HA: ρ 7 0   1positive serial correlation2

the appropriate decision rule is:

  if d 6 1.12  Reject H0

  if d 7 1.66  Do not reject H0

  if 1.12 … d … 1.66  Inconclusive

A computed Durbin–Watson statistic of 1.78, for example, would indicate 
that there is no evidence of positive serial correlation, a value of 1.28 would 
be inconclusive, and a value of 0.60 would imply positive serial correlation. 
Figure 9.5 provides a graph of the “acceptance,” rejection, and inconclusive 
regions for this example.

For a real-world example, let’s look at a simple time-series model of the 
annual consumption of chicken in the United States. There are a variety of 

0 20.60

dU 5 1.66
dL 5 1.12 1.28 1.78

4

Inconclusive Region
dL , d , dU

Rejection Region
d , dL

“Acceptance” Region
dU , d

Positive Serial
Correlation

No Positive Serial
Correlation

Figure 9.5 an example of a one-Sided Durbin–Watson test

In a one-sided Durbin–Watson test for positive serial correlation, only values of d signif-
icantly below 2 cause the null hypothesis of no positive serial correlation to be rejected. 
In this example, a d of 1.78 would indicate no positive serial correlation, a d of 0.60 
would indicate positive serial correlation, and a d of 1.28 would be inconclusive.
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variables that might make sense in such an equation, and at least three vari-
ables seem obvious. We’d expect the demand for chicken to be a negative 
function of the price of chicken and a positive function of income and the 
price of a substitute (in this case, beef):

 -  +  +
Yt = β0 + β1PCt + β2PBt + β3YDt + et

where:  Yt  = per capita chicken consumption (in pounds) in year t
 PCt  = the price of chicken (in cents per pound) in year t
 PBt  = the price of beef (in cents per pound) in year t
 YDt =  U.S. per capita disposable income (in hundreds of dollars) 

in year t
If we collect data for these variables for the years 1974 through 2002, we 

can estimate8 the following equation:

  Ynt = 27.7 - 0.11PCt + 0.03PBt + 0.23YDt 
 10.032 10.022 10.012
 t =  -3.38 +1.86 +15.7

 R 2 = .9904 N = 29 1annual 1974–20022 

(9.14)

How does our estimated equation look? The overall fit of Equation 9.14 is 
excellent, and each of the individual regression coefficients is significantly dif-
ferent from zero in the expected direction. The price of chicken does indeed 
have a significant negative effect (holding the price of beef and disposable 
income constant), and the price of beef and disposable income do indeed 
have positive effects (holding the other independent variables constant).

However, this is a time-series equation, so if there’s serial correlation, 
hypothesis testing will be unreliable, and one or more of these t-scores could 
be artificially high. We’d better run a Durbin–Watson test!

When we calculate a Durbin–Watson statistic for Equation 9.14,9 we get 
0.99. Is that cause to be concerned about serial correlation? What would be 
the result of a one-sided 5-percent test of the null hypothesis of no positive 
serial correlation? Well, once we’ve got the Durbin–Watson statistic, the next 

8. The data for this equation are in dataset CHICK9. As we’ll see in Chapter 14, estimating 
an equation for the demand for chicken without taking into account the simultaneously 
 determined supply of chicken runs the risk of bias, particularly in the coefficient of the price of 
chicken.
9. Luckily, you don’t actually need to calculate the Durbin–Watson statistic yourself. Some 
econometric software programs, including EViews, calculate the Durbin–Watson statistic auto-
matically, while others, including Stata, allow you to do so quite simply. In Stata, for example, 
the command is estat dwatson.
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step is to consult Statistical Table B-4. In that table, with K (the number of 
explanatory variables10) equal to 3 and N (the number of observations) equal 
to 29, we find that the critical d values are dL = 1.20 and dU = 1.65. (It’s 
probably a good idea to check these d values yourself to make sure that you 
know how to look them up.)

The decision rule would thus be:

  if d 6 1.20 Reject H0

  if d 7 1.65 Do not reject H0

  if 1.20 … d … 1.65 Inconclusive

Since 0.99 is less than the critical lower limit of the d statistic, we would reject 
the null hypothesis of no positive serial correlation, and we would have to 
decide how to cope with that serial correlation.

The Lagrange Multiplier (LM) test

Unfortunately, the Durbin–Watson test has a number of limitations. As men-
tioned, it can be used only when the serial correlation is first-order, when a 
constant is included in the equation, and when the equation doesn’t include 
a lagged dependent variable. The Durbin–Watson test’s inconclusive region 
also is a drawback, particularly since the size of the inconclusive region 
increases as the number of independent variables increases.

A popular alternative to the Durbin–Watson test is the Lagrange Multi-
plier (LM) test, which checks for serial correlation by analyzing how well 
the lagged residuals explain the residual of the original equation in an equa-
tion that also includes all the explanatory variables of the original model. 
If the lagged residuals are significant in explaining this time’s residuals (as 
shown by the chi-square test), then we can reject the null hypothesis of no 
serial correlation.11 The LM serial correlation test is just one application of a 

10. Be careful! While we define K as the number of explanatory variables, some other sources, 
including Stata and the Stanford University Durbin–Watson tables, define K as the number of 
coefficients (which is equivalent to K + 1 in our notation). As long as you’re aware of this dif-
ference, it won’t cause you any problems. Incidentally, the Stanford tables, which are online at 
http://web.stanford.edu/~clint/bench/dwcrit.htm, have many more observations than can be 
printed in a textbook, so they’re quite useful if you have a large sample.
11. The Lagrange Multiplier test for serial correlation is sometimes referred to as the Breusch–
Godfrey test, which is why the Stata command for this test is estat bgodfrey, lag (1). Note that if 
we’re testing for first-order serial correlation, we need to specify that the lag equals 1. If we are 
concerned with second-order serial correlation, then the lag would equal 2, etc.
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290 ChAPTER 9 Serial Correlation

general Lagrange Multiplier testing approach that can be applied to a variety 
of econometric problems.12

Using the Lagrange Multiplier (LM) test to investigate the possibility of 
serial correlation involves three steps:

1. Obtain the residuals from the estimated equation. For an equation 
with two independent variables, this would equal:

 et = Yt - Ynt = Yt - βn 0 - βn 1X1t - βn 2X2t (9.15)

2. Use these residuals as the dependent variable in an auxiliary equation 
that includes as independent variables all those on the right-hand side 
of the original equation as well as the lagged residuals:

 et = α0 + α1X1t + α2X2t + α3et - 1 + ut (9.16)

3. Estimate Equation 9.16 using OLS and then test the null hypothesis 
that α3 = 0 with the following test statistic:

 LM = NR2 

 where N is the sample size and R2 is the unadjusted coefficient of de-
termination, both of the auxiliary equation, Equation 9.16. 

For large samples, LM has a chi-square distribution with degrees of freedom 
equal to one (the number of restrictions in the null hypothesis). If LM is 
greater than the critical chi-square value from Statistical Table B-6, then we 
reject the null hypothesis that α3 = 0 and conclude that there is serial corre-
lation in the original equation. Note that even though α3 tends to be positive 
in economic examples, this is a two-sided test.

An Example of the Lagrange Multiplier Test

As an example of the Lagrange Multiplier test, let’s run a 5-percent test for 
serial correlation on our chicken demand model, Equation 9.14. The appro-
priate LM equation to run is:

 et = α0 + α1PCt + α2PBt + α3YDt + α4et - 1 + ut (9.17)

where et is the residual from Equation 9.14, the equation that we’re testing 
for serial correlation.

12. For example, the White test for heteroskedasticity (to be explained in Section 10.3) also is 
an application of the Lagrange Multiplier approach. For a survey of the various uses to which 
Lagrange Multiplier tests can be put, see Rob Engle, “Wald, Likelihood Ratio, and Lagrange 
Multiplier Tests in Econometrics,” in Z. Griliches and M. D. Intrilligator (eds.), Handbook of 
Econometrics, Vol. II (Amsterdam, Elsevier Science Publishers, 1984).
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Since there are three independent variables, the null hypothesis becomes 
H0: α4 = 0. If we estimate Equation 9.17, we get an R2 of .291. Since the 
sample size is 29, this means that:

 LM = NR2 = 8.439

The decision rule is to reject the null hypothesis if NR2 is greater than the crit-
ical chi-square value with 1 degree of freedom, so the next step is to consult 
Table B-6 and look up the critical value. As you can see if you take a look at 
Table B-6, the 5-percent chi-square critical value with 1 degree of freedom is 
3.84. Since 8.439 7 3.84, we can reject the null hypothesis and conclude that 
we have serial correlation in the chicken demand model. This is a two-sided 
test, but it confirms the result of our one-sided Durbin–Watson test. It seems 
clear that the chicken demand equation has serial correlation!

9.5  Remedies for Serial Correlation

Suppose that the Durbin–Watson or LM test detects serial correlation in the 
residuals of your equation. Is there a remedy? Some students suggest reorder-
ing the observations of Y and the Xs to avoid serial correlation. They think 
that if this time’s error term appears to be affected by last time’s error term, 
why not reorder the data randomly to get rid of the problem? The answer is 
that the reordering of the data does not get rid of the serial correlation; it just 
makes the problem harder to detect. If e2 = f1e12 and we reorder the data, 
then the error term observations are still related to each other, but they now 
no longer follow each other, and it becomes almost impossible to discover 
the serial correlation. Interestingly, reordering the data changes the Durbin–
Watson statistic but does not change the estimates of the coefficients or their 
standard errors at all.13

13. This can be proven mathematically, but it is usually more instructive to estimate a regres-
sion yourself, change the order of the observations, and then reestimate the regression. See 
Exercise 3 at the end of the chapter.

The place to start in correcting a serial correlation problem is to look 
carefully at the specification of the equation for possible errors that 
might be causing impure serial correlation. Is the functional form cor-
rect? Are you sure that there are no omitted variables? Only after the 
specification of the equation has been reviewed carefully should the pos-
sibility of an adjustment for pure serial correlation be considered.
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It’s worth noting that if an omitted variable increases or decreases over time, 
as is often the case, or if the data set is logically reordered (say, according to the 
magnitude of one of the variables), then the Durbin–Watson or LM test can 
help detect impure serial correlation. A significant Durbin–Watson or LM test 
result can easily be caused by an omitted variable or an incorrect functional 
form. In such circumstances, the Durbin–Watson or LM tests do not distin-
guish between pure and impure serial correlation, but the detection of negative 
serial correlation is often a strong hint that the serial correlation is impure.

If you conclude that you have pure serial correlation, then the appropri-
ate response is to consider the application of Generalized Least Squares or 
Newey–West standard errors, as described in the following sections.

Generalized Least Squares

Generalized least squares (GLS) is a method of ridding an equation of 
pure first-order serial correlation and in the process restoring the minimum 
variance property to its estimation. GLS starts with an equation that does not 
meet the Classical Assumptions (due in this case to the pure serial correlation 
in the error term) and transforms it into one (Equation 9.22) that does meet 
those assumptions.

At this point, you could skip directly to Equation 9.22, but it’s easier to 
understand the GLS estimator if you examine the transformation from which 
it comes. Start with an equation that has first-order serial correlation:

 Yt = β0 + β1X1t + et (9.18)

which, if et = ρet-1 + ut (due to pure serial correlation), also equals:

 Yt = β0 + β1X1t + ρet-1 + ut (9.19)

where e is the serially correlated error term, ρ is the autocorrelation coeffi-
cient, and u is a classical (not serially correlated) error term.

If we could get the ρet-1 term out of Equation 9.19, the serial correlation 
would be gone, because the remaining portion of the error term (ut) has no 
serial correlation in it. To rid ρet-1 from Equation 9.19, multiply Equation 9.18 
by ρ and then lag the new equation by one time period, obtaining

 ρYt-1 = ρβ0 + ρβ1X1t-1 + ρet-1 (9.20)

Notice that we now have an equation with a ρet-1 term in it. If we now sub-
tract Equation 9.20 from Equation 9.19, the equivalent equation that remains 
no longer contains the serially correlated component of the error term:

 Yt - ρYt-1 = β011 - ρ2 + β11X1t - ρX1t-12 + ut (9.21)
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Equation 9.21 can be rewritten as:

 Y t* = β0* + β1X1t* + ut (9.22)

where:  Y*t = Yt - ρYt - 1  (9.23)
  X*1t = X1t - ρX1t - 1

  β*0 = β0 - ρβ0  

Equation 9.22 is called a Generalized Least Squares (or “quasi-differenced”) 
version of Equation 9.19. Notice that:

1. The error term is not serially correlated. As a result, OLS estimation of 
Equation 9.22 will be minimum variance. (This is true if we know ρ or 
if we accurately estimate ρ.)

2. The slope coefficient β1 is the same as the slope coefficient of the origi-
nal serially correlated equation, Equation 9.19. Thus coefficients esti-
mated with GLS have the same meaning as those estimated with OLS.

3. The dependent variable has changed compared to that in Equation 9.19. 
This means that the GLS R 

2 is not necessarily comparable to the OLS R 

2.

Unfortunately we can’t use OLS to estimate a Generalized Least Squares 
model because GLS equations are inherently nonlinear in the coefficients. To 
see why, take a look at Equation 9.21. We need to estimate values not only for 
β0 and β1 but also for ρ, and ρ is multiplied by β0 and β1 (which you can see 
if you multiply out the right-hand side of the equation). Since OLS requires 
that the equation be linear in the coefficients, we need a different estimation 
procedure.

Luckily, there are a number of techniques that can be used to estimate 
GLS equations. While the best-known of these is the Cochrane–Orcutt 
method,14 our recommendation is to use a slightly different approach, the 
Prais–Winsten method. The Prais–Winsten method15 is a two–step itera-
tive technique that rids an equation of serial correlation by first producing 

14. D. Cochrane and G. H. Orcutt, “Application of Least Squares Regression to Relationships Con-
taining Autocorrelated Error Terms,” Journal of the American Statistical Association, 1949, pp. 32–61.
15. S. J. Prais and C. B. Winsten, “Trend Estimators and Serial Correlation,” Cowles Commis-
sion Discussion Paper No. 383 (1954) Chicago. The Prais–Winsten method (sometimes called 
Yule–Walker) is very similar to Cochrane–Orcutt, but the Prais–Winsten estimate of ρ is more 
accurate because it uses the first observation in Step 1 while Cochrane–Orcutt does not. For 
more, see Masahito Kobayashi, “Comparison of Efficiencies of Several Estimators for Linear 
Regressions with Autocorrelated Errors,” Journal of the American Statistical Association, 1985,  
pp. 951–953.
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an estimate of ρ and then estimating the GLS equation using that ρn. The two 
steps are:

1. Estimate ρ by running a regression based on the residuals of the equa-
tion suspected of having serial correlation:

 et = ρet - 1 + ut (9.24)

 where the ets are the OLS residuals from the equation suspected of hav-
ing pure serial correlation and ut is a classical (non-serially-correlated) 
error term.

2. Use this ρn to estimate the GLS equation by substituting ρn into Equa-
tion 9.21 and using OLS to estimate Equation 9.21 with the adjusted 
data.

These two steps are repeated (iterated) until further improvement results in 
little change in ρn. Once ρn has converged (usually in just a few iterations), the 
last estimate of step 2 is used as the final estimate of Equation 9.21.

Unfortunately, all methods of estimating GLS equations use iterative non-
linear regression techniques that are well beyond the scope of this text. As a 
result, most researchers rely on their econometric software packages to estimate 
their GLS equations for them. In Stata, for example, the Prais–Winsten method 
can be run using the command prais followed by a listing of the dependent 
and independent variables.16

Let’s apply Generalized Least Squares, using the Prais–Winsten method, to 
the chicken demand example that was found to have serial correlation in the 
previous section. Recall that we estimated the per capita demand for chicken 
as a function of the price of chicken, the price of beef, and disposable income:

  Ynt = 27.7 - 0.11PCt + 0.03PBt + 0.23YDt

 10.032 10.022 10.012
 t = -3.38 + 1.86 +15.7

  R 

2 =  .9904 N =  29 DW =  0.99 

(9.14)

Note that we have added the Durbin–Watson statistic to the documenta-
tion with the notation DW. All future time-series results will include the DW 
statistic, but cross-sectional documentation of the DW is not required unless 
the observations are ordered in some meaningful manner (like smallest to 
largest or youngest to oldest).

16. In Stata, the command to apply GLS (using Prais–Winsten) to Equation 9.14 thus would be 
prais Y PC PB YD. In EViews, the easiest way to estimate a GLS equation is to add AR(1) to the 
equation as an independent variable, as in: LS Y C PC PB YD AR(1). The result is a GLS estimate 
where ρn will appear as the estimated coefficient of the variable AR(1).
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If we reestimate Equation 9.14 with the Prais–Winsten approach to GLS, 
we obtain:

  Yt = 28.5 - 0.08PCt + 0.016PBt + 0.24YDt

 10.042 10.0212 10.022
 t = - 2.13 + 0.74 +13.12

  R 

2 = .963 N = 29 ρn = 0.56 

(9.25)

Let’s compare Equations 9.14 and 9.25. Note that the ρn used in Equation 9.25 
is 0.56. This means that Y was actually run as Y* = Yt - 0.56Yt - 1, PC as 
PC* = PCt - 0.56PCt - 1, etc. Second, ρn replaces DW in the documentation of 
GLS estimates in part because the DW of Equation 9.25 isn’t strictly compa-
rable to non-GLS DWs (it is biased toward 2).

Generalized Least Squares estimates, no matter how they are produced, 
have at least two problems. First, even though serial correlation causes no 
bias in the estimates of the βns, the GLS estimates usually are different from 
the OLS ones. For example, note that all three slope coefficients change as 
we move from OLS in Equation 9.14 to GLS in Equation 9.25. This isn’t 
surprising, since different estimates can have different values even though 
their expected values are the same. The second problem is more impor-
tant, however. It turns out that GLS works well if ρn is close to the actual ρ,  
but the GLS ρn is biased in small samples. If ρn is biased, then the biased ρn 
introduces bias into the GLS estimates of the βns. Luckily, there is a remedy 
for serial correlation that helps avoid both of these problems: Newey–West 
standard errors.

Newey–West Standard Errors

Not all corrections for pure serial correlation involve Generalized Least Squares. 
Newey–West standard errors are SE(βn)s that take account of serial cor-
relation without changing the βns themselves in any way.17 The logic behind 
Newey–West standard errors is powerful. If serial correlation does not cause 
bias in the βns but does impact the standard errors, then it makes sense to adjust 
the estimated equation in a way that changes the SE(βn)s but not the βns.

17. W. K. Newey and K. D. West, “A Simple, Positive Semi-Definite Heteroskedasticity and 
 Autocorrelation Consistent Covariance Matrix,” Econometrica, 1987, pp. 703–708. Newey–West 
standard errors are similar to HC standard errors (or White standard errors), to be discussed in 
Section 10.4.
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Thus Newey–West standard errors have been calculated specifically to 
avoid the consequences of pure first-order serial correlation. The Newey–
West procedure yields an estimator of the standard errors that, while they 
are biased, is generally more accurate than uncorrected standard errors for 
large samples (greater than 100) in the face of serial correlation. As a result, 
Newey–West standard errors can be used for t-tests and other hypothesis tests 
in most samples without the errors of inference potentially caused by serial 
correlation. Typically, Newey–West SE(βn)s are larger than OLS SE(βn)s, thus 
producing lower t-scores and decreasing the probability that a given esti-
mated coefficient will be significantly different from zero.

To see how Newey–West standard errors work, let’s apply them to the 
same serially correlated chicken demand equation to which we applied GLS 
in Equation 9.14. If we use Newey–West standard errors in the estimation of 
Equation 9.14, we get:

  Ynt = 27.7 - 0.11PCt + 0.03PBt + 0.23YDt (9.26)
 10.032 10.022 10.012
 t = -3.30 + 2.12 +19.2

  R 

2 =  .9904  N = 29 

Let’s compare Equations 9.14 and 9.26. First of all, the βns are identical in 
Equations 9.14 and 9.26. This is because Newey–West standard errors do 
not change the OLS βns. Second, while we can’t observe the change because 
of rounding, the Newey–West standard errors must be different from the 
OLS standard errors because the t-scores have changed even though the esti-
mated coefficients are identical. However, two of the Newey–West SE(βn)s are 
slightly lower than the OLS SE(βn)s, which is a surprise even in a small sample 
like this one. Such a result indicates that there may well be an omitted vari-
able or nonstationarity (to be discussed in Chapter 12) in this equation.

9.6  Summary

1. Serial correlation, or autocorrelation, is the violation of Classical As-
sumption IV that the observations of the error term are uncorrelated 
with each other. Usually, econometricians focus on first-order serial 
correlation, in which the current observation of the error term is as-
sumed to be a function of the previous observation of the error term 
and a not-serially-correlated error term (u):

 et = ρet - 1 + ut  - 1 6 ρ 6 1

 where ρ is “rho,” the autocorrelation coefficient.
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2. Pure serial correlation is serial correlation that is a function of the 
error term of the correctly specified regression equation. Impure serial 
correlation is caused by specification errors such as an omitted vari-
able or an incorrect functional form. While impure serial correlation 
can be positive 10 6 ρ 6 +12 or negative 1-1 6 ρ 6 02 pure serial 
correlation in economics or business situations is almost always posi-
tive (unless first differences are involved).

3. The major consequence of serial correlation is bias in the OLS SE (βn)s,  
causing unreliable hypothesis testing. Pure serial correlation does not 
cause bias in the estimates of the βs.

4. A commonly used method of detecting first-order serial correlation 
is the Durbin–Watson test, which uses the residuals of an estimated 
regression to test the possibility of serial correlation in the error term. 
An often-preferred alternative is the Lagrange Multiplier (LM) test, 
which is far more general than the Durbin–Watson test.

5. The first step in ridding an equation of serial correlation is to check 
for possible specification errors. Only once the possibility of impure 
serial correlation has been reduced to a minimum should remedies 
for pure serial correlation be considered.

6. Generalized Least Squares (GLS) is a method of transforming an 
equation to rid it of pure first-order serial correlation. The use of GLS 
requires the estimation of ρ.

7. Newey–West standard errors are an alternative remedy for serial cor-
relation that adjusts the OLS estimates of the SE(βn)s to take account 
of the serial correlation without changing the βns.

ExErcisEs 

(The answers to the even-numbered exercises are in Appendix A.)

 1. Write the meaning of each of the following terms without referring to 
the book (or your notes), and compare your definition with the ver-
sion in the text for each.
a. Durbin–Watson test (p. 284)
b. first-order auto correlation coefficient (p. 275)
c. first-order serial correlation (p. 275)
d. Generalized Least Squares (GLS) (p. 292)
e. impure serial correlation (p. 278)
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f. Lagrange Multiplier (LM) test (p. 289)
g. negative serial correlation (p. 276)
h. Newey–West standard errors (p. 295)
i. positive serial correlation (p. 276)
j. Prais–Winsten method (p. 293)
k. pure serial correlation (p. 275)

 2. Consider the following equation for U.S. per capita consumption of 
beef:

CBt = - 330.3 + 49.1lnYt - 0.34PBt + 0.33PRPt - 15.4Dt

 17.42 10.132 10.122 14.12
 t = 6.6 - 2.6 2.7 - 3.7
 R 

2 = .700  N = 28     DW = 0.94 

(9.27)

where: CBt  =  the annual per capita pounds of beef consumed in the 
United States in year t

  ln Yt  =  the log of per capita disposable real income in the U.S. in 
year t

  PBt  =  average annualized real wholesale price of beef in year t (in 
cents per pound)

  PRPt =  average annualized real wholesale price of pork in year t 
(in cents per pound)

  Dt  =   a dummy variable equal to 1 for years in which there was a 
“health scare” about the dangers of red meat, 0 otherwise

a. Develop and test your own hypotheses with respect to the indi-
vidual estimated slope coefficients.

b. Test for serial correlation in Equation 9.27 using the Durbin–Watson 
test at the 5-percent level.

c. What econometric problem(s) (if any) does Equation 9.27 appear 
to have? What remedy would you suggest?

d. You take your own advice and apply GLS to Equation 9.27, obtaining:

CBt = -193.3 + 35.2ln Yt - 0.38PBt + 0.10PRPt - 5.7Dt

 114.12  10.102  10.092     13.92
 t = 2.5  -3.7   1.1     -1.5
 R 

2 = .857  N = 28  ρn = 0.82 

(9.28)

 Compare Equations 9.27 and 9.28. Which do you prefer? Why?

 3. Recall from Section 9.5 that switching the order of a data set will 
not change its coefficient estimates. A revised order will change the 
Durbin–Watson statistic, however. To see both these points, run 

9
9
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regressions 1HS = β0 + β1P + e2 and compare the coefficient esti-
mates and DW statistics for this data set:

Year Housing Starts Population

  1  9090 2200

  2  8942 2222

  3  9755 2244

  4 10327 2289

  5 10513 2290

  in the following three orders (in terms of year):
a. 1, 2, 3, 4, 5
b. 5, 4, 3, 2, 1
c. 2, 4, 3, 5, 1

 4. Suppose that the data in a time-series study were entered in reverse 
chronological order. Would this change in any way the testing or 
adjusting for serial correlation? How? In particular:
a. What happens to the Durbin–Watson statistic’s ability to detect 

 serial correlation if the order is reversed?
b. What happens to the GLS method’s ability to adjust for serial cor-

relation if the order is reversed?
c. What is the intuitive economic explanation of reverse serial cor-

relation?

 5. Your friend is just finishing a study of attendance at Los Angeles Laker 
regular-season home basketball games when she hears that you’ve 
read a chapter on serial correlation and asks your advice. Before run-
ning the equation on last season’s data, she “reviewed the literature” 
by interviewing a number of basketball fans. She found out that fans 
like to watch winning teams. In addition, she learned that while some 
fans like to watch games throughout the season, others are most 
interested in games played late in the season. Her estimated equation 
(standard errors in parentheses) was:

 An   t = 14123 + 20L t +  2600Pt +  900Wt

  15002  110002  13002
 DW = 0.85  N = 40  R 2 = .46

where: At = the attendance at game t
    Lt =  the winning percentage (games won divided by games 

played) of the Lakers before game t
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  Pt  =  the winning percentage before game t of the Lakers’ opponent 
in that game

  Wt =  a dummy variable equal to 1 if game t was on Friday, Satur-
day, or Sunday, 0 otherwise

a. Test for serial correlation using the Durbin–Watson test at the 
5-percent level.

b. Make and test appropriate hypotheses about the slope coefficients 
at the 1-percent level.

c. Compare the size and significance of the estimated coefficient of L 
with that for P. Is this difference surprising? Is L an irrelevant vari-
able? Explain your answer.

d. If serial correlation exists, would you expect it to be pure or impure 
serial correlation? Why?

e. Your friend omitted the first game of the year from the sample be-
cause the first game is always a sellout and because neither team 
had a winning percentage yet. Was this a good decision?

 6. In a 1988 article, Josef Brada and Ronald Graves built an interest-
ing model of defense spending in the Soviet Union just before the 
breakup of that nation.18 The authors felt sure that Soviet defense 
spending was a function of U.S. defense spending and Soviet GNP but 
were less sure about whether defense spending also was a function of 
the ratio of Soviet nuclear warheads to U.S. nuclear warheads. Using a 
double-log functional form, the authors estimated a number of alter-
native specifications, including (standard errors in parentheses):

 lnSDHt = -  1.99 + 0.056lnUSDt +  0.969lnSYt +  0.057lnSPt

 10.0742 10.0652 10.0322
 t = 0.76 14.98 1.80

 N = 25 1annual 1960–19842 R 

2 = .979 DW = 0.49 

(9.29)

 lnSDHt = -  2.88 + 0.105lnUSDt +  1.066lnSYt

 10.0732  10.0382
 t = 1.44  28.09

 N = 25 1annual 1960–19842 R 

2 = .977 DW = 0.43 

(9.30)

®

®

18. Josef C. Brada and Ronald L. Graves, “The Slowdown in Soviet Defense Expenditures,” 
Southern Economic Journal, Vol. 54, No. 4, pp. 969–984. In addition to the variables used in this 
exercise, Brada and Graves also provide data for SFPt, the rate of Soviet factor productivity in 
year t, which we include in Table 9.1.
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where: SDHt =  the CIA’s “high” estimate of Soviet defense expenditures 
in year t (billions of 1970 rubles)

  USDt = U.S. defense expenditures in year t (billions of 1980 dollars)
  SYt  = Soviet GNP in year t (billions of 1970 rubles)
  SPt  =  the ratio of the number of USSR nuclear warheads (NRt) 

to the number of U.S. nuclear warheads (NUt) in year t

Table 9.1 Data on Soviet Defense Spending

Year SDh SDL USD SY SFP NR NU

1960 31 23 200.54 232.3 7.03 415 1734

1961 34 26 204.12 245.3 6.07 445 1846

1962 38 29 207.72 254.5 3.90 485 1942

1963 39 31 206.98 251.7 2.97 531 2070

1964 42 34 207.41 279.4 1.40 580 2910

1965 43 35 185.42 296.8 1.87 598 4110

1966 44 36 203.19 311.9 4.10 674 4198

1967 47 39 241.27 326.3 4.90 1058 4338

1968 50 42 260.91 346.0 4.07 1270 4134

1969 52 43 254.62 355.9 2.87 1662 4026

1970 53 44 228.19 383.3 4.43 2047 5074

1971 54 45 203.80 398.2 3.77 3199 6282

1972 56 46 189.41 405.7 2.87 2298 7100

1973 58 48 169.27 435.2 3.87 2430 8164

1974 62 51 156.81 452.2 4.30 2534 8522

1975 65 53 155.59 459.8 6.33 2614 9170

1976 69 56 169.91 481.8 0.63 3219 9518

1977 70 56 170.94 497.4 2.23 4345 9806

1978 72 57 154.12 514.2 1.03 5097 9950

1979 75 59 156.80 516.1 0.17 6336 9945

1980 79 62 160.67 524.7 0.27 7451 9668

1981 83 63 169.55 536.1 0.47 7793 9628

1982 84 64 185.31 547.0 0.07 8031 10124

1983 88 66 201.83 567.5 1.50 8730 10201

1984 90 67 211.35 578.9 1.63 9146 10630

Source: Josef C. Brada and ronald l. Graves, “the Slowdown in Soviet Defense expen-
ditures,” Southern Economic Journal, vol. 54, no. 4, p. 974.

Datafile 5 DEFEND9
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a. The authors expected positive signs for all the slope coefficients of 
both equations. Test these hypotheses at the 5-percent level.

b. Use our four specification criteria to determine whether SP is an ir-
relevant variable. Explain your reasoning.

c. Test both equations for positive first-order serial correlation. Does 
the high probability of serial correlation cause you to reconsider 
your answer to part b? Explain.

d. Someone might argue that because the DW statistic improved when 
lnSP was added, the serial correlation was impure and that GLS was 
not called for. Do you agree with this conclusion? Why or why not?

e. If we run a GLS version of Equation 9.29, we get Equation 9.31. Does 
this result cause you to reconsider your answer to part b? Explain

 lnSDHt = -2.65 + 0.104lnUSDt +  1.034 lnSYt -  0.032 lnSPt

 10.0872  10.0782  10.0342
 t = 1.20  13.30  0.93

 N = 24 1annual 1960–19842 R 

2 = .986 ρn = 0.75 

(9.31)

 7. As an example of impure serial correlation caused by an incorrect 
functional form, let’s return to the equation for the percentage of 
putts made (Pi) as a function of the length of the putt in feet (Li) 
that we discussed originally in Exercise 3 in Chapter 1. The complete 
documentation of that equation is

 Pni = 83.6 - 4.1Li

 10.42
 t = -  10.6

 N = 19  R 

2 = .861  DW = 0.48 

(9.32)

a. Test Equation 9.32 for serial correlation using the Durbin–Watson 
test at the 5-percent level.

b. Why might the linear functional form be inappropriate for this 
study? Explain your answer.

c. If we now reestimate Equation 9.32 using a double-log functional 
form, we obtain:

 lnPi = 5.50 - 0.92 lnLi

 10.072
 t = -  13.0

 N = 19  R 

2 = .903  DW = 1.22 

(9.33)

®

h
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 Test Equation 9.33 for serial correlation using the Durbin–Watson 
test at the 5-percent level.

d. Compare Equations 9.32 and 9.33. Which equation do you prefer? 
Why?

9.7  appendix: econometric Lab #5

In this lab, you’ll expand on Econometric Lab #2 by estimating an aggregate 
consumption function for the U.S. economy for the period 1945–2006, test-
ing your equation for serial correlation, and, if appropriate, taking corrective 
action.19

Step 1: State the Variables and the expected Signs of the 
Coefficients

As in Econometric Lab #2, our goal is to model U.S. aggregate consumption 
as a function of disposable personal income and the real interest rate. Once 
again, the data are from the St. Louis Federal Reserve FRED database and the 
Economic Report of the President. Descriptions of the variables are in Table 9.2, 
along with the hypothesized signs for the coefficients, and the dataset itself is 
on the text’s website as CONS9.

Table 9.2 Variable definitions
Variable Description expected sign

cont real personal consumption expenditures in 
year t, in billions of 2009 dollars

na

dpit real disposable personal income in year t, 
in billions of 2009 dollars

1

aaat the real interest rate on aaa corporate 
bonds in year t

2

yeart Year t na

19. Econometric Lab #2 used a sample for the period 1945–2014, but we end Lab #5’s sample 
in 2006 to avoid the (admittedly interesting) complications introduced by the Great Recession.
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Step 2: Estimate the Aggregate Consumption Function

Now estimate the consumption function, using disposable personal income 
and the real interest rate as the independent variables.20

Step 3: Examine the Residuals

Generate the residuals from the regression in Step 2 (naming them “e”) and 
plot them as a line graph against yeart (with yeart on the x-axis). Does the 
plot look entirely random? Explain.

Step 4: Run the Durbin–Watson Test

Conduct a Durbin–Watson test for positive serial correlation.

a. Carefully write down the null and alternative hypotheses.

b. Run a Durbin–Watson test for positive serial correlation at the 5-percent 
level. What are the upper and lower critical values in this case? What 
can you conclude? Explain.

Step 5: Run the Lagrange Multiplier Serial Correlation Test

Let’s see if our Durbin–Watson results can be confirmed with the Lagrange 
Multiplier test.

a. Are the null and alternative hypotheses for the Lagrange Multiplier test 
the same as for the Durbin–Watson test? Why or why not?

b. Conduct a Lagrange Multiplier test for serial correlation at the 5-percent 
level. What can you conclude? Explain.

Step 6: Estimate the Model with Generalized Least Squares

a. If you encountered serial correlation in either of the previous steps, 
re-estimate our aggregate consumption model using Generalized Least 
Squares.

20. If you’re using Stata, be sure to tell Stata that this is a time series and that yeart is the time 
variable.
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b. Are the GLS coefficients and t-statistics the same as the OLS coeffi-
cients and t-statistics? Explain.

c. After the GLS transformation, does serial correlation still appear to 
 exist? Support your answer.

Step 7: Calculate Newey-West Standard errors

a. If you ran a GLS model in Step 6, now estimate the aggregate con-
sumption model using the Newey–West method with a lag of 1.

b. After the Newey–West calculation, are the coefficients the same as the 
OLS coefficients? Explain.

c. Why are the Newey–West t-statistics different from the OLS t-statistics? 
Which do you prefer? Why?
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Chapter 10

Heteroskedasticity is the violation of Classical Assumption V, which states that 
the observations of the error term are drawn from a distribution that has a 
constant variance.1 The assumption of constant variances for different observa-
tions of the error term (homoskedasticity) is not always realistic. For example, 
in a model explaining heights, it’s likely that error term observations associated 
with the height of a basketball player would come from distributions with 
larger variances than those associated with the height of a mouse. Heteroske-
dasticity is important because OLS, when applied to heteroskedastic models, is 
no longer the minimum variance estimator (it still is unbiased, however).

In general, heteroskedasticity is more likely to take place in cross-sectional 
models than in time-series models. This focus on cross-sectional models is 
not to say that heteroskedasticity in time-series models is impossible, though. 
In fact, heteroskedasticity has turned out to be an important factor in time-
series studies of financial markets.

1. Various authors spell this “heteroscedasticity,” but Huston McCulloch appears to settle this 
controversy in favor of “heteroskedasticity” because of the word’s Greek origin. See J. Huston 
McCulloch, “On Heteros*edasticity,” Econometrica, Vol. 53, No. 2, p. 483. Although hetero-
skedasticity is a difficult word to spell, at least it’s an impressive comeback when parents ask, 
“What’d you learn for all that money?”

306
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The structure of this chapter will be quite familiar. We’ll attempt to answer 
the same four questions for heteroskedasticity that we answered for multicol-
linearity and serial correlation in the previous two chapters:

1. What is the nature of the problem?

2. What are the consequences of the problem?

3. How is the problem diagnosed?

4. What remedies for the problem are available?

10.1  Pure versus Impure Heteroskedasticity

Heteroskedasticity, like serial correlation, can be divided into pure and 
impure versions. Pure heteroskedasticity is caused by the error term of the 
correctly specified equation; impure heteroskedasticity is caused by a specifi-
cation error such as an omitted variable.

Pure Heteroskedasticity

Pure heteroskedasticity refers to heteroskedasticity that is a function of the 
error term of a correctly specified regression equation. As with serial correla-
tion, use of the word “heteroskedasticity” without any modifier (like pure or 
impure) implies pure heteroskedasticity.

Such pure heteroskedasticity occurs when Classical Assumption V, 
which assumes that the variance of the error term is constant, is violated in a 
correctly specified equation. Assumption V assumes that:

 VAR1ei2 = σ2 = a constant  1i = 1, 2, . . . , N2 (10.1)

If this assumption is met, all the observations of the error term can be 
thought of as being drawn from the same distribution: a distribution with 
a mean of zero and a variance of σ2. The property of having σ2 not change 
for different observations of the error term is called homoskedasticity. A 
homoskedastic error term distribution is pictured in the top half of Figure 
10.1; note that the variance of the distribution is constant (even though 
individual observations drawn from that sample will vary quite a bit).

With heteroskedasticity, this error term variance is not constant; instead, 
the variance of the distribution of the error term depends on exactly which 
observation is being discussed:

 VAR1ei2 = σ2
i  1i = 1, 2, . . . , N2 (10.2)
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Note that the only difference between Equations 10.1 and 10.2 is the sub-
script “i” attached to σ2, which implies that instead of being constant over all 
the observations, a heteroskedastic error term’s variance can change depend-
ing on the observation (hence the subscript).

Heteroskedasticity often occurs in data sets in which there is a wide dispar-
ity between the largest and smallest observed value of the dependent variable. 

0 Homoskedastic es

“Narrow” Distribution

“Wide” Distribution

0 Heteroskedastic es

Figure 10.1 Homoskedasticity versus discrete Heteroskedasticity

In homoskedasticity, the distribution of the error term has a constant variance, so the obser-
vations are continually drawn from the same distribution (shown in the top panel). In the 
simplest heteroskedastic case, discrete heteroskedasticity, there would be two different error 
term variances and, therefore, two different distributions (one wider than the other, as in 
the bottom panel) from which the observations of the error term could be drawn.
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The larger the disparity between the size of observations of the dependent 
variable in a sample is, the larger the likelihood is that the error term obser-
vations associated with them will have different variances and therefore be 
heteroskedastic. That is, we’d expect that the error term distribution for very 
large observations might have a large variance, and that the error term distri-
bution for small observations might have a small variance.

In cross-sectional data sets, it’s easy to get such a large range between the 
highest and lowest values of the variables. The difference between California 
and Rhode Island in terms of the dollar value of the consumption of goods 
and services, for instance, is quite large (comparable in percentage terms to the 
difference between the heights of a basketball player and a mouse). Since cross-
sectional models often include observations of widely different sizes in the 
same sample (cross-state studies of the United States usually include California 
and Rhode Island as individual observations, for example), heteroskedasticity 
is hard to avoid if economic topics are going to be studied cross sectionally.

The simplest way to visualize pure heteroskedasticity is to picture a world in 
which the observations of the error term could be grouped into just two different 
distributions, “wide” and “narrow.” We’ll call this simple version of the problem 
discrete heteroskedasticity. Here, both distributions would be centered around zero, 
but one would have a larger variance than the other, as indicated in the bottom 
half of Figure 10.1. Note the difference between the two halves of the figure. With 
homoskedasticity, all the error term observations come from the same distribu-
tion; with heteroskedasticity, they come from different distributions.

For an example of discrete heteroskedasticity, we need go no further than 
our discussion of the heights of basketball players and mice. We’d certainly 
expect the variance of e to be larger for basketball players as a group than for 
mice, so the distribution of e for the heights of basketball players might look 
like the “wide” distribution in Figure 10.1, and the distribution of e for mice 
would be much narrower than the “narrow” distribution in Figure 10.1.

Heteroskedasticity takes on many more complex forms. In fact, the num-
ber of different models of heteroskedasticity is virtually limitless, and an 
analysis of even a small percentage of these alternatives would be a huge task. 
Instead, we’d like to address the general principles of heteroskedasticity by 
focusing on the most frequently specified model of pure heteroskedasticity, 
just as we focused on pure, positive, first-order serial correlation in the previ-
ous chapter. However, don’t let this focus mislead you into concluding that 
econometricians are concerned only with one kind of heteroskedasticity.

In this model of heteroskedasticity, the variance of the error term is related 
to an exogenous variable Zi. For a typical regression equation:

 Yi = β0 + β1X1i + β2X2i + ei (10.3)
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the variance of the otherwise classical error term e might be equal to:

 VAR1ei2 = σ2Zi (10.4)

where Z may or may not be one of the Xs in the equation. The variable Z is  
called a proportionality factor because the variance of the error term 
changes proportionally to Zi. The higher the value of Zi, the higher the 
variance of the distribution of the ith observation of the error term. There 
would be N different distributions, one for each observation, from which the 
observations of the error term could be drawn depending on the number of 
different values that Z takes. To see what homoskedastic and heteroskedastic 
distributions of the error term look like with respect to Z, compare Figures 
10.2 and 10.3. Note that the heteroskedastic distribution gets wider as Z 
increases but that the homoskedastic distribution maintains the same width 
no matter what value Z takes.

What is an example of a proportionality factor Z? How is it possible for 
an exogenous variable such as Z to change the whole distribution of an error 
term? Think about a function that relates the consumption expenditures in 
a state to its income. The expenditures of a small state like Rhode Island are 
not likely to be as variable in absolute value as the expenditures of a large 
state like California because a 10-percent change in spending for a large state 
involves a lot more money than a 10-percent change for a small one. In such 
a case, the dependent variable would be consumption expenditures and a 
likely proportionality factor, Z, would be population. As population rose, 
so too would the variance of the error term of an equation built to explain 

0

Zi

Probability
Distribution

of the eis
ei . 0

ei , 0

Figure 10.2 a Homoskedastic error term with respect to Zi

If an error term is homoskedastic with respect to Zi, the variance of the distribution of 
the error term is the same (constant) no matter what the value of Zi is: VAR1ei2 = σ2.
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expenditures. The error term distributions would look something like those 
in Figure 10.3, where the Z in Figure 10.3 is population.

This example helps emphasize that heteroskedasticity is likely to occur in 
cross-sectional models because of the large variation in the size of the depen-
dent variable involved. An exogenous disturbance that might seem huge to a 
small state could seem miniscule to a large one, for instance.

Heteroskedasticity can occur in a time-series model with a significant 
amount of change in the dependent variable. If you were modeling sales of 
DVD players from 1994 to 2015, it’s quite possible that you would have a 
heteroskedastic error term. As the phenomenal growth of the industry took 
place, the variance of the error term probably increased as well. Such a pos-
sibility is unlikely in time series that have low rates of change, however.

Heteroskedasticity also can occur in any model, time series or cross sec-
tional, where the quality of data collection changes dramatically within the 
sample. As data collection techniques get better, the variance of the error term 
should fall because measurement errors are included in the error term. As 
measurement errors decrease in size, so should the variance of the error term. 
For more on this topic (called “errors in the variables”), see Section 14.6.

Impure Heteroskedasticity

Heteroskedasticity that is caused by an error in specification, such as an omit-
ted variable, is referred to as impure heteroskedasticity. Impure heteroske-
dasticity thus is similar to impure serial correlation.

0

Zi

Probability
Distribution

of the eis
ei . 0

ei , 0

Figure 10.3 a Heteroskedastic error term with respect to Zi

If an error term is heteroskedastic with respect to Zi, the variance of the distribution of 
the error term changes systematically as a function of Zi. In this example, the variance is 
an increasing function of Zi, as in VAR1ei2 = σ2Zi.
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An omitted variable can cause a heteroskedastic error term because the 
portion of the omitted effect not represented by one of the included explana-
tory variables must be absorbed by the error term. If this effect has a hetero-
skedastic component, the error term of the misspecified equation might be 
heteroskedastic even if the error term of the true equation is not. This distinc-
tion is important because with impure heteroskedasticity the correct remedy 
is to find the omitted variable and include it in the regression. It’s therefore 
important to be sure that your specification is correct before trying to detect 
or remedy pure heteroskedasticity.

10.2  The Consequences of Heteroskedasticity

If the error term of your equation is known to be heteroskedastic, what does 
that mean for the estimation of your coefficients? If the error term of an 
equation is heteroskedastic, there are three major consequences:2

1. Pure heteroskedasticity does not cause bias in the coefficient estimates. Even 
if the error term of an equation is known to be purely heteroskedas-
tic, that heteroskedasticity will not cause bias in the OLS estimates of 
the coefficients. This is true because even though large positive errors 
are more likely, so too are large negative errors. The two tend to aver-
age each other out, leaving the OLS estimator still unbiased.

 As a result, we can say that an otherwise correctly specified equation 
that has pure heteroskedasticity still has the property that:

E1βn 2 = β  for all βs

 Lack of bias does not guarantee “accurate” coefficient estimates, espe-
cially since heteroskedasticity increases the variance of the estimates, 
but the distribution of the estimates is still centered around the true β. 
Equations with impure heteroskedasticity caused by an omitted vari-
able, of course, will have possible specification bias.

2. Heteroskedasticity typically causes OLS to no longer be the minimum-
variance estimator (of all the linear unbiased estimators). Pure hetero-
skedasticity causes no bias in the estimates of the OLS  coefficients, 

2. It turns out that the consequences of heteroskedasticity are almost identical in general frame-
work to those of serial correlation, though the two problems are quite different.
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but it does affect the minimum-variance property. If the error term of 
an equation is heteroskedastic with respect to a proportionality fac-
tor Z:

 VAR1ei2 = σ2Zi (10.5)

 then the minimum-variance portion of the Gauss–Markov Theorem 
cannot be proven because there are other linear unbiased estimators 
that have smaller variances. This is because the heteroskedastic error 
term causes the dependent variable to fluctuate, and the OLS estima-
tion procedure attributes this fluctuation to the independent variables. 
Thus, OLS is more likely to misestimate the true β in the face of hetero-
skedasticity. The βns still are unbiased because overestimates are just as 
likely as underestimates.

3. Heteroskedasticity causes the OLS estimates of the SE(bn )s to be biased, 
leading to unreliable hypothesis testing and confidence intervals. With 
heteroskedasticity, the OLS formula for the standard error produces 
biased estimates of the SE(βn )s. Because the SE(βn ) is a prime compo-
nent in the t-statistic, these biased SE(βn )s cause biased t-scores and 
unreliable hypothesis testing in general. In essence, heteroskedastic-
ity causes OLS to produce incorrect SE(βn )s and t-scores! Not surpris-
ingly, most econometricians therefore are very hesitant to put much 
faith in hypothesis tests that were conducted in the face of pure het-
eroskedasticity.3

What sort of bias in the standard errors does heteroskedasticity tend to 
cause? Typically, heteroskedasticity causes OLS estimates of the standard 
errors to be biased downward, making them too small. Sometimes, however, 
they’re biased upward; it’s hard to predict in any given case. But either way, 
it’s a big problem for hypothesis testing and confidence intervals.

What’ll happen if OLS underestimates a standard error? Well, the “too 
low” SE1βn 2 will cause a “too high” t-score for a particular coefficient, and 
this will make it more likely that we will reject a null hypothesis (for exam-
ple, H0: β … 0) when it is in fact true. This increased chance of rejecting H0 
means that we’re more likely to make a Type I error and we’re more likely 
to make the mistake of keeping an irrelevant variable in an equation. Also, 
because the confidence interval depends directly on SE1βn 2 (see Equation 5.9), 

3. While our discussion here involves the t-test, the same conclusion of unreliability in the face 
of heteroskedasticity applies to all other test statistics, including confidence intervals.
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the underestimation of SE1βn 2 will fool us into thinking that our estimate is 
more precise than it really is.4

In other words, pure heteroskedasticity can make quite a mess of our 
results. Hypothesis testing will become unreliable, and confidence intervals 
will be misleading.

10.3  Testing for Heteroskedasticity

As we’ve seen, heteroskedasticity is a potentially nasty problem. The good news 
is that there are many tests for heteroskedasticity. The bad news is heteroske-
dasticity can take many different forms and no single test can find them all.

In this section, we’ll describe two of the most popular and powerful tests 
for heteroskedasticity, the Breusch–Pagan test and the White test.5 While nei-
ther test can “prove” that heteroskedasticity exists, these tests often can give 
us a pretty good idea of whether or not it’s a problem.

Before using any test for heteroskedasticity, it’s a good idea to start with the 
following preliminary questions:

1. Are there any obvious specification errors? Are there any likely omitted 
variables? Have you specified a linear model when a double-log model 
is more appropriate? Don’t test for heteroskedasticity until the specifica-
tion is as good as possible. After all, if you find heteroskedasticity in an 
incorrectly specified model, there’s a chance it will be impure.

2. Are there any early warning signs of heteroskedasticity? Just as certain 
kinds of clouds can warn of potential storms, certain kinds of data can 
signal possible heteroskedasticity. In particular, if the dependent vari-
able’s maximum value is many, many times larger than its minimum, 
beware of heteroskedasticity.

3. Does a graph of the residuals show any evidence of heteroskedasticity? It 
sometimes saves time to plot the residuals against a potential Z propor-
tionality factor or against the dependent variable. If you see a pattern in 
the residuals, you’ve got a problem. See Figure 10.4 for a few examples 
of heteroskedastic patterns in the residuals.

4. If OLS overestimates the standard error, then we’ll have the same problems but in reverse. 
The “too high” SE1βn 2 will lead to a “too low” t-score. If the t-score is lowered enough, we might 
be fooled into failing to reject a false null hypothesis, thus increasing the risk that we’ll drop a 
relevant variable from the model. In addition, the confidence intervals will be too wide, leading 
to similar potential mistakes.

5. Both tests belong to a general group of tests based on the Lagrange Multiplier (LM), which 
you first met in Chapter 9.
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Figure 10.4 eyeballing residuals for Possible Heteroskedasticity

If you plot the residuals of an equation with respect to a potential Z proportionality 
 factor, a pattern in the residuals is an indication of possible heteroskedasticity.
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Note that Figure 10.4 shows “textbook” examples of heteroskedasticity. 
The real world is nearly always a lot messier than textbook graphs. It’s not 
unusual to look at a real-world residual plot and be unsure whether there’s a 
pattern or not. As a result, even if there are no obvious specification errors, no 
early warning signs, and no visible residual patterns, it’s a good idea to do a 
formal statistical test for heteroskedasticity, so we’d better get started.

the Breusch–pagan test

The Breusch–Pagan test is a method of testing for heteroskedasticity in the 
error term by investigating whether the squared residuals can be explained by 
possible proportionality factors.6

Here’s how it works.

1. Obtain the residuals from the estimated regression equation. For an equation 
with two independent variables, this would be:

 ei = Yi - Yni = Yi - βn 0 - βn 1X1i - βn 2X2i (10.6)

2. Use the squared residuals as the dependent variable in an auxiliary equation. 
As the explanatory variables in the auxiliary regression, use right-hand 
variables from the original regression that you suspect might be pro-
portionality factors. For many researchers, the default option is to 
include all of them. For instance, if the original equation has two ex-
planatory variables, then the auxiliary regression would be:

 ei
2 = α0 + α1X1i + α2X2i + ui (10.7)

3. Test the overall significance of Equation 10.7 with a chi-square test. The null 
and alternative hypotheses are:

H0: α1 = α2 = 0

HA: H0 is false

 The null hypothesis is homoskedasticity, because if α1 = α2 = 0, then 
the variance equals α0, which is a constant. The test statistic here is NR2, 
or the sample size (N) times the unadjusted R2 from Equation 10.7. 
This test statistic has a chi-square distribution7 with degrees of freedom 

6. T. S. Breusch and A. R. Pagan, “A Simple Test for Heteroscedasticity and Random Coefficient 
Variation,” Econometrica, Vol. 47, pp. 1287–1294.

7. You might wonder why the test statistic is not the overall F-statistic of the auxiliary regres-
sion. It turns out that the F-statistic is valid only if the errors are normally distributed, and in 
this case, with squared residuals as the dependent variable, it’s not safe to assume the errors are 
normally distributed. With non-normal errors, the proper test is a chi-square test.
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equal to the number of slope coefficients in the auxiliary regression 
(Equation 10.7). If NR2 is greater than or equal to the critical chi-square 
value, then we reject the null hypothesis of homoskedasticity.

If you strongly suspect that only certain variables are plausible Z factors, 
then you should run the Breusch–Pagan test using only an intercept and the 
suspect variables. The degrees of freedom for the chi-square statistic of course 
would change in such a situation, because they’re equal to the number of 
right-hand-side variables in the auxiliary equation. If you’re certain you know 
the one and only proportionality factor Z and that there are no other forms 
of heteroskedasticity present, you don’t even need to fool with the chi-square 
statistic. You can just do a two-sided t-test8 on the αn  for Z.

The strengths of the Breusch–Pagan test are that it’s easy to use and it’s 
powerful if heteroskedasticity is related to one or more linear proportionality 
factors. Its weakness is that if it fails to find heteroskedasticity, it only means 
there is no evidence of heteroskedasticity related to the Zs you’ve chosen. If 
you’re pretty certain that the Xs in the auxiliary regression are the only plau-
sible proportionality factors, you can rest easy. But if you’re not certain, you 
might want to use the White test, which we’ll discuss shortly.

As an example of the use of the Breusch–Pagan test, let’s return to the 
Woody’s restaurants example of Section 3.2 and use the residuals of Equa-
tion 3.4 to test for heteroskedasticity. Recall that the regression explained 
the number of customers, as measured by the check volume (Y) for a cross 
section of 33 different Woody’s restaurants as a function of the number of 
nearby competitors (N), the nearby population (P), and the average house-
hold income of the local area (I):

 Yni = 102,192 - 9075Ni + 0.355Pi + 1.288Ii (3.4)
 120532  10.0732  10.5432
 t = -4.42  4.88   2.37
 N = 33    R 

2 = .579

The first step in the Breusch–Pagan test is to obtain the residuals from 
Equation 3.4. You can find these residuals in Table 3.2 on page 77. The 

8. A Breusch–Pagan test with a single Z is a linear version of the Park test, which uses a double-
log equation to test whether the squared residuals can be explained by a single potential Z pro-
portionality factor. See R. E. Park, “Estimation with Heteroskedastic Error Terms,” Econometrica, 
Vol. 54, p. 888. A major disadvantage of the Park test, of course, is that the researcher must 
choose a single Z proportionality factor.
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second step is to square the residuals and use them as the dependent vari-
able in an auxiliary regression. If we include all the independent variables in 
Equation 3.4 in our auxiliary equation, we get:

 ei
2 = α0 + α1Ni + α2Pi + α3Ii + ui (10.8)

If we estimate Equation 10.8, we find that the unadjusted R2 = .0441. 
We know that N = 33, so we can calculate that the chi-square statistic
= NR2 = 331.04412 = 1.455. Since the 5-percent critical value of chi-
square with 3 degrees of freedom is 7.81, we can’t reject the null hypothesis 
that α1 = α2 = α3 = 0. As a result, the Breusch–Pagan test doesn’t provide 
any evidence that Equation 3.4 suffers from heteroskedasticity. This makes 
sense. Even though the Woody’s sample is cross-sectional, the largest value 
of the dependent variable isn’t even twice the size of the smallest one, so we 
have no reason to suspect pure heteroskedasticity.

The White Test

Probably the most popular of all the heteroskedasticity tests is the White 
test9 because it can find more types of heteroskedasticity than any other test. 
That’s a distinct advantage in a world where just about any variable or combi-
nation of variables, linear or nonlinear, could trip us up with a heteroskedas-
tic stumbling block. Let’s see how it works.

The White test investigates the possibility of heteroskedasticity in an 
equation by seeing if the squared residuals can be explained by the equa-
tion’s independent variables, their squares, and their cross–products. To run 
the White test:

1. Obtain the residuals of the estimated regression equation.

2. Estimate an auxiliary regression, using the squared residuals as the dependent 
variable, with each X from the original equation, the square of each X, and 
the product of each X times every other X as the explanatory variables. For ex-
ample, if the original equation’s independent variables are X1 and X2, 
the White test equation is:

 ei
2 = α0 + α1X1i + α2X2i + α3X1i

2 + α4X2i
2 + α5X1i X2i + ui (10.9)

9. Halbert White, “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct 
Test for Heteroskedasticity, Econometrica, Vol. 48, pp. 817–838.
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3. Test the overall significance of Equation 10.9 with a chi-square test. Once 
again, the test statistic is NR2, the sample size (N) times the unadjusted 
R2 of Equation 10.9. This test statistic has a chi-square distribution with 
degrees of freedom equal to the number of slope coefficients in the 
auxiliary regression. The null hypothesis is that all the slope coefficients 
in Equation 10.9 equal zero, and if NR2 is greater than the chi-square 
critical value, then we can reject the null hypothesis and conclude that 
there’s evidence of heteroskedasticity.

Check out the explanatory variables in Equation 10.9. They include 
every variable in the original model, their squares, and their cross products. 
Including all the variables from the original model allows the White test to 
check to see if any or all of them are Z proportionality factors. Including 
all the squared terms and cross products allows us to test for more exotic 
and complex types of heteroskedasticity. This is the White test’s greatest 
strength.

However, the White test contains more right-hand-side variables than the 
original regression, sometimes a lot more. This can be its greatest weakness. 
To see why, note that as the number of explanatory variables in an original 
regression rises, the number of right-hand variables in the White test auxil-
iary regression goes up much faster. For example, there are five right-hand 
variables in Equation 10.9 even though the original model had only two, 
X1 and X2. With three variables in the original model, the White regression 
could have nine. With 12 explanatory variables in the original model, there 
could10 be 90 in the White regression with all the squares and interactive 
terms included!

And this is where the weakness becomes a real problem. If the number 
of right-hand variables in the auxiliary regression exceeds the number of 
observations, you can’t run the White test regression because you would have 
negative degrees of freedom in the auxiliary equation! Even if the degrees of 
freedom in the auxiliary equation are positive but small, the White test might 
do a poor job of detecting heteroskedasticity because the fewer the degrees of 

10. There could be fewer explanatory variables if one or more of the original independent 
variables is a dummy, since the square of a dummy is the same as a dummy and the cross 
product of a variable times a dummy equals the original variable itself or zero. Because of the 
large number of variables and this possible duplication, it’s tedious to create and check all the 
variables for the White test. Luckily, Stata and most other econometric software packages have 
simple commands to do the work for you.
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freedom there are, the less powerful the statistical test is. In such a situation, 
you’d be limited to the Breusch–Pagan test or an alternative.11

As an example of the White test, let’s again return to the Woody’s restau-
rants model of Section 3.2. As with the Breusch–Pagan test, the first step is to 
obtain the residuals of the original Woody’s equation. The second step in the 
White test is to square the residuals and use them as the dependent variable 
in an auxiliary regression that includes N, P, I, their squares, and their cross 
products as independent variables:

ei
2 = α0 + α1Ni + α2Pi + α3Ii + α4Ni

2 + α5Pi
2 + α6Ii

2

 + α7NiPi + α8NiIi + α9PiIi + ui

If we estimate this equation with the Woody’s data, we find that the unad-
justed R2 = .1218. Since N = 33, the chi-square NR2 = 331.12182 = 4.02. 
That’s less than 16.92, the 5-percent critical chi-square value with nine degrees 
of freedom (do you see why it’s nine?), so we once again can’t reject the null 
hypothesis of homoskedasticity.

10.4  Remedies for Heteroskedasticity

The first thing to do if the Breusch–Pagan test or the White test indicates the 
possibility of heteroskedasticity is to examine the equation carefully for speci-
fication errors. Although you should never include an explanatory variable 
simply because a test indicates the possibility of heteroskedasticity, you ought 
to rigorously think through the specification of the equation. If this rethinking 
allows you to discover a variable that should have been in the regression from 
the beginning, then that variable should be added to the equation. Similarly, if 
you had the wrong functional form to begin with, the discovery of heteroske-
dasticity might be the hint you need to rethink the specification and switch to 
the functional form that best represents the underlying theory. However, if there 
are no obvious specification errors, the heteroskedasticity is probably pure in 
nature, and one of the remedies described in this section should be considered.

11. For instance, there is an alternative form of the White test that has many fewer degrees of 
freedom in the auxiliary equation. You perform this alternative White test by replacing all the 
right-hand variables in Equation 10.9 with the fitted Y values and the squares of the fitted Y 
values from the original model. That is, run: e2

i = α0 + α1Yni + α2Yn
2
i + ui with the null hypoth-

esis being α1 = α2 = 0 and the rest of the test being the same. This isn’t as good as the full 
White test, but if the full White test is impossible to run, this may be an excellent alternative. 
For more, see Christopher F. Baum, An Introduction to Modern Econometrics Using Stata (College 
Station, TX: Stata Press, 2006), p. 146.
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Heteroskedasticity-Corrected Standard Errors

The most popular remedy for heteroskedasticity is heteroskedasticity-
corrected standard errors, which adjust the estimation of the SE1βn 2s for het-
eroskedasticity while still using the OLS estimates of the slope coefficients. 
The logic behind this approach is powerful. Since heteroskedasticity causes 
problems with the SE1βn 2s but not with the βns, it makes sense to improve 
the estimation of the SE1βn 2s in a way that doesn’t alter the estimates of the 
slope coefficients. This approach is virtually identical to the use of Newey–
West standard errors as a remedy for serial correlation.

Thus, heteroskedasticity-corrected (HC) standard errors are SE1βn 2s 
that have been calculated specifically to avoid the consequences of heteroske-
dasticity. The HC procedure yields an estimator of the standard errors that, 
while they are biased, are generally more accurate than uncorrected standard 
errors for large samples in the face of heteroskedasticity. As a result, the HC 
SE1βn 2s can be used in t-tests and other hypothesis tests in most samples with-
out the errors of inference potentially caused by heteroskedasticity. Typically, 
the HC SE1βn 2s are larger than the OLS SE1βn 2s, thus producing lower t-scores 
and decreasing the probability that a given estimated coefficient will be signifi-
cantly different from zero. The technique was suggested by Halbert White in 
the same article in which he proposed the White test for heteroskedasticity.12

There are a few problems with using heteroskedasticity-corrected standard 
errors. First, the technique works best in large samples, so it’s best to avoid 
HC SE1βn 2s in small samples. Second, details of the calculation of the HC 
SE1βn 2s are beyond the scope of this text and imply a model that is substan-
tially more general than the basic theoretical construct, VAR1ei2 = σ2Zi, of 
this chapter. In addition, not all computer regression software packages cal-
culate heteroskedasticity-corrected standard errors.

Redefining the Variables

Another approach to ridding an equation of heteroskedasticity is to go back 
to the basic underlying theory of the equation and redefine the variables in 
a way that avoids heteroskedasticity. A redefinition of the variables often is 
useful in allowing the estimated equation to focus more on the behavioral 

12. Note that Newey–West standard errors, introduced in Section 9.4, also can be used as HC 
standard errors. Indeed, some econometric software packages provide a choice between the 
White and Newey–West procedures. Unless otherwise noted, however, HC standard errors 
should be assumed to be of the White variety. Most authors refer to this method as HCCM, for 
heteroskedasticity-consistent covariance matrix.
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aspects of the relationship. Such a rethinking is a difficult and discouraging 
process because it appears to dismiss all the work already done. However, 
once the theoretical work has been reviewed, the alternative approaches that 
are discovered are often exciting in that they offer possible ways to avoid 
problems that had previously seemed insurmountable. Be careful, however. 
Redefining your variables is a functional form specification change that can 
dramatically change your equation.

In some cases, the only redefinition that’s needed to rid an equation of 
heteroskedasticity is to switch from a linear functional form to a double-log 
functional form. The double-log form has inherently less variation than the 
linear form, so it’s less likely to encounter heteroskedasticity. In addition, 
there are many research topics for which the double-log form is just as theo-
retically logical as the linear form. This is especially true if the linear form was 
chosen by default, as is often the case.

In other situations, it might be necessary to completely rethink the 
research project in terms of its underlying theory. For example, consider a 
cross-sectional model of the total expenditures by the governments of dif-
ferent cities. Logical explanatory variables to consider in such an analysis are 
the aggregate income, the population, and the average wage in each city. The 
larger the total income of a city’s residents and businesses, for example, the 
larger the city government’s expenditures (see Figure 10.5). In this case, it’s 
not very enlightening to know that the larger cities have larger incomes and 
larger expenditures (in absolute magnitude) than the smaller ones.

Fitting a regression line to such data (see the line in Figure 10.5) also gives 
undue weight to the larger cities because they would otherwise give rise to 
large squared residuals. That is, since OLS minimizes the summed squared 
residuals, and since the residuals from the large cities are likely to be large 
due simply to the size of the city, the regression estimation will be especially 
sensitive to the residuals from the larger cities. This is often called “spurious 
correlation” due to size.

In addition, the residuals may indicate heteroskedasticity. It makes 
sense to consider reformulating the model in a way that will discount 
the scale factor (the size of the cities) and emphasize the underlying 
behavior. In this case, per capita expenditures would be a logical depen-
dent variable. Such a transformation is shown in Figure 10.6. This form 
of the equation places New York and Los Angeles on the same scale as, 
say, Pasadena or New Brunswick, and thus gives them the same weight 
in estimation. If an explanatory variable happened not to be a function 
of the size of the city, however, it would not need to be adjusted to per 
capita terms. If the equation included the average wage of city workers, for 
example, that wage would not be divided through by population in the 
transformed equation.
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Suppose your original equation is:

 EXPi = β0 + β1POPi + β2INCi + β3WAGEi + ei (10.10)

where EXPi refers to expenditures, INCi refers to income, WAGEi refers to the 
average wage, and POPi refers to the population of the ith city.

The transformed equation would be13

 EXPi/POPi = α0 + α1INCi/POPi + α2WAGEi + ui (10.12)
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Figure 10.5 an aggregate city expenditures function

If city expenditures are explained in an aggregate model, the larger cities play a major 
role in the determination of the coefficient values. Note how the slope would be some-
what lower without the heavy influence of the larger cities. In addition, heteroskedastic-
ity is a potential problem in an aggregate model because the wide range of sizes of the 
dependent variable makes different error term variances more likely.

13. This transformed equation is very similar to the equation for Weighted Least Squares 
(WLS). Weighted Least Squares is a remedy for heteroskedasticity that consists of dividing the 
 entire equation (including the constant and the heteroskedastic error term) by the proportion-
ality factor Z and then re-estimating the equation with OLS. For the example in this section, the 
WLS equation would be:

 EXPi/POPi = β0/POPi + β1 + β2INCi/POPi + β3WAGEi/POPi + ui (10.11)

where the variables and βs in Equation 10.11 are identical to those in Equation 10.10. Divid-
ing through by Z means that u is a homoskedastic error term as long as Z is the correct propor-
tionality factor. This is not a trivial problem, however, and other transformations and HCSEs 
are much easier to use than WLS is, so we no longer recommend the use of WLS.
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where ui is a classical homoskedastic error term. While the directly trans-
formed Equation 10.12 probably avoids heteroskedasticity, such a solution 
should be considered incidental to the benefits of rethinking the equation in 
a way that focuses on the basic behavior being examined.

Note that it’s possible that the reformulated Equation 10.12 could have 
 heteroskedasticity; the error variances might be larger for the observations 
having the larger per capita values for expenditures than they are for smaller 
per capita values. Thus, it is legitimate to suspect and test for heteroske-
dasticity even in this transformed model. Such heteroskedasticity in the 
transformed equation is unlikely, however, because there will be little of the 
variation in size normally associated with heteroskedasticity.

10.5  A More Complete Example

Let’s work through a more complete example involving heteroskedasticity, a 
cross-sectional model of petroleum consumption by state.

0 Income Per Capita

Large and Small Cities
Given Equal Weight

E
xp

en
di

tu
re

s 
Pe

r 
C

ap
ita

Figure 10.6 a Per capita city expenditures function

If city expenditures are explained in a per capita model, then large and small cities have 
equal weights. In addition, heteroskedasticity is less likely, because the dependent variable 
does not vary over a wide range of sizes.
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Possible explanatory variables include functions of the size of the state 
(such as the number of miles of roadway, the number of motor vehicle reg-
istrations, or the population) and variables that are not functions of the size 
of the state (such as the price of gasoline or the speed limit). Since there is 
little to be gained by including more than one variable that measures the size 
of the state (because such an addition would be theoretically redundant and 
likely to cause needless multicollinearity), and since the speed limit was the 
same for all states (it would be a useful variable in a time-series model, how-
ever) a reasonable model to consider might be:

 +  -
 PCONi = β0 + β1REGi + β2PRICEi + ei (10.13)

where: PCONi = petroleum consumption in the ith state (trillions of BTUs)
  REGi  = motor vehicle registrations in the ith state (thousands)
 PRICEi = the price of gasoline in the ith state (cents per gallon)
 ei  = a classical error term

The more cars there are registered in a state, we would think, the more 
petroleum would be consumed, while a high gasoline price would decrease 
aggregate gasoline purchases in that state.14 If we now collect data from 2005 
for this example (see Table 10.1) we can estimate:

 PCONi = 4101 + 0.16REGi - 1885PRICEi 
 (0.01) (750) 
 t =  12.4 -2.51 
 N = 50 R 

2 = .76 

(10.14)

This equation seems to have no problems; the coefficients are significant 
in the hypothesized directions, and the overall equation is statistically sig-
nificant. No Durbin–Watson statistic is shown because there is no “natural” 
order of the observations to test for serial correlation (if you’re curious, the 
DW for the order in Table 10.1 is 2.15).

Given the discussion in the previous sections, let’s investigate the possibility 
of heteroskedasticity caused by variation in the size of the states. To test this 
possibility, we obtain the residuals from Equation 10.14, and run Breusch–
Pagan and White tests on them.

h

14. An alternative to using PRICE as an independent variable in this equation is to use 
PRICE*REG or PRICE*POP (where POPi is the population of the ith state). These are more 
sophisticated examples of the interaction terms we introduced in Section 7.4 in our discussion 
of slope dummy variables.
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Table 10.1 data for the Petroleum consumption example

PCON PRICE REG POP STATE
580 2.11 4545 4548 alabama
284 2.13 673 663 alaska
537 2.23 3972 5953 arizona
377 2.10 1940 2776 arkansas

3837 2.47 32487 36154 california
463 2.19 1808 4663 colorado
463 2.17 3059 3501 connecticut
148 2.07 737 842 delaware

1940 2.21 15691 17768 florida
1058 2.09 8063 9133 georgia
270 2.47 948 1273 Hawaii
139 2.14 1374 1429 Idaho

1313 2.22 9458 12765 Illinois
901 2.19 4955 6266 Indiana
393 2.13 3398 2966 Iowa
434 2.17 2368 2748 kansas
664 2.14 3428 4173 kentucky

1610 2.10 3819 4507 louisiana
262 2.16 1075 1318 maine
561 2.15 4322 5590 maryland
734 2.08 5420 6433 massachusetts

1010 2.24 8247 10101 michigan
694 2.11 4647 5127 minnesota
484 2.11 1978 2908 mississippi
737 2.09 4589 5798 missouri
161 2.17 1009 935 montana
231 2.21 1703 1758 nebraska
242 2.38 1349 2412 nevada
198 2.08 1174 1307 new Hampshire

1233 1.99 6262 8703 new Jersey
250 2.19 1548 1926 new mexico

1776 2.23 11863 19316 new york
947 2.14 6148 8672 north carolina
121 2.19 695 635 north dakota

1340 2.19 10634 11471 ohio
545 2.08 3725 3543 oklahoma
370 2.28 2897 3639 oregon

1466 2.14 9864 12405 Pennsylvania
102 2.12 812 1074 rhode Island
517 2.06 3339 4247 south carolina
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Before we can run a Breusch–Pagan test, we must decide which variables to 
include on the right-hand side of the auxiliary equation. REG (motor vehicle 
registrations) is a measure of market size, so it’s an obvious proportionality 
factor. On the other hand, PRICE (gasoline prices) seems unlikely to vary 
significantly with the size of the state, so it’s less likely to be a Z. However, 
many researchers automatically include all the independent variables from 
the original equation in the Breusch–Pagan auxiliary equation, so let’s use 
that approach and estimate the auxiliary equation (Equation 10.7) with both 
REG and PRICE:

 e2
i = 5164290 + 83.33REGi - 2475027PRICEi 

 (25.1) (1476765) 
 t =  3.32 -1.68 
 N = 50 R2 = .197 

(10.15)

The Breusch–Pagan test specifies that we should reject the null hypothesis 
of homoskedasticity 1α1 = α2 = 02 if NR2 7  the appropriate critical chi-
square value. Since N = 50 and R2 = .197, NR2 = 501.1972 = 9.85. If you 
take a look at Table B-6, you’ll see that the 5-percent critical chi-square value 
equals 5.99, so since 9.85 7 5.99, we can reject the null hypothesis of homo-
skedasticity.15 We have heteroskedasticity!

PCON PRICE REG POP STATE
113 2.20 854 775 south dakota
782 2.11 4980 5956 tennessee

5628 2.07 17470 22929 texas
276 2.12 2210 2490 utah

86 2.13 508 622 vermont
965 2.10 6591 7564 virginia
793 2.28 5598 6292 Washington
255 2.20 1352 1814 West virginia
597 2.26 4725 5528 Wisconsin
162 2.08 646 509 Wyoming

source: 2008 Statistical Abstract (u.s. department of commerce). 

datafile = gas10

15. If we run the Breusch–Pagan test with REG as the only proportionality factor, we also can reject 
the null hypothesis of homoskedasticity at the 5-percent level because the t-score of 2.90 is greater 
than 2.01, the 5-percent two-sided critical t-score with 48 degrees of freedom. (Table B-1 doesn’t 
include a value for 48 degrees of freedom, but we can interpolate to get a critical value of 2.01.)
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To see whether the White test also will detect this heteroskedasticity, we’ll 
need to modify Equation 10.9 to fit our example. The dependent variable will 
be the square of the residuals in Equation 10.14, and the independent vari-
ables will be REG, PRICE, their squares, and their cross-product:

 ei
2 = α0 + α1REGi + α2PRICEi + α3REGi

2 

 + α4PRICEi
2 + α5REGi*PRICEi + ui 

(10.16)

If we estimate Equation 10.16 with the residuals from Equation 10.14 and 
the data from Table 10.1, we obtain an R2 of .85.

Since N = 50, NR2 = 50*.85 = 42.5. As you can confirm by looking at 
Table B-6, the critical chi-square value at the 5-percent level for 5 degrees of 
freedom is 11.07. This means that our decision rule is:

Do not reject the null hypothesis of homoskedasticity if NR2 6 11.07
Reject the null hypothesis of homoskedasticity if NR2 Ú 11.07

NR2 = 42.5 7 11.07, so we can reject the null hypothesis of homoskedasticity.
Since there appears to be heteroskedasticity in the residuals of Equation 

10.14, what should we do? First, we should think through the specification 
of the equation in search of an omitted variable. While there are a number 
of possible omitted variables, it turns out that the heteroskedasticity in the 
equation is pure heteroskedasticity for the most part.

Let’s apply the most popular of our remedies, heteroskedasticity-corrected 
standard errors, to this example. If we start with Equation 10.14 and use 
White’s suggested method for estimating SE1βn 2s that are minimum variance 
(for large samples) in the face of heteroskedasticity, we obtain:

 PCONi = 4101 + 0.16REGi - 1885PRICEi 
 10.032     113602 
 t =   4.85     -1.39 

(10.17)

Compare Equation 10.14 with Equation 10.17. Note that the slope coef-
ficients are identical, as you’d expect, since the HC approach uses OLS to esti-
mate the coefficients. Also note that the HC SE1βn 2s are higher than the OLS 
SE1βn 2s, as is usually but not necessarily the case. While the resulting t-scores 
are lower, they are still reasonably large in the direction we expected, making 
Equation 10.17 very appealing indeed.

A second possible remedy for heteroskedasticity is to change to a double-
log functional form. If we use the data in Table 10.1 to estimate a double-log 
equation, we get:

®
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 lnPCONi = -0.32 + 0.90lnREGi - 0.89lnPRICEi 
 10.042   11.032 
 t =     20.3    -0.87 
 N = 50   R 

2 = .89 

(10.18)

As can be seen, switching to logs improves R 

2 and the significance of the 
coefficient of lnREG, but the t-score for the coefficient of lnPRICE is below 1. 
We’d normally be concerned about such a low t-score, but the estimated coef-
ficient is in the expected direction, and PRICE unambiguously belongs in the 
equation for theoretical reasons, so there’s no reason to consider the possibil-
ity that PRICE might be irrelevant. As we’d hope, the White test indicates that 
the residuals of Equation 10.18 are indeed homoskedastic.

Finally, an alternative is to rethink the purpose of the regression and refor-
mulate the variables of the equation to try to avoid heteroskedasticity result-
ing from spurious correlation due to size. If we were to rethink Equation 
10.14, we might decide to attempt to explain per capita petroleum consump-
tion, coming up with:

 PCONi/POPi = β0 + β1REGi/POPi + β2PRICEi + ei (10.19)

where POPi is the population of the ith state in thousands of people.
If we estimate Equation 10.19, we obtain:

 PCONi/POPi = 0.23 + 0.15REGi/POPi - 0.10PRICEi (10.20)
 10.062     10.102 
 t =     2.52      -1.00 

 N = 50  R 

2 = .12 

If we compare Equation 10.20 with Equations 10.17 and 10.18, we see that 
this approach is quite different and not necessarily better. The statistical 
properties of Equation 10.20, though not directly comparable to the other 
equations, do not appear as strong as they might16 be, but this is not neces-
sarily the deciding factor. One positive note is that the residuals of Equation 
10.20 do indeed appear to be homoskedastic.

®

16. Petroleum-producing states like Texas, Louisiana, and Alaska consume petroleum products 
for many reasons other than their use in motor vehicles, so it might be tempting to add a vari-
able measuring petroleum production to the equation. A better approach, however, would be 
to limit the dependent variable to the consumption of petroleum for use in motor vehicles. In 
addition, there is evidence that the Statistical Abstract of the United States data for REG may well 
have been incorrect for Colorado. Adjusting for this possible error improves the fit of the per-
capita model dramatically. We are grateful to Ron Michener for both of these insights.
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Which remedy is best: HC standard errors, the double-log functional 
form, or reformulating the equation? Most econometricians would prefer HC 
standard errors, though the sample size of 50 makes it unlikely that the large 
sample properties of HC estimators hold in this case. However, this answer 
could change depending on the underlying theory of your equation. If theory 
strongly supports either the double-log or the reformulated functional form, 
then that model clearly is best. In such a situation, however, it’s worth ask-
ing why the theoretically superior functional form wasn’t chosen in the 
first place. Finally, in the fairly unusual case that t-scores aren’t used to test 
hypotheses or retain variables, then it’s not at all clear that any sort of remedy 
for heteroskedasticity is required at all.

10.6  Summary

1. Heteroskedasticity is the violation of Classical Assumption V that 
the observations of the error term are drawn from a distribution 
with a constant variance. Homoskedastic error term observations 
are drawn from a distribution that has a constant variance for all 
observations, and heteroskedastic error term observations are drawn 
from distributions whose variances differ from observation to obser-
vation. Heteroskedasticity occurs most frequently in cross-sectional 
data sets.

2. The variance of a heteroskedastic error term is not equal to σ2, a con-
stant. Instead, it equals σ2

i , where the subscript i indicates that the 
variance can change from observation to observation. Many different 
kinds of heteroskedasticity are possible, but a common model is one 
in which the variance changes systematically as a function of some 
other variable, a proportionality factor Z:

VAR1ei2 = σ2Zi

 The proportionality factor Z is usually a variable related in some way 
to the size or accuracy of the dependent variable.

3. Pure heteroskedasticity is a function of the error term of the correctly 
specified regression equation. Impure heteroskedasticity is caused by 
a specification error such as an omitted variable.

4. The major consequence of heteroskedasticity is bias in the OLS SE(βn)s,  
causing unreliable hypothesis testing. Pure heteroskedasticity does 
not cause bias in the estimates of the βs themselves.
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5. Two popular tests for heteroskedasticity are the Breusch–Pagan test 
and the White test. Both test for heteroskedasticity by analyzing the 
extent to which the squared residuals of the original equation can be 
explained by an auxiliary equation.

6. The first step in correcting heteroskedasticity is to check for a speci-
fication error that might be causing impure heteroskedasticity. If the 
specification is as good as possible, then solutions such as HC stan-
dard errors or redefining the variables should be considered.

ExErcisEs

(The answers to the even-numbered exercises are in Appendix A.)

 1. Write the meaning of each of the follow terms without referring to the 
book (or your notes), and compare your definition with the version 
in the text for each.
a. the Breusch–Pagan test (p. 316)
b. heteroskedasticity (p. 307)
c. heteroskedasticity-corrected standard errors (p. 321)
d. impure heteroskedasticity (p. 311)
e. proportionality factor (p. 310)
f. pure heteroskedasticity (p. 307)
g. the White test (p. 318)

 2. Let’s return to the analysis of the international pharmaceutical indus-
try that we started in Exercise 9 of Chapter 5. That study was cross 
sectional and included countries as large as the United States and as 
small as Luxembourg, so you’d certainly expect heteroskedasticity to 
be a potential problem. Luckily, the dependent variable in the origi-
nal research was Pi, the pharmaceutical price level in the ith country 
divided by that of the United States, so the researchers didn’t encoun-
ter the wide variations in size typically associated with heteroskedas-
ticity. (Do you see why?)

    Suppose, however, that we use the same data set to build a model 
of pharmaceutical consumption:

 CVi = -15.9 + 0.18Ni + 0.22Pi + 14.3PCi 
 10.052  10.092  16.42 
 t =    3.32    2.53     2.24 
 N = 32  R 

2 = .31 

(10.21)

9
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where: CVi =  the volume of consumption of pharmaceuticals in 
the ith country divided by that of the United States

 Ni  =  the population of the ith country divided by that of 
the United States

 PCi =  a dummy variable equal to 1 if the ith country encour-
aged price competition, 0 otherwise

a. Does heteroskedasticity seem more likely when CV is the depen-
dent variable than when P is the dependent variable? Explain your 
reasoning.

b. Use the data in Table 5.2 (datafile = DRUGS5) to test for heteroske-
dasticity in Equation 10.21 with both the Breusch–Pagan and the 
White test at the 5-percent level.

c. If your answer to part b is heteroskedasticity, estimate HC standard 
errors for Equation 10.21.

d. Similarly, if you encountered heteroskedasticity, re-estimate Equa-
tion 10.21 using a double-log functional form.

e. Similarly, if you encountered heteroskedasticity, reformulate the 
variables in Equation 10.21 to avoid heteroskedasticity and esti-
mate your reformulated equation.

f. Which of our three remedies for heteroskedasticity do you think is 
best in this case? Why?

g. In Chapter 5, we estimated an equation with P as a function of 
CVN (CV per capita), and now we’ve estimated an equation with 
CV as a function of PC. Which Classical Assumption are you worried 
that we might have violated? Explain.

 3. Of all the econometric problems we’ve encountered, heteroskedastic-
ity is the one that seems the most difficult to understand. Close your 
book and attempt to write an explanation of heteroskedasticity in 
your own words. Be sure to include a diagram in your description.

 4. A. Ando and F. Modigliani collected the following data on the income 
and consumption of non-self-employed homeowners:17

17. Albert Ando and Franco Modigliani, “The ’Permanent Income’ and ’Life Cycle’ Hypotheses 
of Saving Behavior: Comparisons and Tests,” in I. Friend and R. Jones, eds. Consumption and 
Saving, Vol. II, 1960, p. 154.

M10_STUD2742_07_SE_C10.indd   332 21/01/16   12:51 PM



333exercIses

Income Bracket ($) Average Income ($) Average Consumption ($)

   0–999   556  2760

1000–1999  1622  1930

2000–2999  2664  2740

3000–3999  3587  3515

4000–4999  4535  4350

5000–5999  5538  5320

6000–7499  6585  6250

7500–9999  8582  7460

10000–above 14033 11500

a. Run a regression to explain average consumption as a function of 
average income.

b. Use the Breusch–Pagan test to test the residuals from the equation 
you ran in part a for heteroskedasticity at the 5-percent level.

c. Run a 5-percent White test on the same residuals.
d. If the tests run in parts b or c show evidence of heteroskedasticity, 

then what, if anything, should be done about it?

 5. James Stock and Mark Watson suggest a quite different approach to 
heteroskedasticity. They state that “economic theory rarely gives any 
reason to believe that the errors are homoskedastic. It therefore is 
prudent to assume that the errors might be heteroskedastic unless you 
have compelling reasons to believe otherwise.”18 As a result, Stock 
and Watson automatically use HC standard errors without testing 
for heteroskedasticity. In fact, since they adjust every equation for 
heteroskedasticity, they don’t even list homoskedasticity as a Classical 
Assumption.
a. What do you think? Do you agree with Stock and Watson? Explain 

your reasoning.
b. If Stock and Watson are right, does this mean that we don’t need to 

learn about heteroskedasticity in the first place? Did you waste your 
time reading this chapter?

18. James Stock and Mark Watson, Introduction to Econometrics (Boston: Pearson, 2015),  
p. 163.
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 6. R. Bucklin, R. Caves, and A. Lo estimated the following double-log 
model to explain the yearly circulation of metropolitan newspapers 
(standard errors in parentheses):19

  Cn i = -  8.2 - 0.56Pi + 0.90Ii + 0.76Qi + 0.27Ai + 0.08Si - 0.77 Ti

  10.582  10.142  10.212  10.142  10.052  10.272
N = 50

where: Ci = yearly circulation of the ith newspaper
 Pi =  the weighted average single copy price of the ith 

newspaper
 Ii =  the total disposable income of the metropolitan area 

of the ith newspaper
 Qi =  the number of personnel in editorial positions at the 

ith newspaper
 Ai =  the volume of retail advertising in the ith newspaper
 Si =  amount of competition from suburban dailies in the 

ith newspaper’s region
 Ti =  the number of television stations in the ith news-

paper’s region
 (All variables are in logarithmic form.)

a. Hypothesize signs and run t-tests on each of the individual slope 
coefficients.

b. Does heteroskedasticity seem theoretically likely? Explain.
c. Given your responses to parts a and b, what econometric problems 

(out of omitted variables, irrelevant variables, incorrect functional 
form, multicollinearity, serial correlation, and heteroskedasticity) 
appear to exist in this equation?

d. If you could suggest just one change in the specification of this equa-
tion, what would that change be? Carefully explain your answer.

 7. Let’s investigate the possibility of heteroskedasticity in time-series 
data by looking at a model of the black market for U.S. dollars 
in  Brazil that was studied by R. Dornbusch and C. Pechman.20 In 

19. R. E. Bucklin, R. E. Caves, and A. W. Lo, “Games of Survival in the U.S. Newspaper Industry,” 
Applied Economics, Vol. 21, pp. 631–650.

20. Rudiger Dornbusch and Clarice Pechman, “The Bid-Ask Spread in the Black Market for 
Dollars in Brazil,” Journal of Money, Credit and Banking, Vol. 17, pp. 517–520. The data for this 
study were not published with the original article but are on the data diskette that accompanies 
William F. Lott and Subhash C. Ray, Applied Econometrics: Problems with Data Sets (Fort Worth: 
Dryden/Harcourt Brace, 1992). The analytical approach of this question also comes from Lott 
and Ray, pp. 169–173.
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particular, the authors wanted to know if the Demsetz-Bagehot bid-
ask theory, previously tested on cross-sectional data from the United 
States, could be extended to time-series data outside the United 
States.21 They estimated the following model on monthly data from 
Brazil for March 1979 through December 1983:

 +  +
 St = β0 + β1It + β2ln11 + Vt2 + et (10.22)

where: St =  the average daily spread between the bid and asking prices 
for the U.S. dollar on the Brazilian black market in month t

 It = the average interest rate in month t
 Vt =  the variance of the daily premium between the black market 

rate and the official exchange rate for the dollar in month t

a. Use the authors’ data in Table 10.2 (datafile = BID10) to estimate 
Equation 10.22 and test the residuals for positive first-order serial 
correlation.

b. If serial correlation appears to exist, reestimate Equation 10.22 
using GLS. Do the coefficient estimates change? Which equation 
do you prefer? Why?

c. The authors noted that S nearly doubled in size during their sam-
ple period. Does this make you concerned about the possibility of 
heteroskedasticity? Why or why not?

d. Test the residuals of Equation 10.22 for heteroskedasticity using 
the Breusch–Pagan test. (Hint: A possible proportionality factor is a 
time-trend variable that equals 1 for March 1979 and that increases 
by 1 for each following month.)

e. Test the residuals of your GLS version of Equation 10.22 for 
heteroskedasticity. Did running GLS change the possibility of 
heteroskedasticity?

f. What remedy would you suggest for any heteroskedasticity that 
might exist in such a time-series model? Be specific.

21. For a review of this literature at the time of Dornbusch and Pechman’s research, see Kalman 
Cohen et al., “Market Makers and the Market Spread: A Review of Recent Literature,” Journal of 
Financial and Quantitative Studies, Vol. 14, No. 4, pp. 813–835.
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Table 10.2  Data on the Brazilian Black Market for Dollars

Month S I V
1979:03 2.248 4.15 20.580
1979:04 2.849 4.04 12.450
1979:05 2.938 2.68 21.230
1979:06 2.418 2.81 26.300
1979:07 2.921 1.92 22.600
1979:08 2.587 2.37 18.750
1979:09 2.312 3.59 20.040
1979:10 2.658 2.03 31.110
1979:11 2.262 2.41 29.040
1979:12 4.056 4.09 20.590
1980:01 3.131 3.28 11.770
1980:02 3.404 2.89 7.900
1980:03 2.835 3.44 6.150
1980:04 3.309 2.43 6.780
1980:05 3.042 2.13 8.550
1980:06 3.417 2.94 13.380
1980:07 2.929 3.19 11.870
1980:08 3.821 3.26 15.560
1980:09 2.753 3.98 24.560
1980:10 2.633 3.69 21.110
1980:11 2.608 4.43 15.000
1980:12 2.168 5.86 7.480
1981:01 2.273 4.36 2.820
1981:02 1.892 5.66 1.540
1981:03 2.283 4.60 1.520
1981:04 2.597 4.42 4.930
1981:05 2.522 5.41 10.790
1981:06 2.865 4.63 17.160
1981:07 4.206 5.46 30.590
1981:08 2.708 5.88 23.900
1981:09 2.324 5.52 20.620
1981:10 2.736 6.07 18.900
1981:11 3.277 5.48 26.790
1981:12 3.194 6.79 29.640
1982:01 3.473 5.46 32.870
1982:02 2.798 6.20 30.660
1982:03 3.703 6.19 40.740
1982:04 3.574 6.06 48.040
1982:05 3.484 6.26 33.510
1982:06 2.726 6.27 23.650
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10.7  appendix: econometric Lab #6

This laboratory assignment is an exercise in the detection and correction of 
heteroskedasticity.

Several years ago, an airplane pilot took econometrics, and for his project 
he estimated a hedonic model of the determinants of used, single-engine air-
plane prices in the year 2000. This lab uses data from his project as the basis 
for an exercise in the detection and correction of heteroskedasticity. The data-
set, PLANES10, consists of the variables in Table 10.3.

Step 1: Use the Data to estimate the Model with OLS

Use lnpricei as the dependent variable and use all the other variables in 
Table 10.3 as independent variables in your regression. Which variables 
have coefficients that are significant in the expected direction at the 5-percent 
level?

Month S I V
1982:07 4.430 6.89 37.080
1982:08 4.158 7.55 51.260
1982:09 5.633 6.93 60.450
1982:10 5.103 8.14 83.980
1982:11 3.691 7.80 69.490
1982:12 3.952 9.61 68.030
1983:01 3.583 7.01 85.630
1983:02 4.459 7.94 77.060
1983:03 6.893 10.06 71.490
1983:04 5.129 11.82 51.520
1983:05 4.171 11.18 43.660
1983:06 5.047 10.92 59.500
1983:07 8.434 11.72 61.070
1983:08 5.143 9.54 75.380
1983:09 3.980 9.78 72.205
1983:10 4.340 9.91 59.258
1983:11 4.330 9.61 38.860
1983:12 4.350 10.09 33.380

source: William F. Lott and subhash c. ray, Applied Econometrics: Problems with Data Sets 
(Fort Worth: dryden/Harcourt brace, 1992). (data diskette) 

datafile = bid10
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Step 2: Multicollinearity Concerns

Could severe imperfect multicollinearity account for any of the coefficients 
being insignificant at the 5-percent level? If so, which ones? Use simple cor-
relation coefficients and VIFs to support your answer.

Step 3: Heteroskedasticity Concerns

Plot the residuals from your OLS regression against the passenger capacity. 
Do the residuals look heteroskedastic? Explain.

Step 4: Conduct a Breusch–Pagan Test for Heteroskedasticity

Use all the right-hand variables in the original model to run the Breusch–
Pagan auxiliary regression.

Table 10.3  Variable Listing

 
 
Variable

 
 

Description

Hypoth.  
Sign of  
Coef.

lnpricei natural log of the price in dollars for used, basic 
single-engine aircraft i

n/a

lnceilingi natural log of the service ceiling, or the highest  
possible altitude plane i can fly, in feet

1

lncruisei natural log of the cruising speed in miles per hour 
of airplane i

1

lnhorsei natural log of horsepower of the engine of airplane i 1

fixgeari equal to 1 if aircraft i’s landing gear is fixed (not  
retractable), 0 otherwise

2

lnfueli natural log of the volume of the fuel tank of aircraft 
i, in gallons

1

passi the number of passengers aircraft i can accommo-
date during flight

1

tdragi equal to 1 if aircraft i is a tail dragger, 0 otherwise 
(A tail dragger is an aircraft that has a wheel  
connected to its tail—hence, a tail dragger.)

2

wtopi equal to 1 if aircraft i has wings above the fuselage, 
0 otherwise

2

lnagei natural log of the age in years of aircraft i 2
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Write the null and alternative hypotheses, compute the test statistic, and 
conduct the test at the 5-percent level. Does heteroskedasticity appear to be 
present?

Step 5: Conduct a White test for heteroskedasticity

Test the regression in Step 1 at the 5-percent level for heteroskedasticity using 
the White test. Use the White test command in your regression package to 
run the auxiliary regression and to calculate the test statistic. How many 
variables are on the right-hand side of the auxiliary regression? What is the 
chi-square critical value? According to the White test, does there appear to be 
heteroskedasticity in the model?

Step 6: estimate the equation with heteroskedasticity-Corrected 
Standard errors

Re-estimate the model in Step 1 with heteroskedasticity-corrected standard 
errors, also known as White standard errors. Are the coefficients and R 

2 the 
same?

Step 7: Compare the results

Compare the OLS results from Step 1 with the heteroskedasticity-corrected 
results in Step 6. For how many of the coefficients are the heteroskedasticity-
corrected standard errors larger than the OLS standard errors? Doesn’t this 
make the equation worse? If so, why bother to estimate the heteroskedasticity-
corrected errors?
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Regression Project

11.1 Choosing Your Topic

11.2 Collecting Your Data

11.3 Advanced Data Sources

11.4 Practical Advice for Your Project

11.5 Writing Your Research Report

11.6 A Regression User’s Checklist and Guide

11.7 Summary

11.8 Appendix: The Housing Price Interactive Exercise

Chapter 11

We believe that econometrics is best learned by doing, not by reading books, 
listening to lectures, or taking tests. To us, learning the art of econometrics 
has more in common with learning to fly a plane or learning to play golf 
than it does with learning about history or literature. In fact, we developed 
the interactive exercises of this chapter and Chapter 8 precisely because of 
our confidence in learning by doing.

Although interactive exercises are a good bridge between textbook exam-
ples and running your own regressions, they don’t go far enough. You still 
need to “get your hands dirty.” We think that you should run your own 
regression project before you finish reading this book even if you’re not 
required to do so. We’re not alone. Some professors substitute a research 
project for the final exam as their class’s comprehensive learning experience.

Running your own regression project has three major components:

1. Choosing a topic

2. Applying the six steps in regression analysis to that topic

3. Writing your research report

340
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341 Choosing Your TopiC

The first and third of these components are the topics of Sections 11.1 and 
11.5, respectively. The rest of the chapter focuses on helping you carry out 
the six steps in regression analysis.

11.1  Choosing Your Topic

The purpose of an econometric research project is to use regression analysis 
to build the best explanatory equation for a particular dependent variable for 
a particular sample. Often, though, the hardest part is getting started. How 
can you choose a good topic?

There are at least three keys to choosing a topic. First, try to pick a field 
that you find interesting and that you know something about. If you enjoy 
working on your project, the hours involved will seem to fly by. In addition, 
if you know something about your subject, you’ll be more likely to make 
correct specification choices and to notice subtle indications of data errors or 
theoretical problems. A second key is to make sure that data are readily avail-
able with a reasonable sample (we suggest at least 25 observations). Nothing 
is more frustrating than searching through data source after data source in 
search of numbers for your dependent variable or one of your independent 
variables, so before you lock yourself into a topic, see if the data are there. 
The final key is to make sure that there is some substance to your topic. Try 
to avoid topics that are purely descriptive or virtually tautological in nature. 
Instead, look for topics that address an inherently interesting economic or 
behavioral question or choice.

Perhaps the best place to look for ideas for topics is to review your text-
books and notes from previous economics classes or to look over the exam-
ples and exercises of the first 10 chapters of this book. Often, you can take 
an idea from a previous study and update the data to see if the idea can be 
applied in a different context. Other times, reading an example will spark an 
idea about a similar or related study that you’d be interested in doing. Don’t 
feel that your topic has to contain an original hypothesis or equation. On 
your first or second project, it’s more important to get used to the economet-
rics than it is to create a publishable masterpiece.

Another way to find a topic is to read through issues of economics jour-
nals, looking for article topics that you find interesting and that might be 
possible to model. For example, Table 11.1 contains a list of the journals cited 
so far in this textbook (in order of the frequency of citation). These journals 
would be a great place to start if you want to try to replicate or update a pre-
vious research study. Although this is an excellent way to get ideas, it’s also 
frustrating, because most current articles use econometric techniques that go 
beyond those that we’ve covered so far in this text. As a result, it’s often dif-
ficult to compare your results to those in the article.
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If you get stuck for a topic, go directly to the data sources themselves. That 
is, instead of thinking of a topic and then seeing if the data are available, look 
over what data are available and see if they help you generate ideas for topics. 
Quite often, a reference will have data not only for a dependent variable but 
also for most of the relevant independent variables all in one place, minimiz-
ing time spent collecting data.

Once you pick a topic, don’t rush out and run your first regression. 
Remember, the more time you spend reviewing the literature and analyzing 
your expectations on a topic, the better the econometric analysis and, ulti-
mately, your research report will be.

11.2  Collecting Your Data

Before any quantitative analysis can be done, the data must be collected, 
organized, and entered into a computer. Usually, this is a time-consuming 
and frustrating task because of the difficulty of finding data, the existence 

Table 11.1 sources of potential Topic ideas

Econometrica
American Economic Review
Journal of Applied Econometrics
American Journal of Agricultural Economics
Journal of Economic Education
Journal of the American Statistical Association
World Development
Applied Economics
Assessment and Evaluation in Higher Education
Economic Inquiry
Economica
Journal of Agricultural and Applied Economics
Journal of Econometrics
Journal of Economic Literature
Journal of Money, Credit and Banking
Journal of the Royal Statistical Society
National Tax Review
NBER working papers
Review of Economics and Statistics
Scandinavian Journal of Economics
Southern Economic Journal
The Appraisal Journal
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of definitional differences between theoretical variables and their empirical 
counterparts, and the high probability of data entry errors or data transmis-
sion errors. In general, though, time spent thinking about and collecting the 
data is well spent, since a researcher who knows the data sources and defini-
tions is much less likely to make mistakes using or interpreting regressions 
run on those data.

What Data to Look For

Before you settle on a research topic, make sure that data for your depen-
dent variable and all relevant independent variables are available. How-
ever, checking for data availability means deciding what specific variables 
you want to study. Half of the time that beginning researchers spend 
collecting data is wasted by looking for the wrong variables in the wrong 
places. A few minutes thinking about what data to look for will prevent 
hours of frustration later.

For example, if the dependent variable is the quantity of television sets 
demanded per year, then most independent variables should be measured 
annually as well. It would be inappropriate and possibly misleading to 
define the price of TVs as the price from a particular month. An average of 
prices over the year (usually weighted by the number of TVs sold per month) 
would be more meaningful. If the dependent variable includes all TV sets 
sold regardless of brand, then the price would appropriately be an aggregate 
based on prices of all brands. Calculating such aggregate variables, however, is 
not straightforward. Researchers typically make their best efforts to compute 
the respective aggregate variables and then acknowledge that problems still 
remain. For example, if the price data for all the various brands are not avail-
able, a researcher may be forced to compromise and use the price of one or a 
few of the major brands as a substitute for the proper aggregate price.

Another issue is suggested by the TV example. Over the years of the 
sample, it’s likely that the market shares of particular kinds of TV sets have 
changed. For example, flat-screen HD TV sets might have made up a majority 
of the market in one decade, but black-and-white sets might have been the 
favorite 40 years before. In cases where the composition of the market share, 
the size, or the quality of the various brands have changed over time, it would 
make little sense to measure the dependent variable as the number of TV sets 
because a “TV set” from one year has little in common with a “TV set” from 
another. The approach usually taken to deal with this problem is to measure 
the variable in dollar terms, under the assumption that value encompasses 
size and quality. Thus, we would work with the dollar sales of TVs rather than 
the number of sets sold.
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A third issue, whether to use nominal or real variables, usually depends on 
the underlying theory of the research topic. Nominal (or money) variables 
are measured in current dollars and thus include increases caused by infla-
tion. If theory implies that inflation should be filtered out, then it’s best to 
state the variables in real (constant-dollar) terms by selecting an appropriate 
price deflator, such as the Consumer Price Index, and adjusting the money 
(or nominal) value by it.

As an example, the appropriate price index for Gross Domestic Product is 
called the GDP deflator. Real GDP is calculated by multiplying nominal GDP 
by the ratio of the GDP deflator from the base year to the GDP deflator from 
the current year:

Real GDP = nominal GDP * (base GDP deflator/current GDP deflator)

In 2007, U.S. nominal GDP was $13,807.5 billion and the GDP deflator was 
119.82 (for a base year of 2000 5 100), so real GDP was:1

Real GDP = $13,807.5 (100/119.82) = $11,523.9 billion

That is, the goods and services produced in 2007 were worth $13,807.5 bil-
lion if 2007 dollars were used but were worth only $11,523.9 billion if 2000 
dollars were used.

Fourth, recall that all economic data are either time series or cross sec-
tional in nature. Since time-series data are for the same economic entity from 
different time periods, whereas cross-sectional data are from the same time 
period but for different economic entities, the appropriate definitions of the 
variables depend on whether the sample is a time series or a cross section.

To understand this, consider the TV set example once again. A time-series 
model might study the sales of TV sets in the United States from 1967 to 2015, 
and a cross-sectional model might study the sales of TV sets by state for 2015. 
The time-series data set would have 49 observations, each of which would refer 
to a particular year. In contrast, the cross-sectional model data set would have 
50 observations, each of which would refer to a particular state. A variable that 
might be appropriate for the time-series model might be completely inappro-
priate for the cross-sectional model, and vice versa; at the very least, it would 
have to be measured differently. National advertising in a particular year would 
be appropriate for the time-series model, for example, while advertising in or 
near each particular state would make more sense for the cross-sectional one.

Finally, learn to be a critical reader of the descriptions of variables in 
econometric research. Are variables measured in nominal or real terms? 

1. 2009 Economic Report of the President, pp. 282–285.

M11_STUD2742_07_SE_C11.indd   344 1/9/16   1:52 PM



345 ColleCting Your Data

Where did the data originate? A careful reader would want to know the 
answers to these questions before analyzing any results.

Where to Look for Economic Data

Although some researchers generate their own data through surveys or other 
techniques (and we’ll address this possibility in Section 11.3), the vast major-
ity of regressions are run on publicly available data. The best sources for such 
data are government publications and machine-readable data files. In fact, 
the U.S. government has been called the most thorough statistics-collecting 
agency in history.

Excellent government publications include the annual Economic Report 
of the President, the Handbook of U.S. Labor Statistics, and Historical Statistics 
of the U.S.  (published in 1975). One of the best places to start with U.S. 
data2 is the annual Census Catalog and Guide, which provides overviews and 
abstracts of data sources and various statistical products as well as details on 
how to obtain each item. Consistent international data are harder to come 
by, but the United Nations publishes a number of compilations of figures. 
The best of these are the U.N. Statistical Yearbook and the U.N. Yearbook of 
National Account Statistics.

However, most researchers use online computer databases to find data 
instead of plowing through stacks of printed volumes. These online databases, 
available through most college and university libraries, contain complete 
series on literally thousands of possible variables. Perhaps the best source of 
economic data on the Internet is FRED, the Federal Reserve Economic Data-
base, which contains more than 268,000 U.S. and international time series, 
all downloadable in Excel spreadsheets. It is hosted and maintained by the 
Federal Reserve Bank of St. Louis at https://research.stlouisfed.org/fred2/. The 
best guides to Internet data are “Resources for Economists on the Internet” 
and “Economagic.” Other good Internet resources are EconLit, which is an 
online summary of the Journal of Economic Literature, and “ProQuest, Dialog,” 
which provides online access to a large number of data sets.3

2. For older data, the Statistical Abstract of the United States is a great source. Sadly, this is no lon-
ger published by the government, but it is commercially available both in print and online as 
the ProQuest Statistical Abstract of the United States (Lanham, MD: Bernan, 2015).

3. The website addresses of these resources are:
Resources for Economists: https://www.aeaweb.org/RFE/showCat.php?cat_id=2
Economagic: http://www.economagic.com/ 
EconLit: https://www.aeaweb.org/econlit/ 
Proquest Dialog: http://www.proquest.com/products-services/ProQuest-Dialog.html
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Missing Data

Suppose the data aren’t there? What happens if you choose the perfect vari-
able and look in all the right sources and can’t find the data?

The answer to this question depends on how much is missing. If a few obser-
vations have incomplete data in a cross-sectional study, you usually can afford to 
drop these observations from the sample. If the incomplete data are from a time 
series, you can sometimes estimate the missing value by interpolating (taking the 
mean of adjacent values). Similarly, if one variable is available only annually in 
an otherwise quarterly model, you may want to consider quarterly interpolations 
of that variable. In either case, interpolation can be justified only if the variable 
moves in a slow and smooth manner. Extreme caution should always be exer-
cised when “creating” data in such a way (and full documentation is required).

If no data at all exist for a theoretically relevant variable, then the problem 
worsens significantly. Omitting a relevant variable runs the risk of biased 
coefficient estimates, as you learned in Chapter 6. After all, how can you hold 
a variable constant if it’s not included in the equation? In such cases, most 
researchers resort to the use of proxy variables.

Proxy variables can sometimes substitute for theoretically desired vari-
ables for which data are missing. For example, the value of net investment is a 
variable that is not measured directly in a number of countries. As a result, a 
researcher might use the value of gross investment as a proxy, the assumption 
being that the value of gross investment is directly proportional to the value 
of net investment. This proportionality (which is similar to a change in units) 
is required because the regression analyzes the relationship between changes 
among variables, rather than the absolute levels of the variables.

In general, a proxy variable is a “good” proxy when its movements corre-
spond relatively well to movements in the theoretically correct variable. Since 
the latter is unobservable whenever a proxy must be used, there is usually 
no easy way to examine a proxy’s “goodness” directly. Instead, the researcher 
must document as well as possible why the proxy is likely to be a good or 
bad one. Poor proxies and variables with large measurement errors constitute 
“bad” data, but the degree to which the data are bad is a matter of judgment 
by the individual researcher.

11.3  Advanced Data Sources

So far, all the data sets in this text have been cross sectional or time series in 
nature, and we have collected our data by observing the world around us, 
instead of by creating the data ourselves. It turns out, however, that time-
series and cross-sectional data can be pooled to form panel data, and that data 
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can be generated through surveys. The purpose of this short section is to intro-
duce you to these more advanced data sources and to explain why it probably 
doesn’t make sense to use these data sources on your first regression project.

Surveys

Surveys are everywhere in our society. Marketing firms use surveys to learn 
more about products and competition, political candidates use surveys to 
fine-tune their campaign advertising or strategies, and governments use sur-
veys for all sorts of purposes, including keeping track of their citizens with 
instruments like the U.S. Census. As a result, many beginning researchers 
(particularly those who are having trouble obtaining data for their project) 
are tempted to run their own surveys in the hope that it’ll be an easy way to 
generate the data they need.

However, running a survey is not as easy as it might seem. For example, 
the topics to be covered in the survey need to be thought through carefully, 
because once a survey has been run, it’s virtually impossible to go back to 
the respondents and add another question. In addition, the questions them-
selves need to be worded precisely (and pretested) to avoid confusing the 
respondent or “leading” the respondent to a particular answer. Perhaps most 
importantly, it’s crucial for the sample to be random in order to avoid selec-
tion, survivor, and nonresponse biases. In fact, running a survey properly is 
so difficult that entire books and courses are devoted to the topic. To top it 
all off, most colleges and universities require a lengthy institutional review 
before allowing an on-campus survey.

As a result, we don’t encourage beginning researchers to run their own sur-
veys, and we’re cautious when we analyze the results of surveys run by others. 
As put by the American Statistical Association, “The quality of a survey is best 
judged not by its size, scope, or prominence, but by how much attention is 
given to preventing, measuring, and dealing with the many important prob-
lems that can arise.”4

Panel Data

As mentioned previously, panel data are formed when cross-sectional and 
time-series data sets are pooled to create a single data set. Why would you 
want to use panel data? In some cases, researchers use panel data to increase 

4. As quoted in “Best Practices for Research,” on the website of the American Association for 
Public Opinion Research: www.aapor.org. The best practices outlined on this website are a good 
place to start if you decide to create your own survey.
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their sample size, but the main reason for using panel data is to provide an 
insight into an analytical question that can’t be obtained by using time-series 
or cross-sectional data alone.

What’s an example of panel data? Suppose that we’re interested in the rela-
tionship between budget deficits and interest rates but we have only 10 years’ 
worth of comparable annual data to study. Ten observations is too small a 
sample for a reasonable regression, so it might seem as if we’re out of luck. 
However, if we can find time-series data on the same economic variables—
interest rates and budget deficits—for the same ten years for six different coun-
tries, we’ll end up with a sample of 10*6 = 60 observations, which is more than 
enough to use. The result is a pooled cross-section time-series data set—a panel 
data set!

Unfortunately, panel data can’t be analyzed fully with the economet-
ric techniques you’ve learned to date in this text, so we don’t encourage 
beginning researchers to attempt to run regressions on panel data. Instead, 
we’ve devoted the majority of a chapter (Chapter 16) to panel data, and 
we urge you to read that chapter if you’re interested. Chapter 16 also covers 
experimental methods in economics, since such experiments often generate 
panel data.

11.4  Practical Advice for Your Project

The purpose of this section is to give you some practical advice about actu-
ally doing applied econometric work. Such advice often is missing from 
econometrics textbooks and courses, but the advice is crucial because many 
of the skills of an applied econometrician are judgmental and subjective in 
nature. No single text or course can teach these skills, and that’s not our goal. 
Instead, we want to alert you to some technical suggestions that a majority of 
experienced applied econometricians would be likely to support.

What to Check If You Get an Unexpected Sign

An all-too-familiar problem for a beginning econometrician is to run a 
regression and find that the sign of one or more of the estimated coefficients 
is the opposite of what was expected. While an unexpected sign certainly is 
frustrating, it’s not entirely bad news. Rather than considering this a disaster, 
a researcher should consider it a blessing—this result is a friendly message 
that some detective work needs to be done—there is undoubtedly some 
shortcoming in the theory, data, specification, or estimation procedure. If the 
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“correct” signs had been obtained, odds are that the analysis would not be 
double-checked. What should be checked?

1. Recheck the expected sign. Every once in a while, a variable that is 
defined “upside down” will cause a researcher to expect the wrong 
sign. For example, in an equation for student SATs, the variable “high 
school rank in class” (where a rank of 1 means that the student was 
first in his or her class) can sometimes lure a beginning researcher into 
expecting a positive coefficient for rank.

2. Check your data for input errors and/or outliers. If you have data errors or 
oddball observations, the chances of getting an unexpected sign—even 
a significant unexpected sign—increase dramatically.

3. Check for an omitted variable. The most frequent source of a significant 
unexpected sign for the coefficient of a relevant independent variable 
is an omitted variable. Think hard about what might have been omit-
ted, and remember to use our equation for expected bias.

4. Check for an irrelevant variable. A frequent source of insignificant unex-
pected signs is that the variable doesn’t actually belong in the equation 
in the first place. If the true coefficient for an irrelevant variable is zero, 
then you’re likely to get an unexpected sign half the time.

5. Check for multicollinearity. Multicollinearity increases the variances and 
standard errors of the estimated coefficients, increasing the chance that 
a coefficient could have an unexpected sign. The sampling distribu-
tions will be widely spread and may straddle zero, implying that it is 
quite possible that a draw from this distribution will produce an unex-
pected sign. Indeed, one of the casual indicators of multicollinearity is 
the presence of unexpected signs.

6. Check for sample selection bias. An unexpected sign sometimes can be 
due to the fact that the observations included in the data were not ob-
tained randomly.

7. Check your sample size. Multicollinearity isn’t the only source of high 
variances; they also could result from a small sample size or minimal 
variation in the explanatory variables. In some cases, all it takes to fix 
an unexpected sign is to increase the sample.

8. Check your theory. If you’ve exhausted every logical econometric 
 explanation for your unexpected sign, there are only two likely re-
maining explanations. Either your theory is wrong, or you’ve got a bad 
data set. If your theory is wrong, then you of course have to change 
your expected sign, but remember to test this new expectation on a 
different data set. However, be careful! It’s amazing how economists 
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can conjure up rationales for unexpected signs after the regression has 
been run! One theoretical source of bias, and therefore unexpected 
signs, is if the underlying model is simultaneous in nature (we’ll cover 
simultaneous equations in Chapter 14).

A Dozen Practical Tips Worth Reiterating

Here are a number of practical tips for applied econometrics5 that we’ve 
made in previous chapters that are worth emphasizing. They work!

 1. Don’t attempt to maximize R 

2. (Chapter 2)

 2. Always review the literature and hypothesize the signs of your coeffi-
cients before estimating a model. (Chapter 3)

 3. Remember to inspect and clean your data before estimating a model. 
Know that outliers should not be automatically omitted; instead, they 
should be investigated to make sure that they belong in the sample. 
(Chapter 3)

 4. Know the Classical Assumptions cold! (Chapter 4)

 5. In general, use a one-sided t-test unless the expected sign of the coef-
ficient actually is in doubt. (Chapter 5)

 6. Don’t automatically discard a variable with an insignificant t-score. 
In general, be willing to live with a variable with a t-score lower than 
the critical value in order to decrease the chance of omitting a relevant 
variable. (Chapter 6)

 7. Know how to analyze the size and direction of the bias caused by an 
omitted variable. (Chapter 6)

 8. Understand all the different functional form options and their com-
mon uses, and remember to choose your functional form primarily 
on the basis of theory, not fit. (Chapter 7)

 9. Remember that multicollinearity doesn’t create bias; the estimated 
variances are large, but the estimated coefficients themselves are unbi-
ased. As a result, the most-used remedy for multicollinearity is to do 
nothing. (Chapter 8)

10. If you get a significant Durbin–Watson, Breusch–Pagan, or White test, 
remember to consider the possibility that a specification error might be  

5. For more practical tips of a similar nature, see Peter Kennedy, “Sinning in the Basement: 
What are the Rules? The Ten Commandments of Applied Econometrics,” Journal of Economic 
Surveys, Vol. 16, No. 4, pp. 569–589.
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causing impure serial correlation or heteroskedasticity. Don’t change 
your estimation technique from OLS to GLS or use adjusted standard 
errors until you have the best possible specification. (Chapters 9 and 10)

11. Remember that adjusted standard errors like Newey–West standard 
errors or HC standard errors use the OLS coefficient estimates. It’s the 
standard errors of the estimated coefficients that change, not the esti-
mated coefficients themselves. (Chapters 9 and 10)

12. Finally, and perhaps most importantly, if in doubt, rely on common 
sense and economic theory, not on statistical tests.

The Ethical Econometrician

One conclusion that a casual reader of this book might draw from the large 
number of specifications we include is that we encourage the estimation of 
numerous regression results as a way of ensuring the discovery of these best 
possible estimates.

Nothing could be further from the truth!

As every reader of this book should know by now, our opinion is that the 
best models are those on which much care has been spent to develop the 
theoretical underpinnings and only a short time is spent pursuing alterna-
tive estimations of that equation. Many econometricians, ourselves included, 
would hope to be able to estimate only one specification of an equation 
for each data set. Econometricians are fallible and our data are sometimes 
imperfect, however, so it is unusual for a first attempt at estimation to be 
totally problem free. As a result, two or even more regressions are often neces-
sary to rid an estimation of fairly simple difficulties that perhaps could have 
been avoided in a world of perfect foresight.

Unfortunately, a beginning researcher usually has little motivation to stop 
running regressions until he or she likes the way the result looks. If running 
another regression provides a result with a better fit, why shouldn’t one more 
specification be tested?

The reason is a compelling one. Every time an extra regression is run and a 
specification choice is made on the basis of fit or statistical significance, the 
chances of making a mistake of inference increase dramatically. This can hap-
pen in at least two ways:

1. If you consistently drop a variable when its coefficient is insignificant but 
keep it when it is significant, it can be shown, as discussed in Section 6.4, 
that you bias your estimates of the coefficients of the equation and of the 
t-scores.
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2. If you choose to use a lag structure, or a functional form or an estima-
tion procedure other than OLS, on the basis of fit rather than on the 
basis of previously theorized hypotheses, you run the risk that your 
equation will work poorly when it’s applied to data outside your 
sample. If you restructure your equation to work well on one data set, 
you might decrease the chance of it working well on  another.

What might be thought of as ethical econometrics is also in reality good 
econometrics. That is, the real reason to avoid running too many different speci-
fications is that the fewer regressions you run, the more reliable and more con-
sistently trustworthy are your results. The instance in which professional ethics 
come into play is when a number of changes are made (different variables, lag 
structures, functional forms, estimation procedures, data sets, dropped outliers, 
and so on), but the regression results are presented to colleagues, clients, editors, 
or journals as if the final and best equation had been the first and only one esti-
mated. Our recommendation is that all estimated equations be reported even if 
footnotes or an appendix have to be added to the documentation.

We think that there are two reasonable goals for econometricians when 
estimating models:

1. Run as few different specifications as possible while still attempting 
to avoid the major econometric problems. The only exception to our 
recommendation to run as few specifications as possible is sensitivity 
analysis, described in Section 6.4.

2. Report honestly the number and type of different specifications esti-
mated so that readers of the research can evaluate how much weight to 
give to your results.

Therefore, the art of econometrics boils down to attempting to find the 
best possible equation in the fewest possible number of regression runs. Only 
careful thinking and reading before estimating the first regression can bring 
this about. An ethical econometrician is honest and complete in reporting 
the different specifications and/or data sets used.

11.5  Writing Your Research Report

Once you’ve finished your research, it’s important to write a report on your 
results so that others can benefit from what you found out (or didn’t find out) 
or so that you can get feedback on your econometric techniques from some-
one else. Most good research reports have a number of elements in common:

• A brief introduction that defines the dependent variable and states the 
goals of the research.
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• A short review of relevant previous literature and research.

• An explanation of the specification of the equation (model). This 
should include explaining why particular independent variables and 
functional forms were chosen as well as stating the expected signs of 
(or other hypotheses about) the slope coefficients.

• A description of the data (including generated variables), data sources, 
and any irregularities with the data.

• A presentation of each estimated specification, using our standard 
documentation format. If you estimate more than one specification, 
be sure to explain which one is best (and why).

• A careful analysis of the regression results that includes a discussion of 
any econometric problems encountered and complete documentation 
of all equations estimated and all tests run. (Beginning researchers are 
well advised to test for every possible econometric problem; with expe-
rience, you’ll learn to focus on the most likely difficulties.)

• A short summary/conclusion that includes any policy recommenda-
tions or suggestions for further research.

• A bibliography.

• An appendix that includes all data, all regression runs, and all relevant 
computer output. Do this carefully; readers appreciate a well-organized 
and labeled appendix.

We think that the easiest way to write such a research report is to keep 
a research journal as you go along. In this journal, you can keep track of a 
priori hypotheses, regression results, statistical tests, different specifications 
you considered, and theoretical analyses of what you thought was going on 
in your equation. You’ll find that when it comes time to write your research 
report, this journal will almost write your paper for you! The alternative to 
keeping a journal is to wait until you’ve finished all your econometric work 
before starting to write your research report, but by doing this, you run the 
risk of forgetting the thought process that led you to make a particular deci-
sion (or some other important item).

11.6  A Regression User’s Checklist and Guide

Table 11.2 contains a list of the items that a researcher checks when reviewing 
the output from a computer regression package. Not every item in the check-
list will be produced by your computer package, and not every item in your 
computer output will be in the checklist, but the checklist can be a very useful 
reference. In most cases, a quick glance at the checklist will remind you of the 
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Table 11.2 regression user’s Checklist

Symbol Checkpoint Reference Decision

X, Y Data observations Check for errors. Check  
  means,  maximums, 

and minimums.

Correct any errors.

df Degrees of freedom n - k - 1 7 0
n =  number of  

observations
k =  number of 

 explanatory 
 variables

if n - k - 1 … 0, equation  
  cannot be estimated, 

and if the degrees of 
freedom are low, pre-
cision is low. in such 
a case, try to include 
more observations.

βn estimated coefficient Compare signs and  
  magnitudes to 

 expected values.

if they are unexpected,  
  respecify model if 

 appropriate.

t t-statistic

tk =
βn k - βh0

se(βn k)
  or

tk =
βn k

se(βn k)

for computer- 
supplied t-scores 
or whenever 
βh0

= 0

Two-sided test:
h0: βk = βh0

ha: βk ≠ βh0

one-sided test:
h0: βk … βh0

ha: βk 7 βh0

βh0
, the hypothesized  

  β, is supplied by the 
researcher, and is 
often zero.

reject h0 if 0 tk 0 7 tc  
  and if the estimate is of 

the expected sign.
tc is the critical value of  
  α level of significance 

and n - k - 1 degrees  
of freedom.

r2 Coefficient of  
  determination

The percentage of the  
  variation of Y around 

its mean explained by 
the regression  
equation.

Measures the degree of  
  overall fit of the model  

to the data.

r  

2 r2 adjusted for  
  degrees of 

 freedom

The percentage of the  
  variation of Y around 

its mean explained 
by the regression 
equation, adjusted for 
 degrees of freedom.

one indication that an  
  explanatory variable is 

irrelevant is if the r  

2 
falls when it is included.

f F-statistic
f =

1rssM - rss2 >M
rss> 1n - k - 12

Can be used to test joint  
  hypotheses about 

two or more coeffi-
cients. a  special case 
is the F-test of overall 
 significance.
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Symbol Checkpoint Reference Decision

Dw Durbin–watson  
  statistic

Tests:  h0: ρ … 0 
ha: ρ 7 0

for positive serial  
  correlation.

reject h0 if Dw 6 dl.
inconclusive if  
  dl … Dw … du.  

(dl and du are critical 
Dw  values.)

ei residual Check for heteroske- 
  dasticity by examin-

ing the pattern of the 
residuals.

May take appropriate  
  corrective action, but 

test first.

se standard error of the  
 regression

an estimate of the  
  standard error of the 

error term.

a guide to the overall fit.

Tss Total sum of squares Tss = a
i
1Yi - Y22 used to compute f, r2, 

and r  

2.

rss residual sum of  
 squares

rss = a
i
1Yi - Yni22 same as above.

se(βn k) standard error of βn k
used in t-statistics and  
  confidence intervals.

a measure of the  
  imprecision of the  

estimated coefficient.

ρn estimated first-order  
  autocorrelation  

coefficient

usually provided by an  
  autoregressive 

 routine.

if negative, implies a  
  specification error or 

that the data were  
differenced.

r12 simple correlation  
  coefficient  between 

X1 and X2

used to detect  
 multicollinearity.

suspect severe multicol- 
  linearity if r12 7 .8.

vif variance inflation  
 factor

used to detect  
 multicollinearity.

suspect severe multicol- 
 linearity if vif 7 5.

text sections that deal with the item, but if this is not the case, the fairly mini-
mal explanation in the checklist should not be relied on to cover everything 
needed for complete analysis and judgment. Instead, you should look up the 
item in the index. In addition, note that the actions in the right-hand column 
are merely suggestions. The circumstances of each individual research project 
are much more reliable guides than any dogmatic list of actions.

There are two ways to use the checklist. First, you can refer to it as a “glos-
sary of packaged computer output terms” when you encounter something 
in your regression result that you don’t understand. Second, you can work 
your way through the checklist in order, finding the items in your computer 
output and marking them. As with the Regression User’s Guide (Table 11.3), 
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Table 11.3 regression user’s guide

What Can Go  
Wrong?

What Are the  
Consequences?

How Can It Be  
Detected?

How Can It Be  
Corrected?

Omitted Variable
The omission of a  
  relevant indepen-

dent variable

Bias in the coeffi- 
  cient estimates (the 

βns) of the included 
Xs.

Theory, significant  
  unexpected signs, 

or surprisingly poor 
fits.

include the  
  omitted variable 

or a proxy.

Irrelevant Variable
The inclusion of a  
  variable that 

does not belong 
in the equation

Decreased precision 
  in the form of higher 

standard  errors, 
lower t-scores and 
wider confidence 
intervals.

 1. Theory
 2. t-test on βn

3. r  

2

 4.  impact on other 
coefficients if X is 
dropped.

Delete the  
  variable if its 

inclusion is not 
required by the 
underlying theory.

Incorrect Functional Form

The functional form  
  is inappropriate

Biased estimates,  
  poor fit, and  difficult 

interpretation.

examine the theory  
  carefully; think 

about the relation-
ship between X 
and Y.

Transform the  
  variable or the 

equation to a dif-
ferent functional 
form.

Multicollinearity
some of the inde- 
  pendent variables 

are (imperfectly) 
correlated

no biased βns, but  
  estimates of the 

separate effects 
of the Xs are not 
reliable, i.e., high 
se(βn)s and low t-
scores.

no universally  
  accepted rule or 

test is available. 
use high r12s or 
the vif test.

Drop redundant  
  variables, but to 

drop others might 
introduce bias. 
often doing noth-
ing is best.

Serial Correlation
observations of 
the error term are 
correlated, as in: 
et = ρet-1 + ut

no biased βns, but  
  ols no longer is 

minimum variance, 
and hypothesis 
testing and confi-
dence intervals are 
unreliable.

use Durbin–watson  
  test; if significantly 

less than 2, posi-
tive serial correla-
tion exists.

if impure, fix  
  the specification. 

otherwise, con-
sider generalized 
least squares 
or newey–west 
standard errors.

Heteroskedasticity

The variance of  
  the error term 

is not constant 
for all observa-
tions, as in: 
var(ei) = σ2Zi

same as for serial  
  correlation.

use residual plots  
  and the Breusch–

pagan or white 
tests.

if impure, fix the  
  specification. 

otherwise, use 
hC standard er-
rors or reformu-
late the variables.
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the use of the Regression User’s Checklist will be most helpful for beginning 
researchers, but we also find ourselves referring back to it once in a while 
even after years of experience.

Be careful. All simplified tables, like the two in this chapter, must trade 
completeness for ease of use. As a result, strict adherence to a set of rules is 
not recommended even if the rules come from one of our tables. Someone 
who understands the purpose of the research, the exact definitions of the 
variables, and the problems in the data is much more likely to make a correct 
judgment than is someone equipped with a set of rules created to apply to a 
wide variety of possible applications.

Table 11.3, the Regression User’s Guide, contains a brief summary of the 
major econometric maladies discussed so far in this text. For each economet-
ric problem, we list:

1. Its nature.

2. Its consequences for OLS estimation.

3. How to detect it.

4. How to attempt to get rid of it.

How might you use the guide? If an estimated equation has a particular 
problem, such as an insignificant coefficient estimate, a quick glance at the 
guide can give some idea of the econometric problems that might be causing 
the symptom. Both multicollinearity and irrelevant variables can cause regres-
sion coefficients to have insignificant t-scores, for example, and someone 
who remembered only one of these potential causes might take the wrong 
corrective action. After some practice, the use of this guide will decrease until 
it eventually will seem fairly limiting and simplistic. Until then, however, our 
experience is that those about to undertake their first econometric research 
can benefit by referring to this guide.

11.7  Summary

1. Running your own regression project involves choosing your dependent 
variable, applying the six steps in applied regression (of Chapter 3) to 
that dependent variable, and then writing a research report that sum-
marizes your work.

2. A great research topic is one that you know something about, one 
that addresses an inherently interesting economic or behavioral ques-
tion or choice, and one for which data are available not only for the 
dependent variable but also for the obvious independent variables.
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3. Don’t underestimate the difficulty and importance of collecting a 
complete and accurate data set. It’s a lot of work, but it’s worth it!

4. The art of econometrics boils down to finding the best possible equa-
tion in the fewest possible number of regression runs. The only way to 
do this is to spend quite a bit of time thinking through the underlying 
principles of your research project before you run your first regression.

5. Before you complete your research project, be sure to review the prac-
tical hints and regression user’s guide and checklist in Sections 11.4 
and 11.6.

11.8  Appendix: The Housing Price Interactive Exercise

This interactive regression learning exercise is somewhat different from the pre-
vious one in Section 8.7. Our goal is still to bridge the gap between textbook 
and computer, but we feel that if you completed the previous interactive exer-
cise, you should be ready to do the computer work on your own. As a result, 
this interactive exercise will provide you with a short literature review and the 
data, but you’ll be asked to calculate your own estimates. Feedback on your 
specification choices will once again be found in the hints in Appendix A.

Since the only difference between this interactive exercise and the first one 
is that this one requires you to estimate your chosen specification(s) with the 
computer, our guidelines for interactive exercises still apply:

1. Take the time to look over a portion of the reading list before choosing 
a specification.

2. Try to estimate as few regression runs as possible.

3. Avoid looking at the hints until after you’ve reached what you think is 
your best specification.

We believe that the benefits you get from an interactive exercise are 
directly proportional to the effort you put into it. If you have to delay this 
exercise until you have the time and energy to do your best, that’s probably 
a good idea.

Building a Hedonic Model of Housing Prices

In the next section, we’re going to ask you to specify the independent vari-
ables and functional form for an equation whose dependent variable is the 
price of a house in Southern California. Before making these choices, it’s vital 
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to review the housing price literature and to think through the theory behind 
such models. Such a review is especially important in this case because the 
model we’ll be building will be hedonic in nature.

What is a hedonic model? Recall that in Section 1.5 we estimated an equa-
tion for the price of a house as a function of the size of that house. Such a 
model is called hedonic because it uses measures of the quality of a product 
as independent variables instead of measures of the market for that product 
(like quantity demanded, income, etc.). Hedonic models are most useful 
when the product being analyzed is heterogeneous in nature because we 
need to analyze what causes products to be different and therefore to have 
different prices. With a homogeneous product, hedonic models are virtually 
useless.

Perhaps the most-cited early hedonic housing price study is that of G. 
Grether and P. Mieszkowski,6 who collected a seven-year data set and built 
a number of linear models of housing price using different combinations of 
variables. They included square feet of space, the number of bathrooms, and 
the number of rooms, although the number of rooms turned out to be insig-
nificant. They also included lot size and the age of the house as variables, 
specifying a quadratic function for the age variable. Most innovatively, they 
used several slope dummies in order to capture the interaction effects of vari-
ous combinations of variables (like a hardwood-floors dummy times the size 
of the house).

Peter Linneman7 estimated a housing price model on data from Los Angeles, 
Chicago, and the entire United States. His goal was to create a model that 
worked for the two individual cities and then to apply it to the nation to test 
the hypothesis of a national housing market. Linneman did not include any 
lot characteristics, nor did he use any interaction variables. His only measures 
of the size of the living space were the number of bathrooms and the num-
ber of nonbathrooms. Except for an age variable, the rest of the independent 
variables were dummies describing quality characteristics of the house and 
neighborhood. Although many of the dummy variables were quite fickle, the 
coefficients of age, number of bathrooms, and the number of nonbathrooms 
were relatively stable and significant. Central air conditioning had a negative, 
insignificant coefficient for the Los Angeles regression.

6. G. M. Grether and Peter Mieszkowski, “Determinants of Real Estate Values,” Journal of Urban 
Economics, Vol. 1, pp. 127–146. Another classic article of the same era is J. Kain and J. Quigley, 
“Measuring the Value of Housing Quality,” Journal of the American Statistical Association, Vol. 45,  
pp. 532–548.
7. Peter Linneman, “Some Empirical Results on the Nature of the Hedonic Price Functions for 
the Urban Housing Market,” Journal of Urban Economics, Vol. 8, No. 1, pp. 47–68.
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K. Ihlanfeldt and J. Martinez-Vasquez8 investigated sample bias in vari-
ous methods of obtaining house price data and concluded that a house’s 
sales price is the least biased of all measures. Unfortunately, they went on to 
estimate an equation by starting with a large number of variables and then 
dropping all those that had t-scores below 1, almost surely introducing bias 
into their equation.

Finally, Allen Goodman9 added some innovative variables to an estimate 
on a national data set. He included measures of specific problems like rats, 
cracks in the plaster, holes in the floors, plumbing breakdowns, and the level 
of property taxes. Although the property tax variable showed the capitaliza-
tion of low property taxes, as would be expected, the rats coefficient was 
insignificant, and the cracks variable’s coefficient asserted that cracks signifi-
cantly increase the value of a house.

The Housing Price Interactive Exercise

Now that we’ve reviewed at least a portion of the literature, it’s time to build 
your own model. Recall that in Section 1.5, we built a simple model of the 
price of a house as a function of the size of that house, Equation 1.21:

 Pni = 40.0 + 0.138Si (1.21)

where: Pi = the price (in thousands of dollars) of the ith house
 Si = the size (in square feet) of the ith house

Equation 1.21 was estimated on a sample of 43 houses that were purchased 
in the same Southern California town (Monrovia) within a few weeks of each 
other. It turns out that we have a number of additional independent variables 
for the data set we used to estimate Equation 1.21. Also available are:

Ni =  the quality of the neighborhood of the ith house (1 5 
best, 4 5 worst) as rated by two local real estate agents

Ai  = the age of the ith house in years
BEi = the number of bedrooms in the ith house
BAi = the number of bathrooms in the ith house

8. Keith Ihlanfeldt and Jorge Martinez-Vasquez, “Alternate Value Estimates of Owner-Occupied 
Housing: Evidence on Sample Selection Bias and Systematic Errors,” Journal of Urban Econom-
ics, Vol. 20, No. 3, pp. 356–369. Also see Eric Cassel and Robert Mendelsohn, “The Choice of 
Functional Forms for Hedonic Price Equations: Comment,” Journal of Urban Economics, Vol. 18, 
No. 2, pp. 135–142.
9. Allen C. Goodman, “An Econometric Model of Housing Price, Permanent Income, Tenure 
Choice, and Housing Demand,” Journal of Urban Economics, Vol. 23, pp. 327–353.
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CAi =  a dummy variable equal to 1 if the ith house has central 
air conditioning, 0 otherwise

SPi =  a dummy variable equal to 1 if the ith house has a pool, 0 
otherwise

Yi  = the size of the yard around the ith house (in square feet)

Read through the list of variables again, developing your own analyses of the 
theory behind each variable. What are the expected signs of the coefficients? 
Which variables seem potentially redundant? Which variables must you 
include?

In addition, there are a number of functional form modifications that can 
be made. For example, you might consider a quadratic polynomial for age, 
as Grether and Mieszkowski did, or you might consider creating slope dum-
mies such as SP # S or CA # S. Finally, you might consider interactive variables 
that involve the neighborhood proxy variable such as N # S or N # BA. What 
hypotheses would each of these imply?

Develop your specification carefully. Think through each variable and/or 
functional form decision, and take the time to write out your expectations for 
the sign and size of each coefficient. Don’t take the attitude that you should 
include every possible variable and functional form modification and then 
drop the insignificant ones. Instead, try to design the best possible hedonic 
model of housing prices you can the first time around.

Once you’ve chosen a specification, estimate your equation, using the data 
in Table 11.4 and analyze the result.

Table 11.4 Data for the housing price interactive exercise

P S N A BE BA CA SP Y

107 736 4 39 2 1 0 0 3364

133 720 3 63 2 1 0 0 1780

141 768 2 66 2 1 0 0 6532

165 929 3 41 3 1 0 0 2747

170 1080 2 44 3 1 0 0 5520

173 942 2 65 2 1 0 0 6808

182 1000 2 40 3 1 0 0 6100

200 1472 1 66 3 2 0 0 5328

220 1200 1.5 69 3 1 0 0 5850

226 1302 2 49 3 2 0 0 5298

260 2109 2 37 3 2 1 0 3691

275 1528 1 41 2 2 0 0 5860
(continued)
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P S N A BE BA CA SP Y

280 1421 1 41 3 2 0 1 6679

289 1753 1  1 3 2 1 0 2304

295 1528 1 32 3 2 0 0 6292

300 1643 1 29 3 2 0 1 7127

310 1675 1 63 3 2 0 0 9025

315 1714 1 38 3 2 1 0 6466

350 2150 2 75 4 2 0 0 14825

365 2206 1 28 4 2.5 1 0 8147

503 3269 1 5 4 2.5 1 0 10045

135 936 4 75 2 1 0 0 5054

147 728 3 40 2 1 0 0 1922

165 1014 3 26 2 1 0 0 6416

175 1661 3 27 3 2 1 0 4939

190 1248 2 42 3 1 0 0 7952

191 1834 3.5 40 3 2 0 1 6710

195 989 2 41 3 1 0 0 5911

205 1232 1 43 2 2 0 0 4618

210 1017 1 38 2 1 0 0 5083

215 1216 2 77 2 1 0 0 6834

228 1447 2 44 2 2 0 0 4143

242 1974 1.5 65 4 2 0 1 5499

250 1600 1.5 63 3 2 1 0 4050

250 1168 1.5 63 3 1 0 1 5182

255 1478 1 50 3 2 0 0 4122

255 1756 2 36 3 2 0 1 6420

265 1542 2 38 3 2 0 0 6833

265 1633 1 32 4 2 0 1 7117

275 1500 1 42 2 2 1 0 7406

285 1734 1 62 3 2 0 1 8583

365 1900 1 42 3 2 1 0 19580

397 2468 1 10 4 2.5 1 0 6086
Datafile 5 house11

Table 11.4 (continued)
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1. Test your hypotheses for each coefficient with the t-test. Pay special at-
tention to any functional form modifications.

2. Decide what econometric problems exist in the equation, testing, if ap-
propriate, for multicollinearity, serial correlation, or heteroskedasticity.

3. Decide whether to accept your first specification as the best one or to 
make a modification in your equation and estimate again. Make sure 
you avoid the temptation to estimate an additional specification “just 
to see what it looks like.”

Once you’ve decided to make no further changes, you’re finished— 
congratulations! Now turn to the hints in Appendix A for feedback on your 
choices.
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Time-Series Models

12.1 Distributed Lag Models

12.2 Dynamic Models

12.3 Serial Correlation and Dynamic Models

12.4 Granger Causality

12.5 Spurious Correlation and Nonstationarity

12.6 Summary and Exercises

Chapter 12

The purpose of this chapter is to provide an introduction to a number of 
interesting models that have been designed to cope with and take advantage 
of the special properties of time-series data. Working with time-series data 
often causes complications that simply can’t happen with cross-sectional 
data. Most of these complications involve the order of the observations 
because order matters quite a bit in time-series data but doesn’t matter much 
(if at all) in cross-sectional data.

The most important of the topics concerns a class of dynamic models in 
which a lagged value of the dependent variable appears on the right-hand 
side of the equation. As you will see, the presence of a lagged dependent vari-
able on the right-hand side of the equation implies that the impact of the 
independent variables can be spread out over a number of time periods.

Why would you want to distribute the impact of an independent variable 
over a number of time periods? To see why, consider the impact of advertis-
ing on sales. Most analysts believe that people remember advertising for 
more than one time period, so advertising affects sales in the future as well as 
in the current time period. As a result, models of sales should include current 
and lagged values of advertising, thus distributing the impact of advertising 
over a number of different lags.

While this chapter focuses on such dynamic models, you’ll also learn 
about models in which different numbers of lags appear and we’ll investigate 

364
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how the presence of these lags affects our estimators. The chapter concludes 
with a brief introduction to a topic called nonstationarity. If variables have 
significant changes in basic properties (like their mean or variance) over 
time, they are said to be nonstationary, and it turns out that nonstationary 
variables have the potential to inflate t-scores and measures of overall fit in 
an equation.

12.1  Distributed Lag Models

As described in Section 7.3, lagged independent variables can be used when-
ever you expect X to affect Y after a period of time. For example, if the under-
lying theory suggests that X1 affects Y with a one-time-period lag (but X2 has 
an instantaneous impact on Y), we use equations like:

 Yt = β0 + β1X1t - 1 + β2X2t + et (7.14)

Such lags are called simple lags, and the estimation of β1 with OLS is no 
more difficult than the estimation of the coefficients of nonlagged equa-
tions, except for possible impure serial correlation if the lag is misspeci-
fied. Remember, however, that the coefficients of such equations should be 
interpreted carefully. For example, β2 in Equation 7.14 measures the effect 
of a one-unit increase in this time’s X2 on this time’s Y holding last time’s X1 
constant.

A case that’s more complicated than this one-period lag occurs when the 
impact of an independent variable is expected to be spread out over a number 
of time periods. Suppose, for example, that we’re interested in studying the 
impact of a change in the money supply on GDP. Theoretical and empirical 
studies have provided evidence that, because of rigidities in the marketplace, 
it takes time for the economy to react completely to a change in the money 
supply. If it takes two years, some of the effect will take place immediately, 
some will take place with a lag of one year, and the rest will occur with a lag 
of two years. In such a case, the appropriate econometric model would be:

 Yt = β0 + β1Xt + β2Xt - 1 + β3Xt - 2 + et (12.1)

where Y would be GDP and X would be the money supply. The right-hand 
side of Equation 12.1 is unusual, because X appears three times, each with a 
different lag, distributing the impact of X over a number of time periods. This 
is a distributed lag model; it explains the current value of Y as a function of 
current and past values of X.

Can you think of another example of a dependent variable that might be 
appropriately explained with a distributed lag? For instance, is your grade on 
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an econometrics exam a function only of how much you studied the night 
before the test, or is it impacted by your work during the previous days and 
weeks? Most people would agree that with a few notable exceptions, a distrib-
uted lag model would indeed be a good way to measure the impact of study-
ing on an exam grade.

The estimation of Equation 12.1 with OLS typically is straightforward. 
There will be some unavoidable multicollinearity between the Xs, but oth-
erwise a distributed lag model like Equation 12.1 will be quite useful in a 
variety of applications.

However, the impact of X on Y often can be expected to continue over a 
large number of time periods, so in many cases we’ll need more lagged values 
of X than are shown in Equation 12.1. If we were building a quarterly model 
of the impact of a change in the money supply on GDP, for example, then 
we’d need quite a few lagged independent variables, and a more general dis-
tributed lag equation would be appropriate:

 Yt = α0 + β0Xt + β1Xt - 1 + β2Xt - 2 + g + βpXt - p + et (12.2)

where p is the maximum number of periods by which X is lagged. In our 
quarterly GDP model, p might be as high as 10 or 11. (Note that in order to 
have the subscript of β equal the lag in X, we’ve defined the constant term as 
α0 and β0 now is a slope coefficient.)

Take a careful look at Equation 12.2. The slope coefficients β0 through 
βp measure the effects of the various lagged values of X on the current 
value of Y (holding constant the other independent variables in the equa-
tion). In most economic applications, including our GDP example, we’d 
expect the impact of X on Y to decrease as the length of the lag (indicated 
by the subscript of the β) increases. As a result, we’d always expect β0 and 
β1 to be larger in absolute value than β9 or β10.

Unfortunately, the estimation of Equation 12.2 with OLS causes a number 
of problems:

1. The various lagged values of X are likely to be severely multicollinear, 
making coefficient estimates imprecise.

2. In large part because of this multicollinearity, there is no guarantee that 
the estimated βs will follow the smoothly declining pattern that economic 
theory would suggest. Instead, it’s quite typical for the estimated coeffi-
cients of Equation 12.2 to follow a fairly irregular pattern, for example:

 βn0 = 0.26  βn1 = 0.07  βn2 = 0.17  βn3 = -  0.03  βn4 = 0.08

3. The degrees of freedom tend to decrease, sometimes substantially, for 
two reasons. First, we have to estimate a coefficient for each lagged X, 
thus increasing K and lowering the degrees of freedom (N 2 K 2 1). 
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Second, unless data for lagged Xs outside the sample are available, we 
have to decrease the sample size by 1 for each lagged X we calculate, 
thus lowering the number of observations, N, and therefore the degrees 
of freedom.

As a result of these problems with OLS estimation of distributed lag equa-
tions like Equation 12.2, it’s standard practice to consider a simplifying 
assumption in such situations. The most commonly used simplification is to 
replace all the lagged independent variables with a lagged value of the depen-
dent variable, and we’ll call that kind of equation a dynamic model.

12.2  Dynamic Models

The simplest dynamic model is:

 Yt = α0 + β0Xt + λYt - 1 + ut (12.3)

Note that Y is on both sides of the equation! Luckily, the subscripts are differ-
ent in that the Y on the left-hand side is Yt, and the Y on the right-hand side 
is Yt−1. It’s this difference in time period that makes the equation dynamic. 
Thus, the simplest dynamic model is an equation in which the current 
value of the dependent variable Y is a function of the current value of X and 
a lagged value of Y itself. Such a model with a lagged dependent variable is 
often called an autoregressive equation.

Let’s look at Equation 12.3 to try to see why it can be used to represent 
a distributed lag model or any model in which the impact of X on Y is dis-
tributed over a number of lags. Suppose that we lag Equation 12.3 one time 
period:

 Yt - 1 = α0 + β0Xt - 1 + λYt - 2 + ut - 1 (12.4)

If we now substitute Equation 12.4 for Yt - 1 in Equation 12.3, we get:

 Yt = α0 + β0Xt + λ1α0 + β0Xt - 1 + λYt - 2 + ut - 12 + ut (12.5)

or

 Yt = 1α0 + λα02 + β0Xt + λβ0Xt - 1 + λ2Yt - 2 + 1λut - 1 + ut2 (12.6)

If we do this one more time (that is, if we lag Equation 12.3 two time peri-
ods, substitute it into Equation 12.5, and rearrange), we get:

 Yt = α0* + β0Xt + λβ0Xt - 1 + λ2β0Xt - 2 + λ3Yt - 3 + ut* (12.7)
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where α0* is the new (combined) intercept and ut* is the new (combined) 
error term. We’ve shown that a dynamic model can indeed be used to repre-
sent a distributed lag model!

In addition, note that the coefficients of the lagged Xs follow a clear pat-
tern. To see this, let’s go back to Equation 12.2:

 Yt = α0 + β0Xt + β1Xt - 1 + β2Xt - 2 + g + βpXt - p + et (12.2)

and compare the coefficients in Equation 12.2 to those in Equation 12.7. We get:

  β1 = λβ0

  β2 = λ2β0

  β3 = λ3β0

 .
 .
 .
  βp = λpβ0 

(12.8)

As long as λ is between 0 and 1, these coefficients will indeed smoothly 
decline,1 as shown in Figure 12.1.

Dynamic models like Equation 12.3 avoid the three major problems 
with distributed lag equations that we outlined in the previous section. The 
degrees of freedom have increased dramatically, and the multicollinearity 
problem has disappeared. If ut is well behaved, OLS estimation of Equation 
12.3 can be shown to have desirable properties for large samples. How large 
is “large enough”? Our recommendation, based more on experience than 
proof, is to aim for a sample of at least 50 observations. The smaller the sam-
ple, the more likely you are to encounter bias. In particular, estimates of λ 
will be biased downward, and the bias will be especially severe for larger val-
ues of λ and in the presence of additional independent variables, even irrel-
evant ones. As a result, samples below 30 should be avoided, in part because 
of this bias and in part because hypothesis testing can become unreliable.2

In addition to this sample size issue, dynamic models face another seri-
ous problem. It turns out that serial correlation almost surely will cause bias 
in the OLS estimates of dynamic models. This problem will be discussed in 
Section 12.3.

1. This model is sometimes referred to as a Koyck distributed lag model because it was origi-
nally developed by L. M. Koyck in Distributed Lags and Investment Analysis (Amsterdam: North-
Holland Publishing, 1954).
2. David Grubb and James Symons, “Bias in Regressions with a Lagged Dependent Variable,” 
Econometric Theory, Vol. 3, No. 3, pp. 371–386.
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An Example of a Dynamic Model

As an example of a dynamic model, let’s look at an aggregate consumption 
function from a macroeconomic equilibrium GDP model. Many econo-
mists argue that in such a model, consumption (COt) is not just an instan-
taneous function of disposable income (YDt). Instead, they believe that 
 current consumption is also influenced by past levels of disposable income 
(YDt - 1, YDt - 2, etc.):

 COt = α0 + β0YDt + β1YDt - 1 + β2YDt - 2 + g + βpYDt - p + et (12.9)

Such an equation fits well with simple models of consumption, but it makes 
sense only if the coefficients of past levels of income decrease as the length of 
the lag increases. That is, the impact of lagged income on current consump-
tion should decrease as the lag gets bigger. Thus we’d expect the coefficient of 
YDt - 2 to be less than the coefficient of YDt - 1, and so on.

As a result, most econometricians would model Equation 12.9 with a 
dynamic model:

 COt = α0 + β0YDt + λCOt - 1 + ut (12.10)
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Figure 12.1 Geometric Weighting schemes for Various Dynamic models

As long as λ is between 0 and 1, a dynamic model has the impact of the independent 
variable declining as the length of the lag increases.
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To estimate Equation 12.10, we use data from Section 14.3, where we will 
build a small macromodel of the U.S. economy from 1976 through 2007. 
The OLS estimates of Equation 12.10 for this data set are (standard errors in 
parentheses):

 COt = - 266.6 + 0.46YDt + 0.56COt - 1 (12.11)
 10.102   10.102
 t = 4.70    5.66 
 R 

2 = .999 N = 32 (annual 1976–2007) 

If we substitute βn0 = 0.46 and λn = 0.56 into Equation 12.3 for i = 1, we 
obtain βn1 = βn 0λn 1 = 10.46210.5621 = 0.26. If we continue this process, it 
turns out that Equation 12.11 is equivalent to:

 COt = -  605.91 + 0.46YDt + 0.26YDt - 1 + 0.14YDt - 2

  + 0.08YDt - 3 + g 
(12.12)

As can be seen, the coefficients of YD in Equation 12.12 do indeed decline as 
we’d expect in a dynamic model.

To compare this estimate with an OLS estimate of the same equation with-
out the dynamic model format, we’d need to estimate a distributed lag equa-
tion with at least three lagged variables.

 COt = α0 + β0YDt + β1YDt - 1 + β2YDt - 2 + β3YDt - 3 + et (12.13)

If we estimate Equation 12.13 using the same data set, we get:

COt = - 695.89 + 0.73YDt + 0.39YDt - 1 + 0.006YDt - 2 - 0.08YDt - 3

(12.14)

How do the coefficients of Equation 12.14 look? As the lag increases, the coef-
ficients of YD decrease sharply, actually going negative for t−3. Neither eco-
nomic theory nor common sense leads us to expect this pattern. Such a poor 
result is due to the severe multicollinearity between the lagged Xs. Most econo-
metricians therefore estimate consumption functions with a lagged dependent 
variable simplification scheme like the dynamic model in Equation 12.10.

An interesting interpretation of the results in Equation 12.11 concerns the 
long-run multiplier implied by the model. The long-run multiplier measures 
the total impact of a change in income on consumption after all the lagged 
effects have been felt. One way to get this estimate would be to add up all the 
βns, but an easier alternative is to calculate βn031> 11 - λn24, which in this case 
equals 0.4631> 11 - 0.5624 or 1.05. A sample of this size is likely to encoun-
ter small sample bias, however, so we shouldn’t overanalyze the results. For 
more on this data set and the other equations in the model, see Section 14.3. 
For more on testing and adjusting dynamic equations like Equation 12.11 for 
serial correlation, let’s move on to the next section.

9

9

9
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12.3  Serial Correlation and Dynamic Models

The consequences of serial correlation depend crucially on the type of model 
we’re talking about. For a distributed lag model such as Equation 12.2, serial 
correlation has the effects outlined in Section 9.3: Serial correlation causes: 
(1) OLS to no longer be the minimum variance unbiased estimator, (2) the 
SE(βn)s to be biased, and (3) no bias in the OLS βns themselves.

For dynamic models such as Equation 12.3, however, all this changes, and 
serial correlation does indeed cause bias in the βns produced by OLS. Com-
pounding this is the fact that the detection of and remedies for serial correla-
tion that we discussed in Chapter 9 need to be modified in the presence of a 
lagged dependent variable.

Serial Correlation Causes Bias in Dynamic Models

If an equation with a lagged dependent variable as an independent variable 
has a serially correlated error term, then OLS estimates of the coefficients will 
be biased, even in large samples.

To see where this bias comes from, let’s start with a dynamic model: 

 Yt = α0 + β0Xt + λYt - 1 + ut (12.3)

and lag it one time period:

 c  c  
 Yt - 1 = α0 + β0Xt - 1 + λYt - 2 + ut - 1 (12.15)

As you can see from the upward-pointing arrows above Equation 12.15, if 
ut - 1 is positive, then Yt - 1 will be higher than it would have been otherwise.

In addition, if ut is serially correlated, then we know that:

 c  c
 ut = ρut - 1 + et (12.16)

where et is a classical error term with an expected value of zero. As you can 
see from the arrows above Equation 12.16, if ut - 1 is positive, then ut will be 
higher than it would have been otherwise as long as ρ is positive, as it typi-
cally is in economic applications.

If we add the arrows from Equations 12.15 and 12.16 to Equation 12.3, 
we get:

 c  c
 Yt = α0 + β0Xt + λYt - 1 + ut (12.3)

Take a look at the arrows in Equation 12.3. Yt - 1 and ut are correlated! Such 
a correlation violates Classical Assumption III, which assumes that the error 
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term is not correlated with any of the explanatory variables. (If ut - 1 is nega-
tive, then both ut and Yt - 1 will be lower than they would have been other-
wise, which again violates Classical Assumption III.)

The consequences of this correlation include biased estimates, in particu-
lar of the coefficient λ, because OLS attributes to Yt - 1 some of the change in 
Yt actually caused by ut. In essence, the uncorrected serial correlation acts like 
an omitted variable (ut - 1). Since an omitted variable causes bias whenever it 
is correlated with one of the included independent variables, and since ut - 1 
is correlated with Yt - 1, the combination of a lagged dependent variable and 
serial correlation causes bias in the coefficient estimates. This bias is in addi-
tion to the bias mentioned on page 368.

Testing for Serial Correlation in Dynamic Models

If serial correlation causes bias in a dynamic model, then tests for serial corre-
lation are obviously important. Unfortunately, however, the Durbin–Watson 
test is potentially invalid for an equation that contains a lagged dependent 
variable as an independent variable because the Durbin–Watson statistic is 
biased toward 2 in a dynamic equation. This bias toward 2 means that serial 
correlation in a dynamic model is more likely to evade detection by the 
Durbin–Watson test.3

Luckily, the Lagrange Multiplier (LM) serial correlation test of Section 9.4 
still is valid even in the face of a lagged dependent variable. Using the Lagrange 
Multiplier to test for serial correlation in a typical dynamic model involves 
three steps that should seem familiar:

1. Obtain the residuals from the estimated equation:

 et = Yt - Ynt = Yt - αn 0 - βn 0X1t - λn Yt - 1 (12.17)

2. Use these residuals as the dependent variable in an auxiliary equation 
that includes as independent variables all those on the right-hand side 
of the original equation as well as the lagged residuals:

 et = a0 + a1Xt + a2Yt - 1 + a3et - 1 + ut (12.18)

3. The opposite is not a problem. A Durbin−Watson test that indicates serial correlation in the 
presence of a lagged dependent variable, despite the bias toward 2, is an even stronger affirma-
tion of serial correlation.
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3. Estimate Equation 12.18 using OLS and then test the null hypothesis 
that a3 = 0 with the following test statistic:

 LM = NR2 (12.19)

 where N is the sample size and R2 is the unadjusted coefficient of de-
termination, both of the auxiliary equation, Equation 12.18. For large 
samples, NR2 has a chi-square distribution with degrees of freedom 
equal to the number of restrictions in the null hypothesis (in this case, 
one). If NR2 is greater than the critical chi-square value from Statistical 
Table B-6, then we reject the null hypothesis that a3 = 0 and conclude 
that there is indeed serial correlation in the original equation.

As an example of testing for serial correlation in a dynamic model, let’s 
run a Lagrange Multiplier (LM) serial correlation test on Equation 12.11, the 
consumption function we estimated in the previous section. If we estimate 
the auxiliary equation for that model, we get an R2 of .4025 which, when 
multiplied by the sample size of 31 (do you see why it’s 31 and not 32?), 
produces an NR2 of 12.48. 12.48 is greater than 3.84, the 5-percent critical 
chi-square value with one degree of freedom, so we have strong evidence of 
serial correlation in Equation 12.11. What should we do?

Correcting for Serial Correlation in Dynamic Models

If the Lagrange Multiplier test indicates serial correlation in a dynamic 
model, the first step is to consider the possibility that the serial correlation is 
impure, perhaps caused by omission of a relevant variable and/or by failure 
to capture the actual distributed lag pattern accurately.

If the serial correlation appears to be pure, then the theoretically preferred 
solution is to transform the equation so as to eliminate the serial correlation 
and re-estimate the model. The required transformation is quite similar to 
the Generalized Least Squares approach to serial correlation described in Sec-
tion 9.5. Unfortunately, the iterative nonlinear estimation of the transformed 
equation is well beyond the scope of this text, so it’s not a realistic alternative 
for most readers.4 Instead, our suggestion is to use one of two alternatives, 
depending on the underlying theory of the model and the size of the sample.

If theory indicates that only a few lagged values of X are meaningful in 
explaining Y, then a potential way to avoid the bias due to serial correlation 

4. Readers interested in this approach should see Sean Becketti, “Introduction to Time Series 
Using Stata” (College Station: Stata Press, 2013), pp. 192–195.
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is to estimate a distributed lag model (Equation 12.2 with p = 1 or 2) 
instead of a dynamic model. The distributed lag model will have potential 
multicollinearity but will not likely face the other problems typically associ-
ated with distributed lag models because p is so low. Most econometricians 
would prefer to deal with the consequences of multicollinearity than to face 
bias, so this is an improvement. There’s a second advantage to distributed 
lags. The Xt - p terms, in essence, are acting as proxies for Yt - 1. As we’ll learn 
in Chapter 14, such proxies are similar to instrumental variables, and they are 
especially useful because they will eliminate bias if they’re uncorrelated with 
the error term.

In a small sample, the best approach may well be to continue to use OLS 
even in the face of serial correlation in a dynamic model. For a nontrivial 
subset of real-world examples, OLS actually outperforms more sophisticated 
techniques. One reason is that in a small sample, the estimation bias in λ men-
tioned in Section 12.2 and the bias introduced by serial correlation often are 
of opposite signs, so they offset each other. As a result, OLS can do better than 
a technique that eliminates only the bias caused by serial correlation.5 The 
second reason is that there’s evidence from Monte Carlo studies that the size of 
the bias introduced by serial correlation in small samples often is fairly low.6

To sum, unless you’re comfortable with iterative nonlinear least squares, 
our suggestion for dealing with serial correlation in dynamic models depends 
on theory and the sample size. If theory calls for very few lagged Xs, we sug-
gest the distributed lag approach. If the sample is small, we think continuing 
to use OLS, even in the face of serial correlation, presents the best alternative. 
If both the sample and the meaningful number of lagged Xs are large, we’d 
recommend using distributed lags because of the benefits of the instrumental 
variable approach.

12.4  Granger Causality

One application of distributed lag models is to provide evidence about the 
direction of causality in economic relationships. Such a test is useful when we 
know that two variables are related but we don’t know which variable causes 
the other to move. For example, most economists believe that increases in the 

5. Asatoshi Maeshiro, “Teaching Regressions with a Lagged Dependent Variable and Autocor-
related Disturbances,” Journal of Economic Education, Vol. 27, No. 1, pp. 72–84.

6. Luke Keele and Nathan Kelly, “Dynamic Models for Dynamic Theories: The Ins and Outs of 
Lagged Dependent Variables,” Political Analysis, Vol. 14, No. 2, pp. 186–205.
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money supply stimulate GDP, but others feel that increases in GDP eventu-
ally lead the monetary authorities to increase the money supply. Who’s right?

One approach to such a question of indeterminate causality is to theorize 
that the two variables are determined simultaneously. We’ll address the esti-
mation of simultaneous equation models in Chapter 14. A second approach 
to the problem is to test for what is called “Granger causality.”

How can we claim to be able to test for causality? After all, didn’t we say in 
Chapter 1 that even though most economic relationships are causal in nature, 
regression analysis can’t prove such causality? The answer is that we don’t 
actually test for theoretical causality; instead, we test for Granger causality.

Granger causality, or precedence, is a circumstance in which one time-
series variable consistently and predictably changes before another variable.7 
Granger causality is important because it allows us to analyze which variable 
precedes or “leads” the other, and, as we shall see, such leading variables are 
extremely useful for forecasting purposes.

Despite the value of Granger causality, however, we shouldn’t let ourselves 
be lured into thinking that it allows us to prove economic causality in any 
rigorous way. If one variable precedes (“Granger causes”) another, we can’t 
be sure that the first variable “causes” the other to change.8 As a result, even 
if we’re able to show that event A always happens before event B, we have not 
shown that event A “causes” event B.

There are a number of different tests for Granger causality, and all the vari-
ous methods involve lagged dependent variables in one way or another.9 Our 
preference is to use an expanded version of a test originally developed by 
Granger. Granger suggested that to see if A Granger-caused Y, we should run:

  Yt = β0 + β1Yt - 1 + g + βpYt - p + α1At - 1 + g + αpAt - p + et (12.20)

7. See C. W. J. Granger, “Investigating Causal Relations by Econometric Models and Cross-
Spectral Methods,” Econometrica, Vol. 37, No. 3, pp. 424−438.
8. In a previous edition, we ended this paragraph by saying, “For example, Christmas cards 
typically arrive before Christmas, but it’s clear that Christmas wasn’t caused by the arrival of the 
cards.” However, this isn’t a true example of Granger causality, because the date of Christmas 
is fixed and therefore isn’t a “time-series variable.” See Erdal Atukeren, “Christmas cards, Easter 
bunnies, and Granger-causality,” Quality & Quantity, Vol. 42, No. 6, Dec. 2008, pp. 835–844. For 
an in-depth discussion of causality, see Kevin Hoover, Causality in Macroeconomics (Cambridge: 
Cambridge University Press, 2001).
9. See John Geweke, R. Meese, and W. Dent, “Comparing Alternative Tests of Causality in 
Temporal Systems,” Journal of Econometrics, Vol. 21, pp. 161−194, and Rodney Jacobs, Edward 
Leamer, and Michael Ward, “Difficulties with Testing for Causation,” Economic Inquiry, Vol. 17, 
No. 3, pp. 401−413.
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and test the null hypothesis that the coefficients of the lagged As (the αs) 
jointly equal zero.10 If we can reject this null hypothesis using the F-test, then 
we have evidence that A Granger-causes Y. Note that if p = 0, Equation 12.20 
is similar to the dynamic model, Equation 12.3.

Applications of this test involve running two Granger tests, one in each 
direction. That is, run Equation 12.20 and also run:

  At = β0 + β1At - 1 + g + βpAt - p + α1Yt - 1 + g + αpYt - p + et (12.21)

testing for Granger causality in both directions by testing the null hypothesis 
that the coefficients of the lagged Ys (again, the αs) jointly equal zero. If the 
F-test is significant for Equation 12.20 but not for Equation 12.21, then we 
can conclude that A Granger-causes Y.

12.5  Spurious Correlation and Nonstationarity

One problem with time-series data is that independent variables can appear 
to be more significant than they actually are if they have the same underly-
ing trend as the dependent variable. In a country with rampant inflation, for 
example, almost any nominal variable will appear to be highly correlated 
with all other nominal variables. Why? Nominal variables are unadjusted 
for inflation, so every nominal variable will have a powerful inflationary 
component. This inflationary component will usually outweigh any real 
causal relationship, making nominal variables appear to be correlated even 
if they aren’t.

Such a problem is an example of spurious correlation, a strong relation-
ship between two or more variables that is not caused by a real underlying 
causal relationship. If you run a regression in which the dependent variable 
and one or more independent variables are spuriously correlated, the result 
is a spurious regression, and the t-scores and overall fit of such spurious regres-
sions are likely to be overstated and untrustworthy.

There are many causes of spurious correlation. In a cross-sectional data 
set, for example, spurious correlation can be caused by dividing both the 
dependent variable and at least one independent variable by a third variable 
that varies considerably more than do the others. The focus of this section, 
however, will be on time-series data and in particular on spurious correlation 
caused by nonstationary time series.

10. Such a joint test requires the use of the F-test of Section 5.6.
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Stationary and Nonstationary Time Series

A stationary series is one whose basic properties, for example, its mean and 
its variance, do not change over time. In contrast, a nonstationary series has 
one or more basic properties that do change over time. For instance, the real 
per capita output of an economy typically increases over time, so it’s nonsta-
tionary. By contrast, the growth rate of real per capita output often does not 
increase over time, so this variable is stationary even though the variable it’s 
based on, real per capita output, is nonstationary. A time series can be non-
stationary even with a constant mean if another property, such as the vari-
ance, changes over time.

More formally, a time-series variable, Xt, is stationary if:

1. the mean of Xt is constant over time,

2. the variance of Xt is constant over time, and

3. the simple correlation coefficient between Xt and Xt - k depends on the 
length of the lag (k) but on no other variable (for all k).11

If one or more of these properties is not met, then Xt is nonstationary. 
And if a series is nonstationary, that problem is referred to as nonstationarity.

Although our definition of a stationary series focuses on stationary and 
nonstationary variables, it’s important to note that error terms (and, therefore, 
residuals) also can be nonstationary. In fact, we’ve already had experience 
with a nonstationary error term. Many cases of heteroskedasticity in time-
series data involve an error term with a variance that tends to increase with 
time. That kind of heteroskedastic error term is also nonstationary!

The major consequence of nonstationarity for regression analysis is spuri-
ous correlation that inflates R2 and the t-scores of the nonstationary inde-
pendent variables, which in turn leads to incorrect model specification. This 
occurs because the regression estimation procedure attributes to the nonsta-
tionary Xt changes in Yt that were actually caused by some factor (trend, for 
example) that also affects Xt. Thus, the variables move together because of 
the nonstationarity, increasing R2 and the relevant t-scores. This is especially 

11. There are two different definitions of stationarity. The particular definition we use here is a 
simplification of the most frequently cited definition, referred to by various authors as weak, 
wide-sense, or covariance stationarity. In addition, there are many models of nonstationarity, 
for example ARCH and GARCH, that are significantly more sophisticated than the model of 
nonstationarity introduced in this section.
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important in macroeconometrics, and the macroeconomic literature includes 
many articles that examine various series for signs of nonstationarity.12

Some variables are nonstationary mainly because they increase rapidly 
over time. Spurious regression results involving these kinds of variables often 
can be avoided by the addition of a simple time trend 1t = 1, 2, 3, c , T2 
to the equation as an independent variable.

Unfortunately, many economic time-series variables are nonstationary 
even after the removal of a time trend. This nonstationarity often takes the 
form of the variable behaving as though it were a “random walk.” A random 
walk is a time-series variable in which the next period’s value equals this 
period’s value plus a stochastic error term. A random-walk variable is nonsta-
tionary because it can wander up and down without an inherent equilibrium 
and without approaching a long-term mean of any sort.

To get a better understanding of how a random walk gives rise to nonsta-
tionarity, let’s suppose that Yt is generated by an equation that includes only 
past values of itself (an autoregressive equation):

 Yt = γYt - 1 + vt (12.22)

where vt is a classical error term.
Take a look at Equation 12.22. Can you see that if 0 γ 0 6 1, then the 

expected value of Yt will eventually approach 0 (and therefore be stationary) 
as the sample size gets bigger and bigger? (Remember, since vt is a classical 
error term, its expected value = 0.) Similarly, can you see that if 0 γ 0 7 1, 
then the expected absolute value of Yt will continuously increase, making Yt 
nonstationary? This is nonstationarity due to a trend, but it still can cause 
spurious regression results.

Most importantly, what about if 0 γ 0 = 1? In this case,

 Yt = Yt - 1 + vt (12.23)

It’s a random walk! The expected value of Yt does not converge on any value, 
meaning that it is nonstationary. This circumstance, where γ = 1 in Equation 
12.23 (or similar equations), is called a unit root. If a variable has a unit 
root, then Equation 12.23 holds, and the variable follows a random walk and 
is nonstationary. The relationship between unit roots and nonstationarity is so 
strong that some econometricians use the words interchangeably, even though 
they recognize that many factors other than unit roots can cause nonstationarity.

12. See, for example, C. R. Nelson and C. I. Plosser, “Trends and Random Walks in Macroeco-
nomics Time Series: Some Evidence and Implication,” Journal of Monetary Economics, Vol. 10, 
pp. 169−182, and J. Campbell and N. G. Mankiw, “Permanent and Transitory Components in 
Macroeconomic Fluctuations,” American Economic Review, Vol. 77, No. 2, pp. 111−117.
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Spurious regression

As noted at the beginning of this section, if the dependent variable and at 
least one independent variable in an equation are trending, as they will if 
they contain unit roots, it’s possible for the results of an OLS regression to be 
spurious.13

Consider the linear regression model

 Yt = α0 + β0Xt + ut (12.24)

If both X and Y are nonstationary, then they can be highly correlated for non-
causal reasons, and our standard regression inference measures will be very 
misleading in that they’ll overstate R 

2 and the t-score for βn0.
For example, take a look at the following estimated equation:

 PRICEt = -27.8 + 0.070TUITIONt

 10.0062
 t = 11.4
 R 

2 = .94  T = 101annual2 

(12.25)

The R 

2 of this equation and the t-score for the coefficient of TUITION are 
clearly significant, but what are the definitions of the variables? Well, PRICE 
is the price of a gallon of gasoline in Portland, Oregon, and TUITION is the 
tuition for a semester of study at Occidental College (Oxy) in Los Angeles (both 
measured in nominal dollars). Is it possible that an increase in the tuition at 
Oxy caused gas prices in Portland to go up? Not unless every Oxy student was 
the child of a Portland gas station owner! What’s going on? Well, this regression 
is from the 1970s, a decade of inflation, so any nominally measured variables 
are likely to result in an equation that fits as well as Equation 12.25. Both vari-
ables are nonstationary, and this particular regression result clearly is spurious.

To avoid spurious regression results, it’s crucial to be sure that time-series 
variables are stationary before running regressions.

The Dickey–Fuller Test

To ensure that the equations we estimate are not spurious, it’s important to 
test for nonstationarity. If we can be reasonably sure that all the variables are 
stationary, then we need not worry about spurious regressions. How can you 
tell if a time series is nonstationary? The first step is to visually examine the 

h

13. See C. W. J. Granger and P. Newbold, “Spurious Regression in Econometrics,” Journal of 
Econometrics, Volume 2, pp. 111–120.
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data. For many time series, a quick glance at the data (or a diagram of the 
data) will tell you that the mean of a variable is increasing dramatically over 
time and that the series is nonstationary.

After this trend has been removed, the standard method of testing for non-
stationarity is the Dickey–Fuller test,14 which examines the hypothesis that 
the variable in question has a unit root15 and, as a result, is likely to benefit 
from being expressed in first-difference form.

To best understand how the Dickey–Fuller test works, let’s return to the 
discussion of the role that unit roots play in the distinction between station-
arity and nonstationarity. Recall that we looked at the value of γ in Equation 
12.22 to help us determine if Y was stationary or nonstationary:

 Yt = γYt - 1 + vt (12.22)

We decided that if 0 γ 0 6 1, then Y is stationary, and that if 0 γ 0 7 1, then Yt 
is nonstationary. However, if 0 γ 0 = 1, then Yt is nonstationary due to a unit 
root. Thus we concluded that the autoregressive model is stationary if 0 γ 0 6 1 
and nonstationary otherwise.

From this discussion of stationarity and unit roots, it makes sense to esti-
mate Equation 12.22 and determine if 0 γ 0 6 1 to see if Y is stationary, and 
that’s almost exactly how the Dickey–Fuller test works. First, we subtract Yt−1 
from both sides of Equation 12.22, yielding:

 1Yt - Yt - 12 = 1γ - 12Yt - 1 + vt (12.26)

If we define ∆Yt = Yt - Yt - 1 then we have the simplest form of the Dickey–
Fuller test:

 ∆Yt = β1Yt - 1 + vt (12.27)

where β1 = γ - 1. The null hypothesis is that Yt contains a unit root and is 
therefore nonstationary, and the alternative hypothesis is that Yt is stationary. 
If Yt contains a unit root, γ = 1 and β1 = 0. If Yt is stationary, 0 γ 0 6 1 and 
β1 6 0. Hence we construct a one-sided t-test on the hypothesis that β1 = 0:

 H0: β1 = 0
 HA: β1  6 0

14. D. A. Dickey and W. A. Fuller, “Distribution of the Estimators for Autoregressive Time-Series 
with a Unit Root,” Journal of the American Statistical Association, Vol. 74, pp. 427–431.
15. For more on unit roots, see John Y. Campbell and Pierre Peron, “Pitfalls and Opportuni-
ties: What Macroeconomists Should Know About Unit Roots,” NBER Macroeconomics Annual 
 (Cambridge, MA: MIT Press, 1991), pp. 141–219.
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The Dickey–Fuller test actually comes in three versions:

1. Equation 12.27,

2. Equation 12.27 with a constant term added (Equation 12.28), and

3. Equation 12.27 with a constant term and a trend term added 
 (Equation 12.29).

The form of the Dickey–Fuller test in Equation 12.27 is correct if Yt follows 
Equation 12.22, but most econometricians add a constant term to the equa-
tion, for reasons similar to those mentioned in Section 7.1, so the basic 
Dickey–Fuller test equation becomes:

 ∆Yt = β0 + β1Yt - 1 + vt (12.28)

Alternatively, if we believe Yt contains a trend “t” 1t = 1, 2, 3, c , T2, then 
we’d add “t” to the equation as a variable with a coefficient, and the appropri-
ate Dickey–Fuller test equation is:

 ∆Yt = β0 + β1Yt - 1 + β2t + vt (12.29)

How do we decide whether to use Equation 12.28 or Equation 12.29? If 
you compare the two equations, you can see that the only difference between 
them is a trend term (β2t) that’s in Equation 12.29 but not in Equation 12.28. 
Thus Equation 12.29 is appropriate if Y is growing and Equation 12.28 is 
appropriate if Y is not growing. Perhaps the best way to make this decision is 
to plot Y over time and then judge whether or not it appears to be growing.16 
GDP and consumption are good examples of variables that usually are grow-
ing over time, while most rates (like interest rates and unemployment rates) 
are good examples of variables that are not growing.

No matter which form of the Dickey–Fuller test we use, the decision rule 
is the same. If βn1 is significantly less than 0 as measured by a t-test, then we 
can reject the null hypothesis of a unit root; this implies that the variable is  
stationary. If βn1 is not significantly less than 0, then we cannot reject the 
null hypothesis of a unit root; this implies that the variable is nonstationary. 
(Recall from Chapter 5 that if we’re not able to reject the null hypothesis, we 
still have not “proven” that Y is nonstationary.)

16. John Elder and Peter Kennedy, “Testing for Unit Roots: What Should Students Be Taught?” 
Journal of Economic Education, Vol. 32, No. 2, pp. 137–146. Elder and Kennedy also investigate 
what to do in the unlikely case that the growth status of Y is unknown.
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Be careful, however. The standard t-table does not apply to Dickey–Fuller 
tests. Instead the critical values are somewhat higher than those in Statistical 
Table B-1, and they also depend on the version of the Dickey–Fuller test you 
use. In Table 12.1,17 we list critical values for the two versions of the Dickey–
Fuller test we have discussed the most, Equations 12.28 and 12.29. For exam-
ple, a 5-percent one-sided test of β1 in Equation 12.28 with a sample size of 
25 has a critical t-value of 3.00 compared to 1.717 for a standard t-test (with 
22 degrees of freedom since K = 2).

The Dickey–Fuller specifications in Equations 12.28 and 12.29 and the 
critical values for those specifications are derived under the assumption that 
the error term is serially uncorrelated. If the error term is serially correlated, 
then the test must be modified to take this serial correlation into account. This 
adjustment, called the Augmented Dickey–Fuller test (ADF), adds a series of 
lagged values of ∆Y to the Dickey–Fuller test. While the ADF is the most-used 
version of the Dickey–Fuller test, it is beyond the scope of this textbook, at 
least in part because choosing how many lagged ∆Y values to include can be 
quite complicated.

Cointegration

If the Dickey–Fuller test reveals nonstationarity, what should we do?
The traditional approach is to take the first differences (∆Y = Yt - Yt - 1 

and ∆X = Xt - Xt - 1) and use them in place of Yt and Xt in the equation. 

17. Most sources list negative critical values for the Dickey–Fuller test, because the unit root test 
is one-sided with a negative expected value. However, the t-test decision rule of this text is based 
on the absolute value of the t-score, so negative critical values would cause every null hypoth-
esis to be rejected. As a result, the critical values in Table 12.1 are positive. For adjusted critical 
t-values for the Dickey–Fuller test, including those in Table 12.1, see J. G. MacKinnon, “Criti-
cal Values of Cointegration Tests,” in Rob Engle and C. W. J. Granger, eds., Long-Run Economic 
Relationships: Readings in Cointegration (New York: Oxford University Press, 1991), Chapter 13. 
Most software packages provide these critical values with the output from a Dickey–Fuller test.

Table 12.1 5-percent one-sided critical Values for the Dickey–Fuller test

Sample Size  
(T)

For Equation 12.28  
(Y not growing)

For Equation 12.29  
(Y growing)

 25 3.00 3.60

 50 2.93 3.50

100 2.89 3.45

∞ 2.86 3.41
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With economic data, taking a first difference usually is enough to convert a 
nonstationary series into a stationary one. Unfortunately, using first differ-
ences to correct for nonstationarity throws away information that economic 
theory can provide in the form of equilibrium relationships between the vari-
ables when they are expressed in their original units (Xt and Yt). As a result, 
first differences should not be used without carefully weighing the costs and 
benefits of that shift, and in particular first differences should not be used 
until the residuals have been tested for cointegration.

Cointegration consists of matching the degree of nonstationarity of the 
variables in an equation in a way that makes the error term (and residuals) 
of the equation stationary and rids the equation of any spurious regression 
results. Even though individual variables might be nonstationary, it’s possible 
for linear combinations of nonstationary variables to be stationary, or cointe-
grated. If a long-run equilbrium relationship exists between a set of variables, 
those variables are said to be cointegrated. If the variables are cointegrated, 
then you can avoid spurious regressions even though the dependent variable 
and at least one independent variable are nonstationary.

To see how this works, let’s return to Equation 12.24:

 Yt = α0 + β0Xt + ut (12.24)

As we saw in the previous section, if Xt and Yt are nonstationary, it’s likely 
that we’ll get spurious regression results. To understand how it’s possible to 
get sensible results from Equation 12.24 if the nonstationary variables are 
cointegrated, let’s focus on the case in which both Xt and Yt contain one unit 
root. The key to cointegration is the behavior of ut.  

If we solve Equation 12.24 for ut, we get:

 ut = Yt - α0 - β0Xt (12.30)

In Equation 12.30, ut is a function of two nonstationary variables, so you’d 
certainly expect ut also to be nonstationary, but that’s not necessarily the 
case. In particular, suppose that Xt and Yt are related? More specifically, if 
economic theory supports Equation 12.24 as an equilibrium, then departures 
from that equilibrium should not be arbitrarily large.

Hence, if Yt and Xt are related, then the error term ut may well be stationary 
even though Xt and Yt are nonstationary. If ut is stationary, then the unit roots 
in Yt and Xt have “cancelled out” and Yt and Xt are said to be cointegrated.18

18. For more on cointegration, see Peter Kennedy, A Guide to Econometrics (Malden, MA: Black-
well, 2008), pp. 309–313 and 327–330, and B. Bhaskara Rau, ed., Cointegration for the Applied 
Economist (New York: St. Martin’s Press, 1994).
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We thus see that if Xt and Yt are cointegrated, then OLS estimation of the 
coefficients in Equation 12.24 can avoid spurious results. To determine if Xt 
and Yt are cointegrated, we begin with OLS estimation of Equation 12.24 and 
calculate the OLS residuals:

 et = Yt - αn 0 - βn 0Xt (12.31)

We then perform a Dickey–Fuller test on the residuals. Once again, the 
standard critical t-values do not apply to this application, so adjusted critical 
t-values should be used.19 If we are able to reject the null hypothesis of a unit 
root in the residuals, we can conclude that Yt and Xt are cointegrated and our 
OLS estimates are not spurious.

To sum, if the Dickey–Fuller test reveals that our variables have unit roots, 
the first step is to test for cointegration in the residuals. If the nonstationary 
variables are not cointegrated, then the equation should be estimated using 
first differences (∆Y and ∆X). However, if the nonstationary variables are 
cointegrated, then the equation can be estimated in its original units.20

a Standard Sequence of Steps for Dealing with Nonstationary 
Time Series

This material is fairly complex, at least compared to previous chapters, so 
let’s pause for a moment to summarize the various steps suggested in Sec-
tion 12.5. To deal with the possibility that nonstationary time series might be 

19. See J. G. MacKinnon, “Critical Values of Cointegration Tests,” in Rob Engle and C. W. J. 
Granger, eds., Long-Run Economic Relationships: Readings in Cointegration (New York: Oxford Uni-
versity Press, 1991), Chapter 13, and Rob Engle and C. W. J. Granger, “Co-integration and Error 
Correction: Representation, Estimation and Testing,” Econometrica, Vol. 55, No. 2.
20. In this case, it’s common practice to use a version of the original equation called the Error 
Correction Model (ECM). While the equation for the ECM is fairly complex, the model itself 
is a logical extension of the cointegration concept. If two variables are cointegrated, then there 
is an equilibrium relationship connecting them. A regression on these variables therefore is 
an estimate of this equilibrium relationship along with a residual, which is a measure of the 
extent to which these variables are out of equilibrium. When formulating a dynamic relation-
ship between the variables, economic theory suggests that the current change in the dependent 
variable should be affected not only by the current change in the independent variable but also 
by the extent to which these variables were out of equilibrium in the preceding period (the 
residual from the cointegrating process). The resulting equation is the ECM. For more on the 
ECM, see Peter Kennedy, A Guide to Econometrics (Malden, MA: Blackwell, 2008), pp. 299–301 
and 322–323.
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causing regression results to be spurious, most empirical work in time series 
follows a standard sequence of steps:

 1.  Specify the model. This model might be a time-series equation with 
no lagged variables, a distributed lag model or a dynamic model.

 2.  Test all variables for unit roots using the appropriate version of the 
Dickey–Fuller test.

 3.  If the variables don’t have unit roots, estimate the equation in its 
original units (Y and X).

 4.  If the variables have unit roots, test the residuals of the equation for 
cointegration using the Dickey–Fuller test.

 5.  If the variables have unit roots but are not cointegrated, then change 
the functional form of the model to first differences (∆Y and ∆X) 
and estimate the equation.

 6.  If the variables have unit roots and also are cointegrated, then 
 estimate the equation in its original units.

12.6  Summary

1. A distributed lag explains the current value of Y as a function of cur-
rent and past values of X, thus “distributing” the impact of X over 
a number of lagged time periods. OLS estimation of distributed lag 
equations without any constraints encounters problems with mul-
ticollinearity, degrees of freedom, and a noncontinuous pattern of 
estimated coefficients over time.

2. A dynamic model avoids these problems by assuming that the coef-
ficients of the lagged independent variables decrease in a geometric 
fashion the longer the lag. Given this, the dynamic model is:

 Yt = α0 + β0Xt + λYt - 1 + ut

 where Yt−1 is a lagged dependent variable and 0 6 λ 6 1.

3. In small samples, OLS estimates of a dynamic model are biased and 
have unreliable hypothesis testing properties. Even in large samples, 
OLS will produce biased estimates of the coefficients of a dynamic 
model if the error term is serially correlated.
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4. In a dynamic model, the Durbin–Watson test is biased toward 2, so it 
should not be used. The most-used alternative is the Lagrange Multi-
plier test.

5. Granger causality, or precedence, is a circumstance in which one time-
series variable consistently and predictably changes before another 
variable does. If one variable precedes (Granger-causes) another, we 
still can’t be sure that the first variable “causes” the other to change.

6. A nonstationary series is one that exhibits significant changes (for ex-
ample, in its mean and variance) over time. If the dependent variable 
and at least one independent variable are nonstationary or trending, 
a regression may encounter spurious correlation that inflates R 

2 and 
t-scores.

7. Nonstationarity can be detected using the Dickey–Fuller test. If  
the variables have unit roots and therefore are nonstationary, then the  
residuals of the equation should be tested for cointegration using the 
Dickey–Fuller test. If the variables are nonstationary but are not coin-
tegrated, then the equation should be estimated with first differences. 
If the variables are nonstationary and also are cointegrated, then the 
equation can be estimated in its original units.

ExErcisEs

(answers to the even-numbered exercises are in appendix a.)

 1. Write the meaning of each of the following terms without referring to 
the book (or your notes), and then compare your definition with the 
version in the text for each:
a. cointegration (p. 383)
b. Dickey–Fuller test (p. 380)
c. distributed lag model (p. 365)
d. dynamic model (p. 367)
e. Granger causality (p. 375)
f. nonstationary (p. 377)
g. random walk (p. 378)
h. spurious correlation (p. 376)
i. stationary (p. 377)
j. unit root (p. 378)
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 2. Consider the following equation aimed at estimating the demand for 
real cash balances in Mexico (standard errors in parentheses):

  lnMt = 2.00 - 0.10lnRt +  0.70lnYt +  0.60lnMt - 1

  10.102  10.352  10.102
 R 

2 = .90  DW = 1.80  N = 26

where: Mt = the money stock in year t (millions of pesos)
 Rt = the long-term interest rate in year t (percent)
 Yt = the real GNP in year t (millions of pesos)

a. What economic relationship between Y and M is implied by the 
equation?

b. How are Y and R similar in terms of their relationship to M?
c. Does this equation seem likely to have serial correlation? Explain.

 3. You’ve been hired to determine the impact of advertising on gross sales 
revenue for “Four Musketeers” candy bars. Four Musketeers has the same 
price and more or less the same ingredients as competing candy bars, so 
it seems likely that only advertising affects sales. You decide to build a 
model of sales as a function of advertising, but you’re not sure whether a 
distributed lag or a dynamic model is appropriate.

   Using data on Four Musketeers candy bars from Table 12.2, esti-
mate both of the following equations from 1985–2009 and compare 
the lag structures implied by the estimated coefficients. (Hint: Be care-
ful to use the correct sample.)
a. distributed lag model (4 lags)
b. a dynamic model

 4. Test for serial correlation in the estimated dynamic model you got as 
your answer to Exercise 3b.

 5. Some farmers were interested in predicting inches of growth of corn as 
a function of rainfall on a monthly basis, so they collected data from 
the growing season and estimated an equation of the following form:

 Gt = β0 + β1Rt + β2Gt - 1 + et

where: Gt = inches of growth of corn in month t
 Rt  = inches of rain in month t
 et  = a normally distributed classical error term

  The farmers expected a negative sign for β2 (they felt that since corn 
can only grow so much, if it grows a lot in one month, it won’t grow 
much in the next month), but they got a positive estimate instead. 
What suggestions would you have for this problem?

h
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 6. Run 5-percent Dickey–Fuller tests for the following variables from the 
chicken demand equation, using dataset CHICK9 on the text’s website, 
and determine which variables, if any, you think are nonstationary.
a. Yt

b. PCt

c. PBt

d. YDt

Table 12.2 Data for the Four musketeers exercise

Year Sales Advertising
1981 * 30
1982 * 35
1983 * 36
1984 320 39
1985 360 40
1986 390 45
1987 400 50
1988 410 50
1989 400 50
1990 450 53
1991 470 55
1992 500 60
1993 500 60
1994 490 60
1995 580 65
1996 600 70
1997 700 70
1998 790 60
1999 730 60
2000 720 60
2001 800 70
2002 820 80
2003 830 80
2004 890 80
2005 900 80
2006 850 75
2007 840 75
2008 850 75
2009 850 75

Datafile 5 moUse12
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 7. In 2001, Heo and Tan published an article21 in which they used 
the Granger causality model to test the relationship between eco-
nomic growth and democracy. For years, political scientists have 
noted a strong positive relationship between economic growth and 
democracy, but the authors of previous studies (which included 
Granger causality studies) disagreed about the causality involved. Heo 
and Tan studied 32 developing countries and found that economic 
growth “Granger-caused” democracy in 11 countries, while democracy 
“Granger-caused” economic growth in 10 others.

a. How is it possible to get significant Granger causality results in 
two different directions in the same study? Is this evidence that the 
study was done incorrectly? Is this evidence that Granger causality 
tests cannot be applied to this topic?

b. Based on the evidence presented, what’s your conclusion about the 
relationship between economic growth and democracy? Explain.

c. If this were your research project, what would your next step be? 
(Hint: In particular, is there anything to be gained by learning more 
about the countries in the two different Granger causality groups?22)

21. Uk Heo and Alexander Tan, “Democracy and Economic Growth: a Causal Analysis,” Com-
parative Politics, Vol. 33, No. 4 (July 2001), pp. 463–473.
22. For the record, the 11 countries in which growth Granger-caused democracy were Costa 
Rica, Egypt, Guatemala, India, Israel, South Korea, Mexico, Nicaragua, Thailand, Uruguay, and 
Venezuela, and the 10 countries in which democracy Granger-caused growth were Bolivia, 
Burma, Colombia, Ecuador, El Salvador, Indonesia, Iran, Paraguay, the Philippines, and South 
Africa.
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13.1 The Linear Probability Model

13.2 The Binomial Logit Model

13.3 Other Dummy Dependent Variable Techniques

13.4 Summary and Exercises

Dummy Dependent  
Variable Techniques

Chapter 13

Until now, our discussion of dummy variables has been restricted to dummy 
independent variables. However, there are many important research topics 
for which the dependent variable is appropriately treated as a dummy, equal 
only to 0 or 1.

In particular, researchers analyzing consumer choice often must cope with 
dummy dependent variables (also called qualitative dependent variables). 
For example, how do high school students decide whether to go to college? 
What distinguishes Pepsi drinkers from Coke drinkers? How can we convince 
people to use public transportation instead of driving? For an econometric 
study of these topics, or of any topic that involves a discrete choice of some 
sort, the dependent variable is typically a dummy variable.

In the first two sections of this chapter, we’ll present two frequently used 
ways to estimate equations that have dummy dependent variables: the linear 
probability model and the binomial logit model. In the last section, we’ll 
briefly discuss the binomial probit model and multinomial models.

13.1  The Linear Probability Model

What Is a Linear Probability Model?

The most obvious way to estimate a model with a dummy dependent variable 
is to run OLS on a typical linear econometric equation. A linear probability 

390
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391 The Linear ProbabiLiTy ModeL

model is just that, a linear-in-the-coefficients equation used to explain a 
dummy dependent variable:

 Di = β0 + β1X1i + β2X2i + ei (13.1)

where Di is a dummy variable and the Xs, βs, and e are typical independent 
variables, regression coefficients, and an error term, respectively.

For instance, suppose you’re interested in understanding why some states 
have female governors and others don’t. In such a model, the appropriate 
dependent variable would be a dummy, for example Di equal to 1 if the ith 
state has a female governor and equal to 0 otherwise. If we hypothesize that 
states with a high percentage of females and a low percentage of social con-
servatives would be likely to have a female governor, then a linear probability 
model would be:

 +  -
 Di = β0 + β1Fi + β2Ri + ei (13.2)

where: Di = 1 if the ith state has a female governor, 0 otherwise
 Fi  = females as a percent of the ith state’s population
 Ri  =  conservatives as a percent of the ith state’s registered  

voters

The term linear probability model comes from the fact that the right side 
of the equation is linear while the expected value of the left side measures 
the probability that Di = 1. To understand this second statement, let’s 
assume that we estimate Equation 13.2 and get a DN i of 0.10 for a particular 
state. What does that mean? Well, since D = 1 if the governor is female and 
D = 0 if the governor is male, a state with a DN i of 0.10 can perhaps best be 
thought of as a state in which there is a 10 percent chance that the governor 
will be female, based on the state’s values for the independent variables. 
Thus DN i is an estimate of the probability that Di = 1 for the ith observa-
tion, and:

 DN i = Pr1Di = 12 = βN 0 + βN 1Fi + βN 2Ri (13.3)

where Pr1Di = 12 indicates the probability that Di = 1 for the ith observation.
How should we interpret the coefficients of Equation 13.3? Since DN i mea-

sures the probability that Di = 1, then a coefficient in a linear probability 
model is an estimate of the change in the probability that Di = 1 caused by 
a one-unit increase in the independent variable in question, holding constant 
the other independent variables in the equation.

∏
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Let’s define Pi to be the true probability that Di = 1. We can never observe 
Pi, just as we can never observe true βs, because it reflects the underlying 
situation before a discrete choice is made. After the choice is made, we can 
observe only the outcome of that choice, and so the dependent variable Di 
can take on the values of only 0 or 1. Thus, even though Pi can be any value 
between 0 and 1, we can observe only the two extremes (0 and 1) in Di.

Problems with the Linear Probability Model

Unfortunately, using OLS to estimate the coefficients of an equation with a 
dummy dependent variable faces at least three problems:

1. R2 is not an accurate measure of overall fit. For models with a dummy 
dependent variable, R2 tells us very little about how well the model 
explains the choices of the decision makers. To see why, take a look at 
Figure 13.1. Di can equal only 1 or 0, but DN i must move in a continuous 
fashion from one extreme to the other. This means that DN i is likely to 
be quite different from Di for some range of Xi. Thus, R2 is likely to be 
much lower than 1 even if the model actually does an exceptional job 
of explaining the choices involved. As a result, R2 (or R2) should not 
be relied on as a measure of the overall fit of a model with a dummy 
dependent variable.

2. DN i is not bounded by 0 and 1. Since Di is a dummy variable, we’d expect 
DN i to be limited to a range of from 0 to 1. After all, the prediction that a 
probability equals 2.6 (or -2.6, for that matter) is almost meaningless. 
However, take another look at Equation 13.3. Depending on the values 
of the independent variables and the βN s, the right-hand side might well 
be outside the meaningful range. For instance, if F, R, and all the βN s 
in Equation 13.3 equal 1.0, then DN i equals 3.0, which is substantially 
greater than 1.0.

3. The error term is neither homoskedastic nor normally distributed. In addition, 
the error term in a linear probability model is heteroskedastic and is 
not distributed normally, mainly because Di takes on only two values 
(0 and 1). In practice, however, the impact of these problems on OLS 
estimation is minor, so many researchers ignore potential heteroskedas-
ticity and nonnormality and apply OLS directly to the linear probability 
model.1

1. See R. G. McGilvray, “Estimating the Linear Probability Function,” Econometrica, Vol. 38,  
pp. 775–776.
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The first of these problems isn’t impossible to deal with, because there are a 
variety of alternatives to R2 for equations with dummy dependent variables.2 
Our preference is to create a measure based on the percentage of the observa-
tions in the sample that a particular estimated equation explains correctly.  

Di

Di 7 1

Di = 1

1 7 Di 7 0

Di = 0

Di = b0 + b1X1i + b2X2i

X1i

(Holding X2i Constant)
Di 6 0

N N N N

N

N

N

N

N

N

Figure 13.1 a Linear Probability Model

In a linear probability model, all the observed Dis equal either 0 or 1, but DN i moves 
linearly from one extreme to the other. As a result, R2 is often quite low even if the 
model does an excellent job of explaining the decision maker’s choice. In addition,  
exceptionally large or small values of X1i (holding X2i constant) can produce values  
of DN i outside the meaningful range of 0 to 1.

2. See M. R. Veal and K. F. Zimmerman, “Pseudo-R2 Measures for Some Common Limited 
Dependent Variables Models,” Journal of Economic Surveys, Vol. 10, No. 3, pp. 241–259 and  
C. S. McIntosh and J. J. Dorfman, “Qualitative Forecast Evaluation: A Comparison of Two 
Performance Measures,” American Journal of Agricultural Economics, Vol. 74, pp. 209–214.
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To use this approach, consider a DN i 7 0.5 to predict that Di = 1 and a DN i 6 0.5 
to predict that Di = 0. If we then compare these predictions3 with the actual 
Di, we can calculate the percentage of observations explained correctly.

Unfortunately, using the percentage explained correctly as a substitute 
for R2 for the entire sample has a flaw. Suppose that 85 percent of your 
observations are 1s and 15 percent are 0s. Explaining 85 percent of the 
sample correctly sounds good, but your results are no better than naively 
guessing that every observation is a 1! A better way might be to calculate 
the percentage of 1s explained correctly, calculate the percentage of zeroes 
explained correctly, and then report the average of these two percentages. As 
a shorthand, we’ll call this average R2

p. That is, we’ll define R2
p to be the aver-

age of the percentage of 1s explained correctly and the percentage of zeroes 
explained correctly. Since R2

p is a new statistic, we’ll calculate and discuss both 
R2

p and R2 throughout this chapter.
For most researchers, therefore, the major difficulty with the linear prob-

ability model is the unboundedness of the predicted Dis. Take another look 
at Figure 13.1 for a graphical interpretation of the situation. Because of the 
linear relationship between the Xis and DN i, DN i can fall well outside the relevant 
range of 0 to 1.

One simplistic way to get around the unboundedness problem is to assign 
DN i = 1.0 to all values of DN i above 1 and DN i = 0.0 to all negative values. This 
approach copes with the problem by ignoring it, since an observation for 
which the linear probability model predicts a probability of 2.0 has been 
judged to be more likely to be equal to 1.0 than an observation for which 
the model predicts a 1.0, and yet they are lumped together. Even DN i = 1 isn’t 
very useful, because it implies that events will happen with certainty, which 
is surely a foolish prediction to make. What is needed is a systematic method 
of forcing the DN is to range from 0 to 1 in a smooth and meaningful fashion. 
We’ll present such a method, the binomial logit, in Section 13.2.

Using the linear probability model, despite this unboundedness problem, 
may not cause insurmountable difficulties. In particular, the signs and gen-
eral significance levels of the estimated coefficients of the linear probability 
model are often similar to those of the alternatives we will discuss later in 
this chapter.

3. Although it’s standard to use DN i = 0.5 as the value that distinguishes a prediction of Di = 1 
from a prediction of Di = 0, there’s no rule that requires that 0.5 be used. This is because it’s 
possible to imagine circumstances in which 0.5 is too high or too low. For example, if the pay-
off when you’re right if you classify Di = 1 is much lower than the payoff when you’re right if 
you classify Di = 0, then a value other than 0.5 might make sense.
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an Example of a Linear Probability Model

Let’s take a look at an example of a linear probability model: a disaggregate 
study of the labor force participation of women.

A person is defined as being in the labor force if she either has a job or is 
actively looking for a job. Thus, a disaggregate (cross-sectional by person) 
study of women’s labor force participation is appropriately modeled with a 
dummy dependent variable:

Di =  1 if the ith woman has or is looking for a job,  
0 otherwise (not in the labor force)

A review of the literature reveals that there are many potentially relevant 
independent variables. Two of the most important are the marital status and 
the number of years of schooling of the woman. The expected signs for the 
coefficients of these variables are fairly straightforward, since a woman who 
is unmarried and well educated is much more likely to be in the labor force 
than her opposite. If we choose a linear functional form, we’ve got a linear 
probability model:

 -  +
 Di = β0 + β1Mi + β2Si + ei (13.4)

where: Mi = 1 if the ith woman is married and 0 otherwise
 Si  = the number of years of schooling of the ith woman

The data are presented in Table 13.1. The sample size is limited to 30 in 
order to make it easier for readers to enter the dataset on their own. Unfor-
tunately, such a small sample will make hypothesis testing fairly unreliable. 
Table 13.1 also includes the age of the ith woman, Ai. Another typically used 
variable, Oi = other income available to the ith woman, is not available for 
this sample, introducing possible omitted variable bias.

If we now estimate Equation 13.4 with the data on the labor force partici-
pation of women from Table 13.1, we obtain (standard errors in parentheses):

 DN i = -  0.28 - 0.38Mi + 0.09Si (13.5)
10.152   10.032

N = 30     R2 = .32     R2
p = .81

How do these results look? Despite the small sample and the possible bias 
due to omitting Oi, both independent variables have estimated coefficients 
that are significant in the expected direction. In addition, the R2 of .32 is 
fairly high for a linear probability model. (Since Di equals only 0 or 1, it’s 
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Table 13.1 data on the Labor Force Participation of Women

Observation # Di Mi ai Si Dn i

 1 1.0 0.0 31.0 16.0 1.20

 2 1.0 1.0 34.0 14.0 0.63

 3 1.0 1.0 41.0 16.0 0.82

 4 0.0 0.0 67.0  9.0 0.55

 5 1.0 0.0 25.0 12.0 0.83

 6 0.0 1.0 58.0 12.0 0.45

 7 1.0 0.0 45.0 14.0 1.01

 8 1.0 0.0 55.0 10.0 0.64

 9 0.0 0.0 43.0 12.0 0.83

10 1.0 0.0 55.0  8.0 0.45

11 1.0 0.0 25.0 11.0 0.73

12 1.0 0.0 41.0 14.0 1.01

13 0.0 1.0 62.0 12.0 0.45

14 1.0 1.0 51.0 13.0 0.54

15 0.0 1.0 39.0  9.0 0.17

16 1.0 0.0 35.0 10.0 0.64

17 1.0 1.0 40.0 14.0 0.63

18 0.0 1.0 43.0 10.0 0.26

19 0.0 1.0 37.0 12.0 0.45

20 1.0 0.0 27.0 13.0 0.92

21 1.0 0.0 28.0 14.0 1.01

22 1.0 1.0 48.0 12.0 0.45

23 0.0 1.0 66.0  7.0 -0.01

24 0.0 1.0 44.0 11.0 0.35

25 0.0 1.0 21.0 12.0 0.45

26 1.0 1.0 40.0 10.0 0.26

27 1.0 0.0 41.0 15.0 1.11

28 0.0 1.0 23.0 10.0 0.26

29 0.0 1.0 31.0 11.0 0.35

30 1.0 1.0 44.0 12.0 0.45

datafile = WoMen13
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almost impossible to get an R2 much higher than .70.) Further evidence of 
good fit is the fairly high R2

p of .81, meaning that an average of 81 percent of 
the choices were explained “correctly” by Equation 13.5.

We need to be careful when we interpret the estimated coefficients in 
Equation 13.5, however. Remember that the slope coefficient in a linear 
probability model represents the change in the probability that Di equals 1 
caused by a one-unit increase in the independent variable (holding the other 
independent variables constant). Viewed in this context, do the estimated 
coefficients make economic sense? The answer is yes: The probability of a 
woman participating in the labor force falls by 38 percentage points if she 
is married (holding constant schooling). Each year of schooling increases 
the probability of labor force participation by 9 percentage points (holding 
constant marital status).

The values for DN i have been included in Table 13.1. Note that DN i is indeed 
often outside the meaningful range of 0 and 1, causing most of the problems 
cited earlier. To attack this problem of the unboundedness of DN i, however, we 
need a new estimation technique, so let’s take a look at one.

13.2  The Binomial Logit Model

What Is the Binomial Logit?

The binomial logit is an estimation technique for equations with dummy 
dependent variables that avoids the unboundedness problem of the linear 
probability model by using a variant of the cumulative logistic function:

 Pi =
1

1 + e-3β0 + β1X1i + β2X2i4 (13.6)

where Pi is the true probability that Di = 1. We can’t observe Pi, so we need 
to use observed Dis to estimate a logit equation like Equation 13.6. That 
estimation will produce DN is that we can compare to the DN is produced by an 
estimated linear probability model like Equation 13.3.

Are the DN is produced by a logit now limited by 0 and 1? The answer is yes, 
but to see why we need to take a close look at Equation 13.6. What is the 
largest that DN i can be? Well, if βN 0 + βN 1X1i + βN 2X2i equals infinity, then:

 DN i =
1

1 + e-∞ =
1
1
= 1 (13.7)
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because e to the minus infinity equals 0. What’s the smallest that DN i can be? 
If βN 0 + βN 1X1i + βN 2X2i equals minus infinity, then:

 DN i =
1

1 + e∞ =
1
∞

= 0 (13.8)

Thus, DN i is bounded by 1 and 0. As can be seen in Figure 13.2, DN i approaches 
1 and 0 very slowly (asymptotically). The binomial logit model therefore 
avoids the major problem that the linear probability model encounters in 
dealing with dummy dependent variables. In addition, the logit is quite sat-
isfying to most researchers because it turns out that real-world data often are 
described well by S-shape patterns like that in Figure 13.2.

Di

Di = 1

1 7 Di 7 0

Di = 0
X1

(Holding X2 Constant)

Logit

Linear Probability Model
(for comparison purposes)

N

N

N

N

Figure 13.2 dN i is bounded by 0 and 1 in a binomial Logit Model

In a binomial logit model, DN i is nonlinearly related to X1, so even exceptionally large 
or small values of X1i, holding X2i constant, will not produce values of DN i outside the 
meaningful range of 0 to 1.
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Logits cannot be estimated using OLS. Instead, we use maximum likeli-
hood (ML), an iterative estimation technique that is especially useful for 
equations that are nonlinear in the coefficients. ML estimation is inherently 
different from least squares in that it chooses coefficient estimates that 
maximize the likelihood of the sample data set being observed.4 Interestingly, 
OLS and ML estimates are not necessarily different; for a linear equation 
that meets the Classical Assumptions (including the normality assumption), 
ML estimates are identical to the OLS ones.

One of the reasons that maximum likelihood is used is that ML has a number 
of desirable large sample properties; ML is consistent (homes in on true param-
eter values) and asymptotically efficient (minimum variance for large samples). 
With very large samples, ML often has the added advantage of converging to a 
normal distribution, allowing the use of typical hypothesis testing techniques. 
As a result, sample sizes for logits should be substantially larger than they are 
for linear regressions. Some researchers aim for samples of 500 or more.

It’s also important to make sure that a logit sample contains a reasonable 
representation of both alternative choices. For instance, if 98 percent of a 
sample chooses alternative A and 2 percent chooses B, a random sample of 
500 might have only 10 observations that choose B. In such a situation, our 
estimated coefficients would be overly reliant on the characteristics of those 
10 observations. A better technique would be to disproportionately sample 
from those who choose B. It turns out that using different sampling rates for 
subgroups within the sample does not cause bias in the slope coefficients of a 
logit model,5 even though it might do so in a linear regression.

When we estimate a logit, we apply the ML technique to Equation 13.6, 
but that equation’s functional form is complex, so let’s try to simplify it a bit. 
First, a few mathematical steps can allow us to rewrite Equation 13.6 so that 
the right side of the equation looks like the linear probability model:

 lna Pi

31 - Pi4 b = β0 + β1X1i + β2X2i (13.9)

where Pi is the true probability that Di = 1.

4. Actually, the ML program chooses coefficient estimates that maximize the probability  
(or likelihood) of observing the particular set of values of the dependent variable in the sample 
1Y1, Y2, c, YN2 for a given set of Xs. For more on maximum likelihood, see Robert S. Pindyck 
and Daniel L. Rubinfeld, Economic Models and Economic Forecasts (New York: McGraw-Hill, 1998), 
pp. 51–53 and 329–330.

5. The constant term, however, needs to be adjusted. Multiply βN 0 by 3ln1p12 - ln1p224, where 
p1 is the proportion of the observations chosen if Di = 1 and p2 is the proportion of the  
observations chosen if Di = 0. See G. S. Maddala, Limited-Dependent and Qualitative Variables 
in Econometrics (Cambridge: Cambridge University Press, 1983), pp. 90–91.

M13_STUD2742_07_SE_C13.indd   399 1/16/16   12:33 PM



400 ChaPTEr 13 duMMy dePendenT VariabLe Techniques 

Even Equation 13.9 is a bit cumbersome, however, since the left side of 
the equation contains the log of the ratio of Pi to 11 - Pi2, sometimes called 
the “log of the odds.” To make things simpler still, let’s adopt a shorthand 
for the logit functional form on the left side of Equation 13.9. Let’s define:

 L:Pr1Di = 12 = lna Pi

31 - Pi4
b  (13.10)

The L indicates that the equation is a logit of the functional form in Equation 
13.9 (derived from Equation 13.6), and the ”Pr1Di = 12” is a reminder that  
the dependent variable is a dummy and that a DN i produced by an esti-
mated logit equation is an estimate of the probability that Di = 1. If we now 
substitute Equation 13.10 into Equation 13.9, we get:

 L:Pr1Di = 12 = β0 + β1X1i + β2X2i (13.11)

Equation 13.11 will be our standard documentation format for estimated 
logit equations.

Interpreting Estimated Logit Coefficients

Once you’ve estimated a binomial logit, then hypothesis testing and the anal-
ysis of potential econometric problems can be undertaken using techniques 
similar to those discussed in previous chapters. The signs of the coefficients 
have the same meaning as they do in a linear probability model, and tests of 
hypotheses about logit coefficients can be run.6

When it comes to the economic interpretation of the estimated logit 
coefficients, however, all this changes. In particular, the absolute sizes of 
estimated logit coefficients tend to be quite different from the absolute sizes 
of estimated linear probability model coefficients for the same specification 
and the same data. What’s going on?

There are two powerful reasons for these differences. First, as you can see 
by comparing Equations 13.1 and 13.9, the dependent variable in a logit 
equation isn’t the same as the dependent variable in a linear probability 

6. Different econometric software programs provide a variety of information in support of this 
hypothesis testing, at least in part because the t-test isn’t appropriate for hypothesis testing for 
logits with small samples. Stata produces z-statistics, which require the Normal Distribution 
table in Appendix B-5. SAS, on the other hand, produces chi-square statistics, which use Table B-6. 
Our suggestion is to use p-values because they’re produced by virtually all the econometric pack-
ages and because their use doesn’t require the researcher to decide whether the t-distribution, 
normal distribution, or chi-square distribution is appropriate in any given case.
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model. Since the dependent variable is different, it makes complete sense 
that the coefficients are different. The second reason that logit coefficients 
are different is even more dynamic. Take a look at Figure 13.2. The slope of 
the graph of the logit changes as DN i moves from 0 to 1! Thus the change in 
the probability that DN i = 1 caused by a one-unit increase in an independent 
variable (holding the other independent variables constant) will vary as we 
move from DN i = 0 to DN i = 1.

Given all this, how can we interpret estimated logit coefficients? How 
can we use them to measure the impact of an independent variable on the 
probability that Di = 1? It turns out that there are three reasonable ways of 
answering this question:

1. Change an average observation. Create an “average” observation by plug-
ging the means of all the independent variables into the estimated logit 
equation and then calculating an “average” DN i. Then increase the inde-
pendent variable of interest by one unit and recalculate the DN i. The dif-
ference between the two DN is tells you the impact of a one-unit increase 
in that independent variable on the probability that DN i = 1 (holding 
constant the other independent variables) for an average observation. 
This approach has the weakness of not being very meaningful when 
one or more of the independent variables is a dummy variable (after all, 
what is an average gender?), but it’s possible to work around this weak-
ness if you estimate the impact for an “average female” and an “average 
male” by setting the dummy independent variable equal first to 0 and 
then to 1.

2. Use a partial derivative. It turns out that if you take a derivative of the 
logit, you’ll find that the change in the expected value of DN i caused by a 
one-unit increase in X1i, holding constant the other independent vari-
ables in the equation, equals β1Pi 11 - Pi2. To use this formula, plug in 
your estimates of β1 and Pi 1βN 1 and DN i2. As you can see, the marginal 
impact of X does indeed depend on the value of DN i.

3. Use a rough estimate of 0.25. The previous two methods are reasonably 
accurate, but they’re hardly very handy. However, if you plug DN i = 0.5 
into β1Pi 11 - Pi2, you get the much more useful result that if you multi-
ply a logit coefficient by 0.25, you’ll get an equivalent linear probability 
model coefficient.7

7. See, for example, Jeff Wooldridge, Introductory Econometrics (Mason, OH: Southwestern, 
2009), p. 584. Wooldridge also suggests a multiple of 0.40 for converting a probit coefficient 
into a linear probability coefficient. We’ll briefly cover probits in Section 13.3.
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On balance, what do we recommend? For all situations except those 
requiring precise accuracy, we find ourselves gravitating toward the third 
approach. To get a rough approximation of the economic meaning of a 
logit coefficient, multiply by 0.25 (or, equivalently, divide by 4). Remember, 
however, that the dependent variable in question still is the probability that 
Di = 1.

Measuring the overall fit also is not straightforward. Recall from Section 7.5  
that since the functional form of the dependent variable has been changed, 
R2 should not be used to compare the fit of a logit with an otherwise com-
parable linear probability model. In addition, don’t forget the general faults 
inherent in using R2 with equations with dummy dependent variables. Our 
suggestion is to use the mean percentage of correct predictions, R2

p, from  
Section 13.1.

To get some practice interpreting logit estimates, let’s estimate a logit on 
the same women’s labor force participation data that we used in the pre-
vious section. The OLS linear probability model estimate of that model, 
Equation 13.5, was:

 DN i = -  0.28 - 0.38Mi + 0.09Si (13.5)
10.152   10.032

N = 30   R2 = .32         R2
p = .81

where: Di  = 1 if the ith woman is in the labor force, 0 otherwise
 Mi = 1 if the ith woman is married, 0 otherwise
 Si  = the number of years of schooling of the ith woman

If we estimate a logit on the same data (from Table 13.1) and the same inde-
pendent variables, we obtain:

 L:Pr1Di = 12 = -5.90 - 2.59Mi + 0.69Si (13.12)
11.182   10.322

N = 30  R2
p = .81    iterations = 5

Let’s compare Equations 13.5 and 13.12. As expected, the signs and general 
significance of the slope coefficients are the same. Even if we divide the logit 
coefficients by 4, as suggested earlier, they still are larger than the linear 
probability model coefficients. Despite these differences, the overall fits are 
comparable, especially after taking account of the different dependent vari-
ables and estimation techniques. In this example, then, the two estimation 
procedures differ mainly in that the logit does not produce DN is outside the 
range of 0 and 1.

∏
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However, if the size of the sample in this example is too small for a linear 
probability model, it certainly is too small for a logit, making any in-depth 
analysis of Equation 13.12 problematic. Instead, we’re better off finding an 
example with a much larger sample.

a More Complete Example of the Use of the Binomial Logit

For a more complete example of the binomial logit, let’s look at a model of 
the probability of passing the California State Department of Motor Vehicles 
drivers’ license test. To obtain a license, each driver must pass a written and a 
behind-the-wheel test. Even though the tests are scored from 0 to 100, all that 
matters is that you pass and get your license.

Since the written test requires some boning up on traffic and safety laws, 
driving students have to decide how much time to spend studying. If they 
don’t study enough, they waste time because they have to retake the test. If 
they study too much, however, they also waste time, because there’s no bonus 
for scoring above the minimum, especially since there is no evidence that 
doing well on the written test has much to do with driving well after the test 
(this, of course, might be worth its own econometric study).

Recently, two students decided to collect data on test takers in order to 
build an equation explaining whether someone passed the Department of 
Motor Vehicles written test. They hoped that the model, and in particular the 
estimated coefficient of study time, would help them decide how much time 
to spend studying for the test. (Of course, it took more time to collect the data 
and run the model than it would have taken to memorize the entire traffic 
code, but that’s another story.)

After reviewing the literature, choosing variables, and hypothesizing signs, 
the students realized that the appropriate functional form was a binomial 
logit because their dependent variable was a dummy variable:

Di = e1 if the ith test taker passed the test on the first try
0 if the ith test taker failed the test on the first try

They chose four independent variables (all with positive expected coefficients):

Ai  = the age of the ith test taker
Hi =  the number of hours the ith test taker studied (usually less 

than one hour!)
Ei  =  a dummy variable equal to 1 if the ith test taker’s primary 

language was English, 0 otherwise
Ci  =  a dummy variable equal to 1 if the ith test taker had any  

college education, 0 otherwise
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After collecting data from 480 test takers, the students estimated the follow-
ing equation:

 L:Pr1Di = 12 = -  1.18 + 0.011Ai + 2.70Hi + 1.62Ei + 3.97Ci (13.13)
10.0092    10.542    10.342   10.992

N = 480   R2
p = .74  iterations = 5

Note how similar these results look to a typical linear regression result. All 
the estimated coefficients have the expected signs, and all but one appear to 
be significantly different from 0. Remember that the logit coefficients need 
to be divided by 4 to get meaningful estimates of the impact of the inde-
pendent variables on the probability of passing the test. Note that R2

p is .74, 
indicating that the equation correctly explained almost three quarters of the 
sample based on nothing but the four variables in Equation 13.13.

And what about the two students? Did the equation help them? How 
much did they end up deciding to study? They found that given their 
ages, their college education, and their English-speaking backgrounds, the 
expected value of DN i for each of them was quite high, even if Hi was set equal 
to 0. So what did they actually do? They studied for a half hour “just to be 
on the safe side” and passed with flying colors, having devoted more time to 
passing the test than anyone else in the history of the state.

13.3  Other Dummy Dependent Variable Techniques

Although the binomial logit is the most frequently used estimation tech-
nique for equations with dummy dependent variables, it’s by no means the 
only one. In this section, we’ll mention two alternatives, but our main goal 
is to briefly describe these estimation techniques, not to cover them in any 
detail.8

The Binomial Probit Model

The binomial probit model is an estimation technique for equations with 
dummy dependent variables that avoids the unboundedness problem of 

∏

8. For more, see G. S. Maddala, Limited Dependent Variables and Qualitative Variables in Econometrics 
(Cambridge: Cambridge University Press, 1983) and T. Amemiya, “Qualitative Response Models: 
A Survey,” Journal of Economic Literature, Vol. 19, pp. 1483–1536. These surveys also cover 
additional techniques, like the Tobit model, that are useful with bounded dependent variables 
or other special situations.
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the linear probability model by using a variant of the cumulative normal 
distribution.

 Pi =
122π

 3
Zi

- ∞
 e-s2>2 ds (13.14)

where: Pi = the probability that the dummy variable Di = 1
 Zi = β0 + β1X1i + β2X2i

 s  = a standardized normal variable

As different as this probit looks from the logit that we examined in the pre-
vious section, it can be rewritten to look quite familiar:

 Zi = Φ-11Pi2 = β0 + β1X1i + β2X2i (13.15)

where Φ-1 is the inverse of the normal cumulative distribution function. 
Probit models typically are estimated by applying maximum likelihood tech-
niques to the model in the form of Equation 13.14, but the results often are 
presented in the format of Equation 13.15.

The fact that both the logit and the probit are cumulative distribution 
functions means that the two have similar properties. For example, a graph 
of the probit looks almost exactly like the logit in Figure 13.2. In addition, 
the probit has the same requirement of a fairly large sample before hypoth-
esis testing becomes meaningful. Finally, R2 continues to be of questionable 
value as a measure of overall fit.

For an example of a probit, let’s estimate one using the same women’s 
labor force participation data employed in the previous logit and linear prob-
ability examples (standard errors in parentheses):

 ZN i = Φ-11Pi2 = -  3.44 - 1.44Mi + 0.40Si (13.16)
10.622    10.172

N = 30      R2
p = 0.81     iterations = 4

Compare this result with Equation 13.12 from the previous section. Note 
that except for a slight difference in the scale of the coefficients, the logit and 
probit models provide virtually identical results in this example.

Multinomial Models

In many cases, there are more than two qualitative choices available. In some 
cities, for instance, a commuter has a choice of car, bus, or subway for the trip 
to work. How could we build and estimate a model of choosing from more 
than two alternatives?

®
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One answer is to hypothesize that choices are made sequentially and to 
model a multichoice decision as a series of binary decisions. For example, we 
might hypothesize that the commuter would first decide whether to drive to 
work, and we could build a binary model of car versus public transportation. 
For those commuters who choose public transportation, the next step would 
be to choose whether to take the bus or the subway, and we could build a 
second binary model of that choice. This method, called a sequential binary 
logit, is cumbersome and at times unrealistic, but it does allow a researcher 
to use a binary technique to model an inherently multichoice decision.

If a decision among more than two alternatives truly is made simultane-
ously, then the sequential binary logit can’t be used. There are a number of 
alternative estimation procedures that are appropriate in this situation, but 
unfortunately they are beyond the scope of this text.9

13.4  Summary

 1. A linear probability model is a linear-in-the-coefficients equation 
used to explain a dummy dependent variable 1Di2. DN i is an estimate 
of the probability that Di equals 1.

 2. The estimation of a linear probability model with OLS faces at least 
three major problems:
a. R2 is not an accurate measure of overall fit.
b. The expected value of DN i is not limited by 0 and 1.
c. The error term is neither homoskedastic nor normally distributed.

 3. When measuring the overall fit of equations with dummy dependent 
variables, an alternative to R2 is R2

p, the average percentage of the ob-
servations in the sample that a particular estimated equation would 
have explained correctly.

 4. The binomial logit is an estimation technique for equations with 
dummy dependent variables that avoids the unboundedness problem 
of the linear probability model by using a variant of the cumulative 
logistic function:

L:Pr1Di = 12 = lna Pi

31 - Pi4 b = β0 + β1X1i + β2X2i

9. These alternative procedures include the multinomial logit and the ordered logit. See  
William H. Greene, Econometric Analysis (Boston: Pearson Education, 2012), pp. 803–806 and 
pp. 824–827.
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 5. The binomial logit is best estimated using the maximum likelihood 
(ML) technique and a large sample. A slope coefficient from a logit 
measures the impact of a one-unit increase of the independent vari-
able in question (holding the other explanatory variables constant) 
on the log of the odds of a given choice.

 6. The binomial probit model is an estimation technique for equations 
with dummy dependent variables that uses the cumulative normal 
distribution function. The binomial probit has properties quite similar 
to those of the binomial logit.

ExErcisEs

(The answers to the even-numbered exercises are in Appendix A.)

 1. Write the meaning of each of the following terms without referring 
to the book (or your notes), and compare your definition with the 
version in the text for each:
a. binomial logit (p. 397)
b. binomial probit (p. 404)
c. interpreting estimated logit coefficients (p. 400)
d. linear probability model (p. 390)
e. maximum likelihood (p. 399)
f. R2

p (p. 394)
g. sequential binary logit (p. 406)

 2. R. Amatya10 estimated the following logit model of birth control for 
1,145 continuously married women aged 35 to 44 in Nepal:

L:Pr1Di = 12 = -  4.47 + 2.03WNi + 1.45MEi

10.362    10.142
where: Di  =  1 if the ith woman has ever used a recognized 

form of birth control, 0 otherwise
 WNi =  1 if the ith woman wants no more children, 0 

otherwise
 MEi  =  number of methods of birth control known to the 

ith woman

∏

10. Ramesh Amatya, “Supply-Demand Analysis of Differences in Contraceptive Use in Seven 
Asian Nations” (paper presented at the Annual Meetings of the Western Economic Association, 
1988, Los Angeles).
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a. Explain the theoretical meaning of the coefficients for WN and 
ME. How would your answer differ if this were a linear probability 
model?

b. Do the signs, sizes, and significance of the estimated slope coeffi-
cients meet your expectations? Why or why not?

c. What is the theoretical significance of the constant term in this 
equation?

d. If you could make one change in the specification of this equation, 
what would it be? Explain your reasoning.

 3. Because their college had just upgraded its residence halls, two 
seniors decided to build a model of the decision to live on campus. 
They collected data from 533 upper-class students (first-year stu-
dents were required to live on campus) and estimated the following 
equation:

L:Pr1Di = 12 = 3.26 + 0.03UNITi - 0.13ALCOi - 0.99YEARi - 0.39GREKi

10.042      10.082       10.122      10.212
N = 533   R2

p = .668   iterations = 4

where: Di  = 1 if the ith student lived on campus, 0 otherwise
 UNITi  =  the number of academic units the ith student 

was taking
 ALCOi =  the nights per week that the ith student con-

sumed alcohol
 YEARi  =  2 if the ith student was a sophomore, 3 if a 

junior, and 4 if a senior
 GREKi  =  1 if the ith student was a member of a fraternity/

sorority, 0 otherwise

a. The two seniors expected UNIT to have a positive coefficient and 
the other variables to have negative coefficients. Do the results 
support these hypotheses?

b. What problem do you see with the definition of the YEAR vari-
able? What constraint does this definition place on the estimated  
coefficients?

c. Carefully state the meaning of the coefficient of ALCO and analyze 
the size of the coefficient. (Hint: Be sure to discuss how the size of 
the coefficient compares with your expectations.)

d. If you could add one variable to this equation, what would it be? 
Explain.

∏
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 4. Return to our data on women’s labor force participation and consider 
the possibility of adding Ai, the age of the ith woman, to the equation. 
Be careful when you develop your expected sign and functional form 
because the expected impact of age on labor force participation is diffi-
cult to pin down. For instance, some women drop out of the labor force 
when they get married, but others continue working even while they’re 
raising their children. Still others work until they get married, stay at 
home with young children, and then return to the workforce once  
the children reach school age. Malcolm Cohen et al., for example, found 
the age of a woman to be relatively unimportant in determining labor 
force participation, except for women who were 65 and older and were 
likely to have retired.11 The net result for our model is that age appears 
to be a theoretically irrelevant variable. A possible exception, however, is 
a dummy variable equal to 1 if the ith woman is 65 or over, 0 otherwise.
a. Look over the data set in Table 13.1. What problems do you see 

with adding an independent variable equal to 1 if the ith woman is 
65 or older and 0 otherwise?

b. To get practice in actually estimating your own linear probability 
and logit equations, test the possibility that age 1Ai2 is actually a 
relevant variable in our women’s labor force participation model. 
That is, take the data from Table 13.1 and estimate linear probability 
and logit versions. Then use our specification criteria to compare 
your equation with the parallel version in the text (without Ai). 
Explain why you do or do not think that age is a relevant variable. 
(Hint: Be sure to calculate R2

p.)

 5. In 2008, Goldman and Romley12 studied hospital demand by analyzing 
how 8,721 Medicare-covered pneumonia patients chose from among 
117 hospitals in the greater Los Angeles area. The authors concluded that 
clinical quality (as measured by a low pneumonia mortality rate) played 
a smaller role in hospital choice than did a variety of other factors.

   Let’s focus on a subset of the Goldman–Romley sample: the 499 
patients who chose either the UCLA Medical Center or the nearby 
Cedars Sinai Medical Center. Typically, economists would expect price 
to have a major influence on such a choice, but Medicare patients pay 

11. Malcolm Cohen, Samuel A. Rea, Jr., and Robert I. Lerman, A Micro Model of Labor Supply 
(Washington, D.C.: U.S. Bureau of Labor Statistics, 1970), p. 212.

12. Dana Goldman and John Romley, “Hospitals as Hotels: The Role of Patient Amenities in 
Hospital Demand,” NBER Working Paper 14619, December 2008. We appreciate the permission 
of the authors to use a portion of their data set.
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roughly the same price no matter what hospital they choose. Instead, 
factors like the distance the patient lives from the hospital and the age 
and income of the patient become potentially important factors:

L:Pr1Di = 12 = 4.41 - 0.38DISTANCEi - 0.072INCOMEi - 0.29OLDi (13.17)
10.052     10.0362     10.312

N = 499         R2
p = .66        iterations = 8

where: Di  =  1 if the ith patient chose Cedars Sinai, 0 if 
they chose UCLA

 DISTANCEi =  the distance from the ith patient’s home 
(according to zip code) to Cedars Sinai 
minus the distance from that point to the 
UCLA Medical Center (in miles)

 INCOMEi  =  the income of the ith patient (as measured 
by the average income of their zip code in 
thousands of dollars)

 OLDi  =  1 if the ith patient was older than 75, 0 
otherwise

a. Create and test appropriate hypotheses about the coefficient of 
DISTANCE.

b. Carefully state the meaning of the estimated coefficient of DISTANCE 
in terms of the “per mile” impact on the probability of choosing 
Cedars Sinai Medical Center.

c. Think about the definition of DISTANCE. Why do you think we 
defined DISTANCE as the difference between the distances as  
opposed to entering the distance to Cedars and the distance to 
UCLA as two different independent variables?

d. This data set is available on our Web site (www.pearsonhighered.
com/studenmund) as datafile = HOSPITAL13. Load the data into 
your computer and use Stata or your computer’s regression pro-
gram to estimate the linear probability model version of this equa-
tion. What is the coefficient of DISTANCE in your estimate? Which 
do you prefer, the logit or the linear probability model? Explain.

e. (optional) Now create a slope dummy by adding OLD*DISTANCE 
to Equation 13.17 and estimating a new logit equation. Why do 
you think we’re suggesting this particular slope dummy? Create and 
test the appropriate hypotheses about the slope dummy. Which 
equation do you prefer, Equation 13.17 or the new slope dummy 
logit? Explain.

∏
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Chapter 14

Simultaneous Equations

14.1 Structural and Reduced-Form Equations

14.2 The Bias of Ordinary Least Squares

14.3 Two-Stage Least Squares (2SLS)

14.4 The Identification Problem

14.5 Summary and Exercises

14.6 Appendix: Errors in the Variables

The most important models in economics and business are simultaneous 
in nature. Supply and demand, for example, is obviously simultaneous. To 
study the demand for chicken without also looking at the supply of chicken 
is to take a chance on missing important linkages and thus making signifi-
cant mistakes. Virtually all the major approaches to macroeconomics, from 
Keynesian aggregate demand models to rational expectations schemes, are 
inherently simultaneous. Even models that appear to be inherently single-
equation in nature often turn out to be much more simultaneous than you 
might think. The price of housing, for instance, is dramatically affected by the 
level of economic activity, the prevailing rate of interest in alternative assets, 
and a number of other simultaneously determined variables.

All this wouldn’t mean much to econometricians if it weren’t for the fact 
that the estimation of simultaneous equations systems with OLS causes a 
number of difficulties that aren’t encountered with single equations. Most 
important, Classical Assumption III, which states that all explanatory vari-
ables should be uncorrelated with the error term, is violated in simultane-
ous models. Mainly because of this, OLS coefficient estimates are biased in 
simultaneous models. As a result, an alternative estimation procedure called 
Two-Stage Least Squares usually is employed in such models instead of OLS.

You’re probably wondering why we’ve waited until now to discuss simulta-
neous equations if they’re so important in economics and if OLS encounters 
bias when estimating them. The answer is that the simultaneous estimation 
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of an equation changes every time the specification of any equation in the 
entire system is changed, so a researcher must be well equipped to deal with 
specification problems like those of previous chapters. As a result, it does not 
make sense to learn how to estimate a simultaneous system until you are 
fairly adept at estimating a single equation.

14.1  Structural and Reduced-Form Equations

Before we can study the problems encountered in the estimation of simulta-
neous equations, we need to introduce a few concepts.

The Nature of Simultaneous Equations Systems

Which came first, the chicken or the egg? This question is impossible to 
answer satisfactorily because chickens and eggs are jointly determined; there 
is a two-way causal relationship between the variables. The more eggs you 
have, the more chickens you’ll get, but the more chickens you have, the more 
eggs you’ll get.1 More realistically, the economic world is full of the kind of 
feedback effects and dual causality that require the application of simultane-
ous equations. Besides the supply and demand and simple macroeconomic 
model examples mentioned previously, we could talk about the dual causality 
of population size and food supply, the joint determination of wages and 
prices, or the interaction between foreign exchange rates and international 
trade and capital flows. In a typical econometric equation:

 Yt = β0 + β1X1t + β2X2t + et (14.1)

a simultaneous system is one in which Y clearly has an effect on at least one 
of the Xs in addition to the effect that the Xs have on Y.

Such topics are usually modeled by distinguishing between variables that 
are simultaneously determined (the Ys, called endogenous variables) and 
those that are not (the Xs, called exogenous variables):

 Y1t = α0 + α1Y2t + α2X1t + α3X2t + e1t (14.2)

 Y2t = β0 + β1Y1t + β2X3t + β3X2t + e2t (14.3)

1. This also depends on how hungry you are, which is a function of how hard you’re working, 
which depends on how many chickens you have to take care of. (Although this chicken/egg 
example is simultaneous in an annual model, it would not be truly simultaneous in a quarterly 
or monthly model because of the time lags involved.)
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For example, Y1 and Y2 might be the quantity and price of chicken (respec-
tively), X1 the income of the consumers, X2 the price of beef (beef is a substi-
tute for chicken in both consumption and production), and X3 the price of 
chicken feed. With these definitions, Equation 14.2 would characterize the 
behavior of consumers of chickens and Equation 14.3 the behavior of suppli-
ers of chickens. These behavioral equations are also called structural equations. 
Structural equations characterize the underlying economic theory behind 
each endogenous variable by expressing it in terms of both endogenous and 
exogenous variables. Researchers must view them as an entire system in order 
to see all the feedback loops involved. For example, the Ys are jointly deter-
mined, so a change in Y1 will cause a change in Y2, which will in turn cause 
Y1 to change again. Contrast this feedback with a change in X1, which will 
not eventually loop back and cause X1 to change again. The αs and the βs in 
the equation are structural coefficients, and hypotheses should be made about 
their signs just as we did with the regression coefficients of single equations.

Note that a variable is endogenous because it is jointly determined, not 
just because it appears in both equations. That is, X2, which is the price of 
beef but could be another factor beyond our control, is in both equations 
but is still exogenous in nature because it is not simultaneously determined 
within the chicken market. In a large general equilibrium model of the entire 
economy, however, such a price variable would also likely be endogenous. 
How do you decide whether a particular variable should be endogenous or 
exogenous? Some variables are almost always exogenous (the weather, for 
example), but most others can be considered either endogenous or exogenous, 
depending on the number and characteristics of the other equations in the 
system. Thus, the distinction between endogenous and exogenous variables 
usually depends on how the researcher defines the scope of the research 
project.

Sometimes, lagged endogenous variables appear in simultaneous systems, 
usually when the equations involved are dynamic models (described in 
Chapter 12). Be careful! Such lagged endogenous variables are not simulta-
neously determined in the current time period. They thus have more in com-
mon with exogenous variables than with nonlagged endogenous variables. 
To avoid problems, we’ll define the term predetermined variable to include 
all exogenous variables and lagged endogenous variables. “Predetermined” 
implies that exogenous and lagged endogenous variables are determined out-
side the system of specified equations or prior to the current period. Endog-
enous variables that are not lagged are not predetermined, because they 
are jointly determined by the system in the current time period. Therefore, 
econometricians tend to speak in terms of endogenous and predetermined 
variables when discussing simultaneous equations systems.

M14_STUD2742_07_SE_C14.indd   413 1/13/16   3:23 PM



414 ChAPTER 14 SimultaneouS equationS

Let’s look at the specification of a simple supply and demand model, say 
for the “cola” soft-drink industry:

 QDt = α0 + α1Pt + α2X1t + α3X2t + eDt (14.4)

 QSt  = β0 + β1Pt + β2X3t + eSt  (14.5)

 QSt  = QDt (equilibrium condition) 

where: QDt = the quantity of cola demanded in time period t
 QSt  = the quantity of cola supplied in time period t
 Pt  = the price of cola in time period t
 X1t  = dollars of advertising for cola in time period t
 X2t  =  another “demand-side” exogenous variable (e.g., income 

or the prices or advertising of other drinks)
 X3t  =  a “supply-side” exogenous variable (e.g., the price of artifi-

cial flavors or other factors of production)
 et  =  classical error terms (each equation has its own error term, 

subscripted “D” and “S” for demand and supply)

In this case, price and quantity are simultaneously determined, but price, 
one of the endogenous variables, is not on the left side of any of the equa-
tions. It’s incorrect to assume automatically that the endogenous variables 
are those that appear on the left side of at least one equation; in this case, 
we could have just as easily written Equation 14.5 with price on the left side 
and quantity supplied on the right side, as we did in the chicken example in  
Equations 14.2 and 14.3. Although the estimated coefficients would be dif-
ferent, the underlying relations would not. Note also that there must be as  
many equations as there are endogenous variables. In this case, the three 
endogenous variables are QD, QS, and P.

What would be the expected signs for the coefficients of the price variables 
in Equations 14.4 and 14.5? We’d expect price to enter negatively in the 
demand equation but to enter positively in the supply equation. The higher 
the price, after all, the less quantity will be demanded, but the more quantity 
will be supplied. These signs would result in the typical supply and demand 
diagram that we’re all used to. Look at Equations 14.4 and 14.5 again, and 
note that they would be identical except for the different predetermined 
variables. What would happen if we accidentally put a supply-side prede-
termined variable in the demand equation or vice versa? We’d have a very 
difficult time identifying which equation was which, and the expected signs 
for the coefficients of the endogenous variable P would become ambiguous. 
As a result, we must take care when specifying the structural equations in a 
system.
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Simultaneous Systems Violate Classical Assumption III

Recall from Chapter 4 that Classical Assumption III states that the error term 
and each explanatory variable must be uncorrelated with each other. If there 
is such a correlation, then the OLS regression estimation program is likely to 
attribute to the explanatory variable variations in the dependent variable that 
are actually being caused by variations in the error term. The result will be 
biased estimates.

To see why simultaneous equations violate the assumption of independence 
between the error term and the explanatory variables, look again at a simul-
taneous system, Equations 14.2 and 14.3 (repeated with directional errors):

 c  c  c
 Y1t = α0 + α1Y2t + α2X1t + α3X2t + e1t (14.2)

 c  c
 Y2t = β0 + β1Y1t + β2X3t + β3X2t + e2t (14.3)

Let’s work through the system and see what happens when one of the error 
terms increases, holding everything else in the equations constant:

1. If e1 increases in a particular time period, Y1 will also increase due to 
Equation 14.2.

2. If Y1 increases, Y2 will also rise2 due to Equation 14.3.

3. But if Y2 increases in Equation 14.3, it also increases in Equation 14.2 
where it is an explanatory variable.

Thus, an increase in the error term of an equation causes an increase in an 
explanatory variable in the same equation: If e1 increases, Y1 increases, and 
then Y2 increases, violating the assumption of independence between the 
error term and the explanatory variables.

For a visual understanding of this, take a look at Figure 14.1 on page 416. 
If the error term in the demand equation increases, then the demand curve 
will shift from D to D′, and both price and quantity will increase. Thus an 
increase in the error term will be correlated with an increase in an indepen-
dent variable. We’ve violated Classical Assumption III!

2. This assumes that β1 is positive. If β1 is negative, Y2 will decrease and there will be a negative 
correlation between e1 and Y2, but this negative correlation will still violate Classical Assump-
tion III. Also note that both Equations 14.2 and 14.3 could have Y1t on the left side; if two 
variables are jointly determined, it doesn’t matter which variable is considered dependent and 
which explanatory, because they are actually mutually dependent. We used this kind of simulta-
neous system in the cola model portrayed in Equations 14.4 and 14.5.
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This is not an isolated result that depends on the particular equations 
involved. Instead, this result works for other error terms, equations, and 
simultaneous systems. All that is required for the violation of Classical 
Assumption III is that there be endogenous variables that are jointly deter-
mined in a system of simultaneous equations.

reduced-Form equations

An alternative way of expressing a simultaneous equations system is through 
the use of reduced-form equations, equations that express a particular 
endogenous variable solely in terms of an error term and all the predetermined 
(exogenous plus lagged endogenous) variables in the simultaneous system.

The reduced-form equations for the structural Equations 14.2 and 14.3 
would thus be:
 Y1t = π0 + π1X1t + π2X2t + π3X3t + v1t (14.6)

 Y2t = π4 + π5X1t + π6X2t + π7X3t + v2t (14.7)

0 QQD 5 QS

S 5 Equation 14.5
b1 . 0

D 5 Equation 14.4
a1 , 0

P

Pe

P9

D9

Q9

Figure 14.1 Supply and demand Simultaneous equations

An example of simultaneous equations that jointly determine two endogenous variables 
is the supply and demand for a product. In this case, Equation 14.4, the downward-
sloping demand function, and Equation 14.5, the upward-sloping supply function, 
intersect at the equilibrium price and quantity for this market.
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where the vs are stochastic error terms and the πs are called reduced-form 
coefficients because they are the coefficients of the predetermined variables in 
the reduced-form equations. Where do these reduced-form equations come 
from? If you substitute Equation 14.3 into Equation 14.2, solve for Y1, and 
then regroup terms, you’ll get Equation 14.6.

Note that each reduced-form equation includes only one endogenous 
variable (the dependent variable) and that each equation has exactly the 
same set of predetermined variables. The reduced-form coefficients, such 
as π1 and π5, are known as impact multipliers because they measure the 
impact on the endogenous variable of a one-unit increase in the value of 
the predetermined variable, after allowing for the feedback effects from the 
entire simultaneous system.

There are at least three reasons for using reduced-form equations:

1. Since the reduced-form equations have no inherent simultaneity, they 
do not violate Classical Assumption III. Therefore, they can be esti-
mated with OLS without encountering the problems discussed in this 
chapter.

2. The interpretation of the reduced-form coefficients as impact multipli-
ers means that they have economic meaning and useful applications of 
their own. For example, if you wanted to compare a government spend-
ing increase with a tax cut in terms of the per-dollar impact in the first 
year, estimates of the impact multipliers (reduced-form coefficients or 
πs) would allow such a comparison.

3. Perhaps most importantly, reduced-form equations play a crucial role 
in the estimation technique most frequently used for simultaneous 
equations. This technique, Two-Stage Least Squares, will be explained 
in Section 14.3.

To conclude, let’s return to the cola supply and demand model and specify 
the reduced-form equations for that model. (To test yourself, flip back to 
Equations 14.4 and 14.5 and see if you can get the right answer before going 
on.) Since the equilibrium condition forces QD to be equal to QS, we need 
only two reduced-form equations:

 Qt = π0 + π1X1t + π2X2t + π3X3t + v1t (14.8)

 Pt = π4 + π5X1t + π6X2t + π7X3t + v2t (14.9)

Even though P never appears on the left side of a structural equation, it’s an 
endogenous variable and should be treated as such.
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14.2  The Bias of Ordinary Least Squares

The first six Classical Assumptions must be met for OLS estimates to be BLUE; 
when an assumption is violated, we must determine which of the proper-
ties no longer holds. It turns out that applying OLS directly to the structural 
equations of a simultaneous system produces biased and inconsistent esti-
mates of the coefficients. Such bias is called simultaneous equations bias or 
simultaneity bias.

Understanding Simultaneity Bias

Simultaneity bias refers to the fact that in a simultaneous system, the 
expected values of the OLS-estimated structural coefficients 1βN s2 are not 
equal to the true βs. We are therefore faced with the problem that in a simul-
taneous system:

 E1βN 2 ≠ β (14.10)

Why does this simultaneity bias exist? Recall from Section 14.1 that in simul-
taneous equations systems, the error terms (the es) tend to be correlated with 
the endogenous variables (the Ys) whenever the Ys appear as explanatory  
variables. Let’s follow through what this correlation means (assuming 
positive coefficients for simplicity) in typical structural equations like 14.11 
and 14.12:

 Y1t = β0 + β1Y2t + β2Xt + e1t (14.11)

 Y2t = α0 + α1Y1t + α2Zt + e2t (14.12)

Since we cannot observe the error term 1e12 and don’t know when e1t is 
above average, it will appear as if every time Y1 is above average, Y2 is also 
above average (as long as α1 is positive). As a result, the OLS estimation pro-
gram will tend to attribute increases in Y1 caused by the error term e1 to Y2, 
thus typically overestimating β1. This overestimation is simultaneity bias. If 
the error term is abnormally negative, Y1t will be less than it would have been 
otherwise, causing Y2t to be less than it would have been otherwise, and the 
computer program will attribute the decrease in Y1 to Y2, once again causing 
us to overestimate β1 (that is, induce upward bias).

Recall that the causation between Y1 and Y2 runs in both directions 
because the two variables are interdependent. As a result, β1, when estimated 
by OLS, can no longer be interpreted as the impact of Y2 on Y1, holding X 
constant. Instead, βN 1 now measures some mix of the effects of the two endog-
enous variables on each other! In addition, consider β2. It’s supposed to be 
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the effect of X on Y1 holding Y2 constant, but how can we expect Y2 to be held 
constant when a change in Y1 takes place? As a result, there is potential bias 
in all the estimated coefficients in a simultaneous system.

What does this bias look like? It’s possible to derive an equation for the 
expected value of the regression coefficients in a simultaneous system that 
is estimated by OLS. This equation shows that as long as the error term and 
any of the explanatory variables in the equation are correlated, then the coef-
ficient estimates will be biased and inconsistent. In addition, it also shows 
that the bias will have the same sign as the correlation between the error term 
and the endogenous variable that appears as an explanatory variable in that 
error term’s equation. Since that correlation is often positive in economic 
and business examples, the bias often will be positive, although the direction 
of the bias in any given situation will depend on the specific details of the 
structural equations and the model’s underlying theory.

This does not mean that every coefficient from a simultaneous system 
estimated with OLS will be a bad approximation of the true population 
coefficient. However, it’s vital to consider an alternative to OLS whenever 
simultaneous equations systems are being estimated. Before we investigate 
the alternative estimation technique most frequently used (Two-Stage Least 
Squares), let’s look at an example of simultaneity bias.

An Example of Simultaneity Bias

To show how the application of OLS to simultaneous equations estimation 
causes bias, we used a Monte Carlo experiment3 to generate an example of 
such biased estimates. Since it’s impossible to know whether any bias exists 
unless you also know the true βs, we arbitrarily picked a set of coefficients 
to be considered “true.” We then stochastically generated data sets based on 
these “true” coefficients, and obtained repeated OLS estimates of these coef-
ficients from the generated data sets. The expected value of these estimates 
turned out to be quite different from the true coefficient values, thus exem-
plifying the bias in OLS estimates of coefficients in simultaneous systems.

3. Monte Carlo experiments are computer-generated simulations that typically follow seven 
steps: 1. Assume a “true” model with specific coefficient values and an error term distribution. 
2. Select values for the independent variables. 3. Select an estimating technique (usually OLS). 
4. Create various samples of the dependent variable, using the assumed model, by randomly 
generating error terms from the assumed distribution; often, the number of samples created 
runs into the thousands. 5. Compute the estimates of the βs from the various samples using the 
estimating technique. 6. Summarize and evaluate the results. 7. Consider sensitivity analyses 
using different values, distributions, or estimating techniques.
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We used a supply and demand model as the basis for our example:

 Qt = β0 + β1Pt + β2Xt + eDt (14.13)

 Qt = α0 + α1Pt + α2Zt + eSt (14.14)

where: Qt = the quantity demanded and supplied in time period t
 Pt  = the price in time period t
 Xt  = a “demand-side” exogenous variable, such as income
 Zt  = a “supply-side” exogenous variable, such as weather
 et  = classical error terms (different for each equation)

The first step was to choose a set of true coefficient values that corre-
sponded to our expectations for this model:

β1 = -1  β2 = +1  α1 = +1  α2 = +1

In other words, we have a negative relationship between price and quantity 
demanded, a positive relationship between price and quantity supplied, and 
positive relationships between the exogenous variables and their respective 
dependent variables.

The next step was to randomly generate a number of data sets based on the 
true values. This also meant specifying some other characteristics of the data4 
before generating the different data sets (5,000 in this case).

The final step was to apply OLS to the generated data sets and to calculate 
the estimated coefficients of the demand equation (14.13). (Similar results 
were obtained for the supply equation.) The arithmetic means of the results 
for the 5,000 regressions were:

 QN Dt = βN 0 - 0.37Pt + 1.84Xt (14.15)

In other words, the expected value of βN 1 should have been -1.00, but instead 
it was roughly -0.37; the expected value of βN 2 should have been +1.00, but 
instead it was around 1.84:

E1βN 12 ≈ -0.37 ≠ -1.00

E1βN 22 ≈ 1.84 ≠ 1.00

This is simultaneity bias! As the diagram of the sampling distributions of the βN s 
in Figure 14.2 shows, the OLS estimates of β1 were almost never very close to 
-1.00, and the OLS estimates of β2 were distributed over a wide range of values.

4. Other assumptions included a normal distribution for the error term, β0 = 0, α0 = 0, 
σ2

S = 3, σ2
D = 2, r2

xz = 0.4, and N = 20. In addition, we assumed that the error terms of the 
two equations were not correlated.
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14.3  Two-Stage Least Squares (2SLS)

How can we get rid of (or at least reduce) simultaneity bias? There are a num-
ber of estimation techniques that help mitigate simultaneity bias, but the most 
frequently used alternative to OLS is called Two-Stage Least Squares (2SLS).

Since OLS encounters bias in the estimation of simultaneous equations 
mainly because such equations violate Classical Assumption III, one solution 
to the problem is to try to avoid violating that assumption. The first step in 
doing this is to find a variable that is:

1. highly correlated with the endogenous variable, and

2. uncorrelated with the error term.

Such a variable is called an instrumental variable; it is highly correlated 
with the endogenous variable, but is uncorrelated with the error term. More 
generally, instrumental variables (IV) regression is a method of avoiding the 

Figure 14.2  Sampling distributions Showing Simultaneity Bias  
of olS estimates

In the experiment in Section 14.2, simultaneity bias is evident in the distribution of the 
estimates of β1, which had a mean value of -0.37 compared with a true value of -1.00,  
and in the estimates of β2, which had a mean value of 1.84 compared with a true value 
of 1.00.
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violation of Classical Assumption III by producing predicted values of endog-
enous variables that can be substituted for the endogenous variables where 
they appear on the right-hand side of structural equations. These predicted 
values typically are produced by running an OLS equation to explain the 
endogenous variable as a function of one or more instrumental variables.

To see how this works, take a look at Equation 14.16 in the following 
system:

 Y1t = β0 + β1Y2t + β2X1t + e1t (14.16)

 Y2t = α0 + α1Y1t + α2X2t + e2t (14.17)

If we could find a variable (or variables) highly correlated with Y2t but uncor-
related with e1t, then we could produce a predicted value of Y2t by running 
an OLS regression with Y2t as a function of the instrumental variable(s). 
The fitted value YN2t will be uncorrelated with e1t (because it was produced 
using variables that are uncorrelated with e1t), so if we substitute YN2t for Y2t 
on the right side of Equation 14.16, then we’ll no longer violate Classical 
Assumption III.

This approach avoids the violation of Classical Assumption III, but it 
doesn’t give us any insight into where to find appropriate instrumental 
variables (sometimes called instruments). How do we systematically find 
variables that are highly correlated with the endogenous variable but uncor-
related with the error term? For simultaneous equations systems, there’s a 
straightforward answer. We use Two-Stage Least Squares.

What Is Two-Stage Least Squares?

Two-Stage Least Squares (2SLS) is a method of avoiding simultaneity bias 
by systematically creating variables to replace the endogenous variables where 
they appear as explanatory variables in simultaneous equations systems. The 
simplest form of 2SLS does this by running an OLS regression on the reduced 
form of every right-side endogenous variable and then using the YN  (or fitted 
value) from the reduced-form estimated equation in place of the endogenous 
variable where it appears on the right side of a structural equation.

Why does 2SLS do this? Every predetermined variable in the simultane-
ous system is a candidate to be an instrumental variable for every endog-
enous variable, but if we choose only one instrumental variable, then we’ll 
be throwing away information. To avoid this, 2SLS uses a linear combina-
tion of all the predetermined variables. We form this linear combination 
by running a regression for a given endogenous variable as a function of 
all the predetermined variables in the reduced-form equation to generate a 
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predicted value of the endogenous variable. Thus the 2SLS two-step estima-
tion procedure is:

STAGE ONE: Run OLS on the reduced-form equations for each of the endog-
enous variables that appear as explanatory variables in the structural equations 
in the system.

Since the predetermined (exogenous plus lagged endogenous) variables 
are uncorrelated with the reduced-form error term, the OLS estimates of the 
reduced-form coefficients (the πN s) are unbiased. These πN s can then be used 
to calculate estimates of the endogenous variables:

 YN1t = πN 0 + πN 1X1t + πN 2X2t (14.18)

 YN2t = πN 3 + πN 4X1t + πN 5X2t (14.19)

These YN s then are used in place of the Ys on the right-hand side of the struc-
tural equations.

STAGE TWO: Substitute the reduced form YN s for the Ys that appear on the 
right side (only) of the structural equations, and then estimate these revised 
structural equations.

That is, stage two consists of estimating the following equations with OLS:

 Y1t = β0 + β1YN2t + β2X1t + u1t (14.20)

 Y2t = α0 + α1YN1t + α2X2t + u2t (14.21)

Note that the dependent variables are still the original endogenous variables 
and that the substitutions are only for the endogenous variables where they 
appear on the right-hand side of the structural equations. This procedure 
produces consistent estimates of the coefficients of the structural equations.

Be careful! If second-stage equations such as Equations 14.20 and 14.21 
are estimated with OLS, the SE1βN 2s will be incorrect, so be sure to use your 
computer’s 2SLS estimation procedure.

This description of 2SLS can be generalized to any number of simultane-
ous structural equations. Each reduced-form equation has as explanatory 
variables every predetermined variable in the entire system of equations. 
The OLS estimates of the reduced-form equations are used to compute the 
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estimated values of all the endogenous variables that appear as explanatory 
variables in the structural equations. After substituting these fitted values for 
the original values of the endogenous independent variables, OLS is applied 
to each stochastic equation in the set of structural equations.

The Properties of Two-Stage Least Squares

1. 2SLS estimates still are biased. The expected value of a βN  produced by 
2SLS is not equal to the true β, but the expected bias due to 2SLS usu-
ally is smaller than the expected bias due to OLS. One cause of the 2SLS 
bias is any remaining correlation between the YN s produced by the first-
stage reduced-form regressions and the es. As the sample size gets larger, 
the 2SLS bias falls, but it is always non-zero in a finite sample.

  To illustrate these properties,5 let’s return to the Monte Carlo example 
of Section 14.2. If we estimate the equation with 2SLS, we get a mean βN 1 
of roughly -1.25. This isn’t equal to the true β1 of -1.00, but it’s much 
closer than the OLS mean βN 1 of around -0.37. If we then expand the 
number of observations in each sample from 20 to 50 and re-estimate 
the equation with 2SLS for the 5,000 samples, the mean of the sam-
pling distribution of βN 1 moves to -1.06, which is even closer to the true 
value of -1.00.

2. If the fit of the reduced-form equation is poor, then 2SLS will not rid the 
equation of bias. Recall that an instrumental variable is supposed to be 
highly correlated with the endogenous variable. To the extent that the 
fit of the reduced-form equation is poor,6 then the instrumental vari-
ables aren’t highly correlated with the original endogenous variable, 
and there is no reason to expect 2SLS to be effective. As the fit of the 
reduced-form equation increases, the usefulness of 2SLS will increase.

3. 2SLS estimates have increased variances and SE(βN )s. While 2SLS does an  
excellent job of reducing the amount of bias in the βN s, there’s a price to pay 
for this reduced bias. This price is that 2SLS estimates tend to have higher 
variances and SE(βN )s than do OLS estimates of the same equations.

5. Under certain circumstances, for example, if only one instrument is used to produce the 
predicted values of the endogenous variable, then the population mean of the instrumental 
variable estimator is undefined, and the bias is not defined.

6. See J. Stock and M. Yogo, “Testing for Weak Instruments in Linear IV Regression,” in D.W.K. 
Andrews, Identification and Inference for Econometric Models (New York: Cambridge University 
Press, 2005), pp. 80–108. They develop a test of the fit of the reduced-form equation that is a 
version of the F–test, not R2. A rough rule of thumb is that F should be greater than 10.
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On balance, then, 2SLS will almost always be a better estimator of the 
coefficients of a simultaneous system than OLS will be. The major exception 
to this general rule is when the fit of the reduced-form equation in question 
is poor.

An Example of Two-Stage Least Squares

Let’s work through an example of 2SLS, a naive linear Keynesian macroeco-
nomic model of the U.S. economy. We’ll specify the following system:

  Yt = COt + It + Gt + NXt  (14.22)

  COt = β0 + β1YDt + β2COt - 1 + e1t (14.23)

  YDt = Yt - Tt  (14.24)

  It = β3 + β4Yt + β5rt - 1 + e2t  (14.25)

where: Yt  = Gross Domestic Product (GDP) in year t
 COt = total personal consumption in year t
 It  = total gross private domestic investment in year t
 Gt  = government purchases of goods and services in year t
 NXt =  net exports of goods and services (exports minus imports) 

in year t
 Tt  =  taxes (actually equal to taxes, depreciation, corporate prof-

its, government transfers, and other adjustments necessary 
to convert GDP to disposable income) in year t

 rt  = the interest rate in year t
 YDt  = disposable income in year t

All variables are in real terms (measured in billions of 2000 dollars) except 
the interest rate variable, which is measured in nominal percent. The data for 
this example are from 1976 through 2007 and are presented in Table 14.1.

Equations 14.22 through 14.25 are the structural equations of the system, 
but only Equations 14.23 and 14.25 are stochastic (behavioral) and need to 
be estimated. The other two are not stochastic, as can be determined by the 
lack of an error term in the equations.

Stop for a second and look at the system. Which variables are endogenous? 
Which are predetermined? The endogenous variables are those that are jointly 
determined by the system, namely, Yt, COt, YDt, and It. To see why these four 
variables are simultaneously determined, note that if you change one of them 
and follow this change through the system, the change will get back to the 
original causal variable. For instance, if It goes up for some reason, that will 
cause Yt to go up (through Equation 14.22), which will feed right back into It 
again (through Equation 14.25). They’re simultaneously determined.
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Table 14.1 data for the Small macromodel

YEAR Y CO I G YD r

1975 na 2876.9 na na na  8.83
1976  4540.9 3035.5  544.7 1031.9 3432.2  8.43
1977  4750.5 3164.1  627.0 1043.3 3552.9  8.02
1978  5015.0 3303.1  702.6 1074.0 3718.8  8.73
1979  5173.4 3383.4  725.0 1094.1 3811.2  9.63
1980  5161.7 3374.1  645.3 1115.4 3857.7 11.94
1981  5291.7 3422.2  704.9 1125.6 3960.0 14.17
1982  5189.3 3470.3  606.0 1145.4 4044.9 13.79
1983  5423.8 3668.6  662.5 1187.3 4177.7 12.04
1984  5813.6 3863.3  857.7 1227.0 4494.1 12.71
1985  6053.7 4064.0  849.7 1312.5 4645.2 11.37
1986  6263.6 4228.9  843.9 1392.5 4791.0  9.02
1987  6475.1 4369.8  870.0 1426.7 4874.5  9.38
1988  6742.7 4546.9  890.5 1445.1 5082.6  9.71
1989  6981.4 4675.0  926.2 1482.5 5224.8  9.26
1990  7112.5 4770.3  895.1 1530.0 5324.2  9.32
1991  7100.5 4778.4  822.2 1547.2 5351.7  8.77
1992  7336.6 4934.8  889.0 1555.3 5536.3  8.14
1993  7532.7 5099.8  968.3 1541.1 5594.2  7.22
1994  7835.5 5290.7 1099.6 1541.3 5746.4  7.96
1995  8031.7 5433.5 1134.0 1549.7 5905.7  7.59
1996  8328.9 5619.4 1234.3 1564.9 6080.9  7.37
1997  8703.5 5831.8 1387.7 1594.0 6295.8  7.26
1998  9066.9 6125.8 1524.1 1624.4 6663.9  6.53
1999  9470.3 6438.6 1642.6 1686.9 6861.3  7.04
2000  9817.0 6739.4 1735.5 1721.6 7194.0  7.62
2001  9890.7 6910.4 1598.4 1780.3 7333.3  7.08
2002 10048.8 7099.3 1557.1 1858.8 7562.2  6.49
2003 10301.0 7295.3 1613.1 1904.8 7729.9  5.67
2004 10675.8 7561.4 1770.2 1931.8 8008.9  5.63
2005 10989.5 7791.7 1873.5 1939.0 8121.4  5.24
2006 11294.8 8029.0 1912.5 1971.2 8407.0  5.59
2007 11523.9 8252.8 1809.7 2012.1 8644.0  5.56

Source: The Economic Report of the President, 2009. note that t and nX can be calculated 
using equations 14.22 and 14.24.

datafile = macro14
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What about interest rates? Is rt an endogenous variable? The surprising 
answer is that, strictly speaking, rt is not endogenous in this system because 
rt - 1 (not rt) appears in the investment equation. Thus, there is no simultane-
ous feedback through the interest rate in this simple model.7

Given this answer, which are the predetermined variables? The predeter-
mined variables are Gt, NXt, Tt, COt - 1, and rt - 1. To sum, the simultaneous 
system has four structural equations, four endogenous variables, and five pre-
determined variables.

What is the economic content of the stochastic structural equations? The 
consumption function, Equation 14.23, is a dynamic model consumption 
function of the kind we analyzed in Chapter 12. We discussed this exact equa-
tion in Section 12.2, going so far as to estimate Equation 14.23 with OLS on 
data from Table 14.1, and the reader is encouraged to reread that analysis.

The investment function, Equation 14.25, includes simplified multiplier 
and cost of capital components. The multiplier term β4 measures the stimulus 
to investment that is generated by an increase in GDP. In a Keynesian model, 
β4 thus would be expected to be positive. On the other hand, the higher the 
cost of capital, the less investment we’d expect to be undertaken (holding 
multiplier effects constant), mainly because the expected rate of return on 
marginal capital investments is no longer sufficient to cover the higher cost of 
capital. Thus β5 is expected to be negative. It takes time to plan and start up 
investment projects, though, so the interest rate is lagged one year.8

Stage One: Even though there are four endogenous variables, only two of 
them appear on the right-hand side of stochastic equations, so only two 
reduced-form equations need to be estimated to apply 2SLS. These reduced-
form equations are estimated automatically by all 2SLS computer estimation 
programs, but it’s instructive to take a look at one anyway:

YDt = -258.55 + 0.78Gt - 0.37NXt + 0.52Tt + 0.67COt - 1 + 37.63rt - 1

10.222    10.162       10.142   10.092       19.142
t =   3.49  - 2.30      3.68    7.60           4.12
 (14.26)

8

7. Although this sentence is technically correct, it overstates the case. In particular, there are a 
couple of circumstances in which an econometrician might want to consider rt - 1 to be part of 
the simultaneous system for theoretical reasons. For our naive Keynesian model with a lagged 
interest rate effect, however, the equation is not in the simultaneous system.

8. This investment equation is a simplified mix of the accelerator and the neoclassical theories 
of the investment function. The former emphasizes that changes in the level of output are the 
key determinant of investment, and the latter emphasizes that user cost of capital (the opportu-
nity cost that the firm incurs as a consequence of owning an asset) is the key.
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Note that we don’t test any hypotheses on reduced forms, nor do we con-
sider dropping a variable9 that is statistically and theoretically irrelevant. The 
whole purpose of stage one of 2SLS is not to generate meaningful reduced-
form estimated equations but rather to generate YN s to use as substitutes for 
endogenous variables in the second stage. To do that, we calculate the YN ts and 
YDts for all 32 observations by plugging the actual values of all 5 predeter-
mined variables into estimated reduced-form equations like Equation 14.26.

Stage Two: We then substitute these YN ts and YDts for the endogenous  
variables where they appear on the right sides of Equations 14.23 and 14.25. 
For example, the YDt from Equation 14.26 would be substituted into 
Equation 14.23, resulting in:

 COt = β0 + β1YDt + β2COt - 1 + e1t (14.27)

If we estimate Equation 14.27 and the other second-stage equation given the 
data in Table 14.1, we obtain the following 2SLS10 results:

 COt = -  209.06 + 0.37YDt + 0.66COt - 1 (14.28)
10.132      10.142
2.73      4.84

N = 32  R2 = .999  DW = 0.83

 INt = -  261.48 + 0.19YNt - 9.55rt - 1 (14.29)
10.012 111.202
15.82   - 0.85

N = 32  R2 = .956  DW = 0.47

8

8
8

8

8 8

9. Our recommendation to use every predetermined variable in the simultaneous system as an 
instrumental variable in the first stage of 2SLS is a simplification that we think is appropriate 
given the level of this text. Experienced econometricians will test each potential instrumental 
variable to measure the extent to which the variable is highly correlated with the endogenous 
variable and uncorrelated with the error term. Only those variables that meet these criteria 
should then be used as valid instruments in the first stage. For an approachable discussion of 
the topic of checking instrument validity, see James Stock and Mark Watson, Introduction to 
Econometrics (Boston: Pearson, 2015), pp. 442–448.

10. The 2SLS estimates in Equations 14.28 and 14.29 are correct, but if you were to estimate 
those equations with OLS (using YN s and YDs generated as in Equation 14.26) you would  
obtain the same coefficient estimates but a different set of estimates of the standard errors 
(and t-scores). This difference comes about because running OLS on the second stage alone 
ignores the fact that the first stage was run at all. To get accurate estimated standard errors and 
t-scores, the estimation should be done with a 2SLS program.

8
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If we had estimated these equations with OLS alone instead of with 2SLS, 
we would have obtained:

 COt = -266.65 + 0.46YDt + 0.56COt - 1 (14.30)
10.102      10.102
4.70           5.66

N = 32  R2 = .999  DW = 0.77

 INt = -267.16 + 0.19Yt - 9.26rt - 1 (14.31)
10.012 111.192
15.87   -  0.83

N = 32  R2 = .956  DW = 0.47

Let’s compare the OLS and 2SLS results. At first glance, there doesn’t seem to 
be much difference between them. If OLS is biased, how could this occur? 
When the fit of the stage-one reduced-form equations is excellent, as in 
Equation 14.26, then Y and YN  are virtually identical, and the second stage of 
2SLS is quite similar to the OLS estimate.

Also, take a look at the Durbin–Watson statistics. DW is well below the dL 
of 1.31 (one-sided 5-percent significance, N = 32, K = 2) in all the equa-
tions despite DW’s bias toward 2 in the consumption equation (because it’s 
a dynamic model). Consequently, positive serial correlation is likely to exist 
in the residuals of both equations. Applying GLS to the two 2SLS-estimated 
equations is tricky, however, especially because, as mentioned in Section 
12.3, serial correlation causes bias in an equation with a lagged dependent 
variable, as in the consumption function.

Finally, what about nonstationarity? We learned in Chapter 12 that time-
series models like these have the potential to be spurious in the face of non-
stationarity. Are any of these regressions spurious? Well, as you can guess 
from looking at the data, quite a few of the series in this model are, indeed, 
nonstationary. Luckily, the interest rate is stationary. However, it turns out that 
the consumption function is reasonably cointegrated, so Equations 14.28 
and 14.30 probably can stand as estimated. Unfortunately, the investment 
equation suffers from nonstationarity that almost surely results in an inflated 
t-score for GDP and a low t-score for rt - 1 (because rt - 1 is stationary when all 
the other variables in the equation are nonstationary). Given the tools covered 
so far in this text, however, there is little we can do to improve the situation.

These caveats aside, this model has provided us with a complete example 
of the use of 2SLS to estimate a simultaneous system. However, the applica-
tion of 2SLS requires that the equation being estimated be “identified,” so 
before we can conclude our study of simultaneous equations, we need to 
address the problem of identification.

8
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14.4  The Identification Problem

Two-Stage Least Squares cannot be applied to an equation unless that equa-
tion is identified. Before estimating any equation in a simultaneous system, 
you therefore must address the identification problem. Once an equation is 
found to be identified, then it can be estimated with 2SLS, but if an equation 
is not identified (underidentified), then 2SLS cannot be used no matter how 
large the sample. Such underidentified equations can be estimated with OLS, 
but OLS estimates of underidentified equations are difficult to interpret. It’s 
important to point out that an equation being identified (and therefore capa-
ble of being estimated with 2SLS) does not ensure that the resulting 2SLS 
estimates will be good ones. The question being asked is not how good the 
2SLS estimates will be but whether the 2SLS estimates can be obtained at all.

What Is the Identification Problem?

Identification is a precondition for the application of 2SLS to equations in 
simultaneous systems; a structural equation is identified only when enough 
of the system’s predetermined variables are omitted from the equation in 
question to allow that equation to be distinguished from all the others in the 
system. Note that one equation in a simultaneous system might be identified 
and another might not.

How can we have equations that we cannot identify? To see how, let’s 
consider a supply and demand simultaneous system in which only price and 
quantity are specified:

 QDt = α0 + α1Pt + eDt (demand) (14.32)

 QSt  = β0 + β1Pt + eSt  (supply) (14.33)

where:  QDt = QSt

Although we’ve labeled one equation as the demand equation and the other 
as the supply equation, the computer will not be able to identify them from 
the data because the right-side and the left-side variables are exactly the same 
in both equations; without some predetermined variables included to dif-
ferentiate these two equations, it would be impossible to distinguish supply 
from demand.

What if we added a predetermined variable like weather (W) to the supply 
equation for an agricultural product? Then, Equation 14.33 would become:

 QSt = β0 + β1Pt + β2Wt + eSt (14.34)
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In such a circumstance, every time W changed, the supply curve would shift, 
but the demand curve would not, so that eventually we would be able to col-
lect a good picture of what the demand curve looked like.

Figure 14.3 demonstrates this. Given four different values of W, we get four 
different supply curves, each of which intersects with the constant demand 
curve at a different equilibrium price and quantity (intersections 1–4). These 
equilibria are the data that we would be able to observe in the real world and 
are all that we could feed into the computer. As a result, we would be able 
to identify the demand curve because we left out at least one predetermined 
variable. When this predetermined variable changed, but the demand curve 
didn’t, the supply curve shifted so that quantity demanded moved along the 
demand curve and we gathered enough information to estimate the coef-
ficients of the demand curve. The supply curve, on the other hand, remains 
as much a mystery as ever because its shifts give us no clue whatsoever about 
its shape. In essence, the demand curve was identified by the predetermined 
variable that was included in the system but excluded from the demand 
equation. The supply curve is not identified because there is no such 
excluded predetermined variable for it.

Even if we added W to the demand curve as well (which wouldn’t make 
sense from a theoretical point of view), that would not identify the supply 
curve. In fact, if we had W in both equations, the two would be identical 
again, and although both would shift when W changed, those shifts would 

0

1

3
2

4

Q

D

S1P

S3
S2

S4

Figure 14.3  a Shifting Supply curve allows the identification of the  
demand curve

If the supply curve shifts but the demand curve does not, then we move along the  
demand curve, which allows us to identify and estimate the demand curve (but not the 
supply curve).
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give us no information about either curve! As illustrated in Figure 14.4, the 
observed equilibrium prices and quantities would be almost random inter-
sections describing neither the demand nor the supply curve. That is, the 
shifts in the supply curve are the same as before, but now the demand curve 
also shifts with W. In this case, it’s not possible to identify either the demand 
curve or the supply curve.

The way to identify both curves is to have at least one predetermined vari-
able in each equation that is not in the other, as in:

 QDt = α0 + α1Pt + α2Xt + eDt (14.35)

 QSt = β0 + β1Pt + β2Wt + eSt (14.36)

Now when W changes, the supply curve shifts, and we can identify the 
demand curves from the data on equilibrium prices and quantities. When X 
changes, the demand curve shifts, and we can identify the supply curve from 
the data.

To sum, identification is a precondition for the application of 2SLS to 
equations in simultaneous systems. A structural equation is identified only 
when the predetermined variables are arranged within the system so as to 
allow us to use the observed equilibrium points to distinguish the shape of 
the equation in question. Most systems are quite a bit more complicated than 
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Figure 14.4 if Both the Supply curve and the demand curve Shift, neither 
curve is identified

If both the supply curve and the demand curve shift in response to the same variable, 
then we move from one equilibrium to another, and the resulting data points identify 
neither curve. To allow such an identification, at least one predetermined variable must 
cause one curve to shift while allowing the other to remain constant.
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the previous ones, however, so econometricians need a general method by 
which to determine whether equations are identified. The method typically 
used is the order condition of identification.

The Order Condition of Identification

The order condition is a systematic method of determining whether a par-
ticular equation in a simultaneous system has the potential to be identified. 
If an equation can meet the order condition, then it is identified in all but a 
very small number of cases. We thus say that the order condition is a neces-
sary but not sufficient condition of identification.11

What is the order condition? Recall that we have used the phrases endog-
enous and predetermined to refer to the two kinds of variables in a simultane-
ous system. Endogenous variables are those that are jointly determined in 
the system in the current time period. Predetermined variables are exogenous 
variables plus any lagged endogenous variables that might be in the model. 
For each equation in the system, we need to determine:

1. The number of predetermined (exogenous plus lagged endogenous) 
variables in the entire simultaneous system.

2. The number of slope coefficients estimated in the equation in question.

11. A sufficient condition for an equation to be identified is called the rank condition, but most 
researchers examine just the order condition before estimating an equation with 2SLS. These 
researchers let the computer estimation procedure tell them whether the rank condition has 
been met (by its ability to apply 2SLS to the equation). Those interested in the rank condition 
are encouraged to consult an advanced econometrics text.

THE ORDER CONDITION: A necessary condition for an equation to be 
identified is that the number of predetermined (exogenous plus lagged endog-
enous) variables in the system be greater than or equal to the number of slope 
coefficients in the equation of interest.

In equation form, a structural equation meets the order condition if:

The number of predetermined variables Ú The number of slope coefficients 
(in the simultaneous system)         (in the equation)
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Two Examples of the Application of the Order Condition

Let’s apply the order condition to some of the simultaneous equations sys-
tems encountered in this chapter. For example, consider once again the cola 
supply and demand model of Section 14.1:

 QDt = α0 + α1Pt + α2X1t + α3X2t + eDt (14.37)

 QSt  = β0 + β1Pt + β2X3t + eSt  (14.38)

 QSt  = QDt  (14.39)

Equation 14.37 is identified by the order condition because the number of 
predetermined variables in the system (three, X1, X2, and X3) is equal to the 
number of slope coefficients in the equation (three: α1, α2, and α3). This 
particular result (equality) implies that Equation 14.37 is exactly identified by 
the order condition. Equation 14.38 is also identified by the order condition 
because there are still three predetermined variables in the system, but there 
are only two slope coefficients in the equation; this condition implies that 
Equation 14.38 is overidentified. 2SLS can be applied to equations that are 
identified (which includes exactly identified and overidentified), but not to 
equations that are underidentified.

A more complicated example is the small macroeconomic model of  
Section 14.3:

 Yt  = COt + It + Gt + NXt  (14.22)

 COt = β0 + β1YDt + β2COt-1 + e1t (14.23)

 YDt  = Yt - Tt  (14.24)

 It  = β3 + β4Yt + β5rt - 1 + e2t  (14.25)

As we’ve noted, there are five predetermined variables (exogenous plus lagged 
endogenous) in this system 1Gt, NXt, Tt, COt - 1, and rt - 12. Equation 14.23  
has two slope coefficients 1β1 and β22, so this equation is overidentified 
15 7 22 and meets the order condition of identification. As the reader can 
verify, Equation 14.25 also turns out to be overidentified. Since the 2SLS 
computer program did indeed come up with estimates of the βs in the 
model, we knew this already. Note that Equations 14.22 and 14.24 are iden-
tities and are not estimated, so we’re not concerned with their identification 
properties.
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14.5  Summary

 1. Most economic and business models are inherently simultaneous 
because of the dual causality, feedback loops, or joint determination 
of particular variables. These simultaneously determined variables are 
called endogenous, and nonsimultaneously determined variables are 
called exogenous.

 2. A structural equation characterizes the theory underlying a particular 
variable and is the kind of equation we have used to date in this text. 
A reduced-form equation expresses a particular endogenous variable 
solely in terms of an error term and all the predetermined (exogenous 
and lagged endogenous) variables in the simultaneous system.

 3. Simultaneous equations models violate Classical Assumption III that 
the error term is uncorrelated with the explanatory variables. This 
occurs because of the feedback effects of the endogenous variables. 
For example, an unusually high observation of an equation’s error 
term works through the simultaneous system and eventually causes 
a high (with positive coefficients) value for the endogenous variables 
that appear as explanatory variables in the equation in question, thus 
violating Classical Assumption III.

 4. If OLS is applied to the coefficients of a simultaneous system, the 
resulting estimates are biased and inconsistent. This occurs mainly be-
cause of the violation of Classical Assumption III; the OLS regression 
package attributes to explanatory variables changes in the dependent 
variable actually caused by the error term (with which the explanatory 
variables are correlated).

 5. Two-Stage Least Squares is a method of estimating simultaneous 
equations systems. It works by systematically using the reduced-form 
equations of the system to create substitutes for the endogenous 
variables that are independent of the error terms. It then estimates 
the structural equations of the system with these substitutes replac-
ing the endogenous variables where they appear as explanatory  
variables.

 6. Two-Stage Least Squares estimates are consistent but biased. Luckily, 
the expected bias due to 2SLS usually is smaller than the expected 
bias due to OLS. If the fit of the reduced-form equations is poor, then 
2SLS will not work very well.
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 7. 2SLS cannot be applied to an equation that’s not identified. A neces-
sary (but not sufficient) requirement for identification is the order 
condition, which requires that the number of predetermined vari-
ables in the system be greater than or equal to the number of slope 
coefficients in the equation of interest. Sufficiency usually is deter-
mined by the ability of 2SLS to estimate the coefficients.

EXERCISES

(the answers to the even-numbered exercises are in appendix a.)

 1. Write the meaning of each of the following terms without referring 
to the book (or your notes), and compare your definition with the 
version in the text for each.
a. endogenous variables (p. 412)
b. exogenous variables (p. 412)
c. identification (p. 430)
d. impact multipliers (p. 417)
e. instrumental variable (p. 421)
f. order condition (p. 433)
g. predetermined variable (p. 413)
h. reduced-form equations (p. 416)
i. simultaneity bias (p. 418)
j. structural equations (p. 413)
k. Two-Stage Least Squares (2SLS) (p. 422)

 2. Section 14.1 works through Equations 14.2 and 14.3 to show the 
violation of Classical Assumption III by an unexpected increase in e1. 
Show the violation of Classical Assumption III by working through 
the following examples:
a. a decrease in e2 in Equation 14.3
b. an increase in eD in Equation 14.4
c. an increase in e1 in Equation 14.23

 3. The word recursive is used to describe an equation that has an impact 
on a simultaneous system without any feedback from the system to 
the equation. Which of the equations in the following systems are 
simultaneous, and which are recursive? Be sure to specify which vari-
ables are endogenous and which are predetermined:
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a. Y1t = β0 + β1Y2t + β2X1t + β3X2t - 1 + e1t

 Y2t = α0 + α1Y3t + α2Y1t + α3X4t + e2t

 Y3t = Ω0 + Ω1X2t + Ω2X1t - 1 + Ω3X4t - 1 + e3t

b. Zt = β0 + β1Xt + β2Yt + β3Ht + e1t

 Xt = α0 + α1Zt + α2Pt - 1 + e2t

 Ht = Ω0 + Ω1X2t + Ω2Bt + Ω3CSt + Ω4Dt + e3t

c. Y1t = β0 + β1Y2t + β2X1t + β3X2t + e1t

 Y2t = α0 + α1Y3t + α2X5t + e2t

 4. Determine the identification properties of the following equations. 
In particular, be sure to note the number of predetermined variables 
in the system, the number of slope coefficients in the equation, and 
whether the equation is underidentified, overidentified, or exactly 
identified.
a. Equations 14.2–14.3
b. Equations 14.13–14.14
c. part a of Exercise 3 (assume all equations are stochastic)
d. part b of Exercise 3 (assume all equations are stochastic)

 5. As an exercise to gain familiarity with the 2SLS program on your 
computer, take the data provided for the simple Keynesian model in 
Section 14.3, and:
a. Estimate the investment function with OLS.
b. Estimate the reduced form for Y with OLS.
c. Substitute the YN  from your reduced form into the investment func-

tion and run the second stage yourself with OLS.
d. Estimate the investment function with your computer’s 2SLS pro-

gram (if there is one) and compare the results with those obtained 
in part c.

 6. Suppose that a fad for oats (resulting from the announcement of the 
health benefits of oat bran) has made you toy with the idea of becom-
ing a broker in the oat market. Before spending your money, you 
decide to build a simple model of supply and demand (identical to 
those in Sections 14.1 and 14.2) of the market for oats:

QDt = β0 + β1Pt + β2YDt + eDt

QSt  = α0 + α1Pt + α2Wt + eSt

QDt = QSt
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where: QDt = the quantity of oats demanded in time period t
 QSt  = the quantity of oats supplied in time period t
 Pt  = the price of oats in time period t
 Wt  = average oat-farmer wages in time period t
 YDt = disposable income in time period t

a. You notice that no left-hand-side variable appears on the right 
side of either of your stochastic simultaneous equations. Does this 
mean that OLS estimation will encounter no simultaneity bias? 
Why or why not?

b. You expect that when Pt goes up, QDt will fall. Does this mean 
that if you encounter simultaneity bias in the demand equation, 
it will be negative instead of the positive bias we typically associ-
ate with OLS estimation of simultaneous equations? Explain your 
answer.

c. Carefully outline how you would apply 2SLS to this system. How 
many equations (including reduced forms) would you have to esti-
mate? Specify precisely which variables would be in each equation.

d. Given the following hypothetical data,12 estimate OLS and 2SLS 
versions of your oat supply and demand equations.

e. Compare your OLS and 2SLS estimates. How do they compare 
with your prior expectations? Which equation do you prefer? 
Why?

12. These data are from the excellent course materials that Professors Bruce Gensemer and 
James Keeler prepared to supplement the use of this text at Kenyon College.

Year Q P W YD

 1 50 10 100 15
 2 54 12 102 12
 3 65  9 105 11
 4 84 15 107 17
 5 75 14 110 19
 6 85 15 111 30
 7 90 16 111 28
 8 60 14 113 25
 9 40 17 117 23
10 70 19 120 35

datafile = oatS14
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 7. Simultaneous equations make sense in cross-sectional as well as time-
series applications. For example, James Ragan13 examined the effects of 
unemployment insurance (hereafter UI) eligibility standards on unem-
ployment rates and the rate at which workers quit their jobs. Ragan 
used a pooled data set that contained observations from a number of 
different states from four different years (requirements for UI eligibility 
differ by state). His results are as follows (t-scores in parentheses):

QUi = 7.00 + 0.089URi - 0.063UNi - 2.83REi - 0.032MXi

10.102   1-  0.632      1-  1.982  1-  0.732
+ 0.003ILi  - 0.25QMi + g
10.012     1-  0.522  

URi = -  0.54 + 0.44QUi + 0.13UNi + 0.049MXi

11.012     13.292    11.712
+ 0.56ILi  + 0.63QMi + g
12.032       12.052

where: QUi  =  the quit rate (quits per 100 employees) in the ith state
URi  = the unemployment rate in the ith state
UNi  =  union membership as a percentage of nonagricul-

tural employment in the ith state
REi  =  average hourly earnings in the ith state relative to 

the average hourly earnings for the United States
ILi  =  dummy variable equal to 1 if workers in the ith 

state are eligible for UI if they are forced to quit a 
job because of illness, 0 otherwise

QMi =  dummy variable equal to 1 if the ith state maintains 
full UI benefits for the quitter (rather than lowering 
benefits), 0 otherwise

MXi  =  maximum weekly UI benefits relative to average 
hourly earnings in the ith state

a. Hypothesize the expected signs for the coefficients of each of the 
explanatory variables in the system. Use economic theory to justify 
your answers. Which estimated coefficients are different from your 
expectations?

8

8

13. James F. Ragan, Jr., “The Voluntary Leaver Provisions of Unemployment Insurance and Their 
Effect on Quit and Unemployment Rates,” Southern Economic Journal, Vol. 15, No. 1, pp. 135–146.
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b. Ragan felt that these two equations would encounter simultaneity bias 
if they were estimated with OLS. Do you agree? Explain your answer. 
(Hint: Start by deciding which variables are endogenous and why.)

c. The actual equations included a number of variables not docu-
mented earlier, but the only predetermined variable in the system 
that was included in the QU equation but not the UR equation was 
RE. What does this information tell you about the identification 
properties of the QU equation? The UR equation?

d. What are the implications of the lack of significance of the endog-
enous variables where they appear on the right-hand side of the 
equations?

e. What, if any, policy recommendations do these results suggest?

14.6  Appendix: Errors in the Variables

Until now, we have implicitly assumed that our data were measured accu-
rately. That is, although the stochastic error term was defined as including 
measurement error, we never explicitly discussed what the existence of such 
measurement error did to the coefficient estimates. Unfortunately, in the real 
world, errors of measurement are common. Mismeasurement might result 
from the data being based on a sample, as are almost all national aggregate 
statistics, or simply because the data were reported incorrectly. Whatever the 
cause, these errors in the variables are mistakes in the measurement of the 
dependent variable and/or one or more of the independent variables that are 
large enough to have potential impacts on the estimation of the coefficients. 
Such errors in the variables might be better called “measurement errors in the 
data.” We will tackle this subject by first examining errors in the dependent 
variable and then moving on to look at the more serious problem of errors in 
an independent variable. We assume a single equation model. The reason we 
have included this topic here is that errors in explanatory variables give rise to 
biased OLS estimates very similar to simultaneity bias.

Measurement Errors in the Data for the Dependent Variable

Suppose that the true regression model is

 Yi = β0 + β1Xi + ei (14.40)

and further suppose that the dependent variable, Yi, is measured incorrectly, 
so that Yi* is observed instead of Yi, where

 Yi* = Yi + vi (14.41)
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and where vi is an error of measurement that has all the properties of a clas-
sical error term. What does this mismeasurement do to the estimation of 
Equation 14.40?

To see what happens when Yi* = Yi + vi, let’s add vi to both sides of Equa-
tion 14.40, obtaining

 Yi + vi = β0 + β1Xi + ei + vi (14.42)

which is the same as
 Yi* = β0 + β1Xi + ei* (14.43)

where ei* = 1ei + vi2. That is, we estimate Equation 14.43 when in reality 
we want to estimate Equation 14.40. Take another look at Equation 14.43. 
When vi changes, both the dependent variable and the error term ei* move 
together. This is no cause for alarm, however, since the dependent variable 
is always correlated with the error term. Although the extra movement will 
increase the variability of Y and therefore be likely to decrease the overall sta-
tistical fit of the equation, an error of measurement in the dependent variable 
does not cause any bias in the estimates of the βs.

Measurement Errors in the Data for an Independent Variable

This is not the case when the mismeasurement is in the data for one or more 
of the independent variables. Unfortunately, such errors in an independent 
variable cause bias that is quite similar in nature (and in remedy) to simul-
taneity bias. To see this, once again suppose that the true regression model is 
Equation 14.40:
 Yi = β0 + β1Xi + ei (14.40)

But now suppose that the independent variable, Xi, is measured incorrectly, 
so that Xi* is observed instead of Xi, where

 Xi* = Xi + ui (14.44)

where ui is an error of measurement like vi in Equation 14.41. To see what 
this mismeasurement does to the estimation of Equation 14.40, let’s solve 
Equation 14.44 for Xi (obtaining Xi = Xi* - ui) and substitute Xi back into 
Equation 14.40, giving us:

 Yi = β0 + β11Xi* - ui2 + ei (14.45)

which can be rewritten as:

 Yi = β0 + β1Xi* + 1ei - β1ui2 (14.46)

or
 Yi = β0 + β1Xi* + ei** (14.47)
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where ei** = 1ei - β1ui2. In this case, we estimate Equation 14.47 when we 
should be trying to estimate Equation 14.40. Notice what happens to Equa-
tion 14.47 when ui changes, however. When ui changes, the stochastic error 
term ei** and the independent variable Xi* move in opposite directions; they 
are correlated! Such a correlation is a direct violation of Classical Assumption 
III in a way that is remarkably similar to the violation (described in Sec-
tion 14.1) of the same assumption in simultaneous equations. Not surpris-
ingly, this violation causes the same problem, bias, for errors-in-the-variables  
models that it causes for simultaneous equations. That is, because of the 
measurement error in the independent variable, the OLS estimates of the 
coefficients of Equation 14.47 are biased and inconsistent. Interestingly,  
the estimated coefficient β1 is biased toward zero. This is because if β1 is neg-
ative, e** will be positively correlated with X*, creating upward bias, while if 
β1 is positive, e** will be negatively correlated with X*, creating downward 
bias.14

In order to rid an equation of the bias caused by measurement errors in 
the data for one or more of the independent variables, it’s logical to use 
the instrumental variables (IV) approach of Section 14.3. However, the IV 
approach is only rarely applied to errors in the variables problems for two 
reasons. First, while we may suspect that there are measurement errors, it’s 
unusual to be sure that they exist. Second, even if we know that there are 
errors, it’s difficult to find an instrumental variable that is both highly cor-
related with X and uncorrelated with e. In fact, X* often is about as good an 
instrument as we can find, so no action is taken. If the mismeasurement in X 
is known to be large, of course, some remedy is required.

To sum, an error of measurement in one or more of the independent vari-
ables will cause the error term of Equation 14.47 to be correlated with the 
mismeasured independent variable, causing bias that’s similar to simultaneity 
bias.15

14. See William H. Greene, Econometric Analysis (Upper Saddle River, NJ: Prentice Hall, 1999), 
pp. 375–381.

15. If measurement errors exist in the data for the dependent variable and one or more of the 
independent variables, then both decreased overall statistical fit and bias in the estimated coef-
ficients will result. Indeed, a famous econometrician, Zvi Griliches, warned that errors in the 
data coming from their measurement, usually computed from samples or estimates, imply 
that the fancier estimating techniques should be avoided because they are more sensitive to 
data errors than is OLS. See Zvi Griliches, “Data and Econometricians—the Uneasy Alliance,” 
American Economic Review, Vol. 75, No. 2, p. 199. See also, B. D. McCullough and H. D. Vinod, 
“The Numerical Reliability of Econometric Software,” Journal of Economic Literature, Vol. 37,  
pp. 633–665.
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Chapter 15

Forecasting

15.1 What Is Forecasting?

15.2 More Complex Forecasting Problems

15.3 ARIMA Models

15.4 Summary and Exercises

Of the uses of econometrics outlined in Chapter 1, we have discussed fore-
casting the least. Accurate forecasting is vital to successful planning, so it’s 
the primary application of many business and governmental uses of econo-
metrics. For example, manufacturing firms need sales forecasts, banks need 
interest rate forecasts, and governments need unemployment and inflation 
rate forecasts.

To many business and government leaders, the words econometrics and 
forecasting mean the same thing. Such a simplification gives econometrics a  
bad name because many econometricians overestimate their ability to pro-
duce accurate forecasts, resulting in unrealistic claims and unhappy clients. 
Some of their clients would probably applaud the nineteenth century New 
York law (luckily unenforced but apparently also unrepealed) that provides 
that persons “pretending to forecast the future” shall be liable to a $250 fine 
and/or six months in prison.1 Although many econometricians might wish 
that such consultants would call themselves “futurists” or “soothsayers,” 
it’s impossible to ignore the importance of econometrics in forecasting in 
today’s world.

The ways in which the prediction of future events is accomplished are 
quite varied. At one extreme, some forecasters use models with thousands of 

1. Section 899 of the N.Y. State Criminal Code: the law does not apply to “ecclesiastical bodies 
acting in good faith and without personal fees.”
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equations.2 At the other extreme, quite accurate forecasts can be created with 
nothing more than a good imagination and a healthy dose of self-confidence.

Unfortunately, it’s unrealistic to think we can cover even a small portion 
of the topic of forecasting in one short chapter. Indeed, there are a number 
of excellent books and journals on this subject alone.3 Instead, this chapter 
is meant to be a brief introduction to the use of econometrics in forecast-
ing. We will begin by using simple linear equations and then move on to 
investigate a few more complex forecasting situations. The chapter concludes 
with an introduction to a technique, called ARIMA, that calculates forecasts 
entirely from past movements of the dependent variable without the use 
of any independent variables at all. ARIMA is almost universally used as a 
benchmark forecast, so it’s important to understand even though it’s not 
based on economic theory.

15.1  What Is Forecasting?

In general, forecasting is the act of predicting the future; in econometrics, 
forecasting is the estimation of the expected value of a dependent variable 
for observations that are outside the sample data set. In most forecasts, the 
values being predicted are for time periods in the future, but cross-sectional 
predictions of values for countries or people not in the sample are also 
common. To simplify terminology, the words prediction and forecast will be 
used interchangeably in this chapter. (Some authors limit the use of the word 
forecast to out-of-sample prediction for a time series.)

We’ve already encountered an example of a forecasting equation. Think 
back to the weight/height example of Section 1.4 and recall that the pur-
pose of that model was to guess the weight of a male customer based on his 
height. In that example, the first step in building a forecast was to estimate 
Equation 1.19:

 Estimated weight = 103.40 + 6.38 # Height (inches over five feet) (1.19)

That is, we estimated that a customer’s weight on average equaled a base of 
103.40 pounds plus 6.38 pounds for each inch over 5 feet. To actually make 

2. For an interesting comparison of such models, see Ray C. Fair and Robert J. Shiller, “Comparing 
Information in Forecasts from Econometric Models,” American Economic Review, Vol. 80, No. 3, 
pp. 375–389.

3. See, for example, G. Elliott, C. W. J. Granger, and A. G. Timmermann, Handbook of Economic 
Forecasting (Oxford, UK: North-Holland Elsevier, 2006), and N. Carnot, V. Koen, and B. Tissot, 
Economic Forecasting (Basingstoke, UK: Palgrave MacMillan, 2005).
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the prediction, all we had to do was to substitute the height of the individual 
whose weight we were trying to predict into the estimated equation. For a 
male who is 6′1″ tall, for example, we’d calculate:

 Predicted weight = 103.40 + 6.38 # (13 inches over five feet) (15.1)

or

 103.40 + 82.90 = 186.3 pounds

The weight-guessing equation is a specific example of using a single linear 
equation to predict or forecast. Our use of such an equation to make a fore-
cast can be summarized into two steps:

1. Specify and estimate an equation that has as its dependent variable the item 
that we wish to forecast. We obtain a forecasting equation by specifying 
and estimating an equation for the variable we want to predict:

 YN t = βN 0 + βN 1X1t + βN 2X2t  1t = 1, 2, c, T2 (15.2)

 Such specification and estimation have been the topics of the first 14 
chapters of this book. The use of 1t = 1, 2, c, T2 to denote the sam-
ple size is fairly standard for time-series forecasts (t stands for “time”).

2. Obtain values for each of the independent variables for the observations for 
which we want a forecast and substitute them into our forecasting equation. 
To calculate a forecast with Equation 15.2, this would mean finding 
values for period T + 1 for X1 and X2 and substituting them into the 
equation:

 YNT+1 = βN 0 + βN 1X1T+1 + βN 2X2T+1 (15.3)

 What is the meaning of this YNT+1? It is a prediction of the value that Y 
will take in observation T + 1 (outside the sample) based upon our 
values of X1T+1 and X2T+1 and based upon the particular specification 
and estimation that produced Equation 15.2.

To understand these steps more clearly, let’s look at two applications of 
this forecasting approach:

Forecasting Chicken Consumption: Let’s return to the chicken demand model, 
Equation 9.14 on page 288, to see how well that equation forecasts aggregate 
per capita chicken consumption:

 YN t = 27.7 - 0.11PCt + 0.03PBt + 0.23YDt (9.14)
10.032      10.022      10.012

t = - 3.38     + 1.86    +  15.7
 R2 = .9904  N = 29 1annual 1974920022  DW = 0.99
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where: Y  = pounds of chicken consumption per capita
 PC and PB =  the prices of chicken and beef, respectively,  

per pound
 YD  = per capita U.S. disposable income

To make these forecasts as realistic as possible, we held out the last three 
available years from the data set used to estimate Equation 9.14. We’ll thus 
be able to compare the equation’s forecasts with what actually happened. 
To forecast with the model, we first obtain values for the three independent 
variables and then substitute them into Equation 9.14. For 2003, PC = 34.1, 
PB = 374.6, and YD = 280.2, giving us:

YN2003 = 27.7 - 0.11134.12 + 0.031374.62 + 0.231280.22 = 99.63 (15.4)

Continuing on through 2005, we end up with:4

4. The rest of the actual values are PC: 2004 = 24.8, 2005 = 26.8; PB: 2004 = 406.5, 
2005 = 409.1; YD: 2004 = 295.17, 2005 = 306.16. Many software packages, including Stata 
and EViews, have forecasting modules that will allow you to calculate forecasts using equations 
like Equation 15.4 automatically. If you use that module, you’ll note that the forecasts differ 
slightly because we rounded the coefficient estimates.

5. For a summary of seven different methods of measuring forecasting accuracy, see Peter  
Kennedy, A Guide to Econometrics (Malden, MA: Blackwell, 2008), pp. 334–335. 

Year Forecast Actual Percent Error

2003  99.63  95.63 4.2
2004 105.06  98.58 6.6
2005 107.44 100.60 6.8

How does the model do? Well, forecasting accuracy, like beauty, is in the  
eye of the beholder, and there are many ways to answer the question.5  
The simplest method is to take the mean of the percentage errors (in absolute 
value), an approach called, not surprisingly, the mean absolute percentage 
error (MAPE) method. The MAPE for our forecast is 5.9 percent.

The most popular alternative method of evaluating forecast accuracy is the 
root mean square error criterion (RMSE), which is calculated by squaring 
the forecasting error for each time period, averaging these squared amounts, 
and then taking the square root of this average. One advantage of the RMSE 
is that it penalizes large errors because the errors are squared before they’re 
added together. For the chicken demand forecasts, the RMSE of our forecast is 
5.97 pounds (or 6 percent).

M15_STUD2742_07_SE_C15.indd   446 1/16/16   12:36 PM



447 What is Forecasting?

As you can see in Figure 15.1, it really doesn’t matter which method you 
use, because the unconditional forecasts generated by Equation 9.14 track 
quite well with reality. We missed by around 6 percent.

Forecasting Stock Prices: Some students react to the previous example by 
wanting to build a model to forecast stock prices and make a killing on 
the stock market. “If we could predict the price of a stock three years from 
now to within six percent,” they reason, “we’d know which stocks to buy.”  
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Figure 15.1 Forecasting examples

In the chicken consumption example, the equation’s forecast errors averaged around  
6 percent. For the stock price model, even actual values for the independent variables 
and an excellent fit within the sample could not produce an accurate forecast.
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To see how such a forecast might work, let’s look at a simplified model of the 
quarterly price of a particular individual stock, that of the Kellogg Company 
(maker of breakfast cereals and other products):

PKt = -  7.80 + 0.0096DJAt + 2.68KEGt + 16.18DIVt + 4.84BVPSt

10.00242  12.832   122.702  11.472
t = 3.91     0.95    0.71     3.29

R2 = .95  N = 35  DW = 1.88 (15.5)

where: PKt  = the dollar price of Kellogg’s stock in quarter t
 DJAt  = the Dow Jones industrial average in quarter t
 KEGt  =  Kellogg’s earnings growth (percent change in annual 

earnings over the previous five years) that quarter
 DIVt  = Kellogg’s declared dividends (in dollars) that quarter
 BVPSt =  per-share book value of the Kellogg corporation that quarter

The signs of the estimated coefficients all agree with those hypothesized 
before the regression was run, R2 indicates a good overall fit, and the 
Durbin–Watson test indicates that the hypothesis of no positive serial corre-
lation cannot be rejected. The low t-scores for KEG and DIV are caused by  
multicollinearity 1r = .9852, but both variables are left in the equation 
because of their theoretical importance. Note also that most of the variables 
in the equation are nonstationary, surely causing some of the good fit.

To forecast with Equation 15.5, we collected actual values for all of the 
independent variables for the next four quarters and substituted them into 
the right side of the equation, obtaining:

8

Quarter Forecast Actual Percent Error

1 $26.32 $24.38  8.0
2  27.37  22.38 22.3
3  27.19  23.00 18.2
4  27.13  21.88 24.0

How did our forecasting model do? Even though the R2 within the sample 
was .95, even though we used actual values for the independent variables, 
and even though we forecasted only four quarters beyond our sample, the 
model was something like 20 percent off. If we had decided to buy Kellogg’s 
stock based on our forecast, we’d have lost money! Since other attempts to 
forecast stock prices have also encountered difficulties, this doesn’t seem like 
a reasonable use for econometric forecasting.

The poor performance of forecasting in the stock market can be explained 
by an economic theory called the efficient markets hypothesis, which suggests 
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that accurate predictions of stock prices are practically impossible. The efficient  
markets hypothesis theorizes that “security prices fully reflect all available 
information.”6 Thus, forecasting stock prices becomes a game of chance to 
the extent that markets are efficient and current prices reflect the available 
information. Although an investor who has inside information (or who 
perhaps invents a superior forecasting approach) has an opportunity to cre-
ate better than average stock price forecasts, the use of insider information is 
illegal in most equity markets.

15.2  More Complex Forecasting Problems

The forecasts generated in the previous section are quite simple, however, and 
most actual forecasting involves one or more additional questions. For example:

1. Unknown Xs: It’s unrealistic to expect to know the values for the inde-
pendent variables outside the sample. For instance, we’ll almost never 
know what the Dow Jones industrial average will be in the future when 
we are making forecasts of the price of a given stock, and yet we as-
sumed that knowledge when making our Kellogg price forecasts. What 
happens when we don’t know the values of the independent variables 
for the forecast period?

2. Serial Correlation: If there is serial correlation involved, the forecasting 
equation may be estimated with GLS. How should predictions be  
adjusted when forecasting equations are estimated with GLS?

3. Confidence Intervals: All the previous forecasts were single values, but 
such single values are almost never exactly right. Wouldn’t it be more 
helpful if we forecasted an interval within which we were confident 
that the actual value would fall a certain percentage of the time? How 
can we develop these confidence intervals?

4. Simultaneous Equations Models: As you saw in Chapter 14, many eco-
nomic and business equations are part of simultaneous models. How 
can we use an independent variable to forecast a dependent variable 
when we know that a change in the value of the dependent variable will 
change, in turn, the value of the independent variable that we used to 
make the forecast?

Even a few questions like these should be enough to convince you that 
forecasting is more complex than is implied by Section 15.1.

6. http://www.morningstar.com/InvGlossary, 10/20/15. For more, see Burton Malkiel, A Random 
Walk down Wall Street (London: W. W. Norton, 2007).

M15_STUD2742_07_SE_C15.indd   449 1/16/16   12:36 PM

http://www.morningstar.com/InvGlossary


450 ChAPtER 15 Forecasting

Conditional Forecasting (Unknown X Values  
for the Forecast Period)

A forecast in which all values of the independent variables are known with 
certainty can be called an unconditional forecast, but, as mentioned previ-
ously, the situations in which one can make such unconditional forecasts are 
rare. More likely, we will have to make a conditional forecast, for which 
actual values of one or more of the independent variables are not known. We 
are forced to obtain forecasts for the independent variables before we can use 
our equation to forecast the dependent variable, which makes our forecast of 
Y conditional on our forecast of the Xs.

One key to an accurate conditional forecast is accurate forecasting of 
the independent variables. If the forecasts of the independent variables are 
unbiased, then using a conditional forecast will not introduce bias into the 
forecast of the dependent variable in a linear model. Anything but a perfect 
forecast of the independent variables will contain some amount of forecast 
error, however, and so the expected error variance associated with conditional 
forecasting will be larger than that associated with unconditional forecasting. 
Thus, one should try to find unbiased, minimum variance forecasts of the 
independent variables when using conditional forecasting.

To get good forecasts of the independent variables, take the forecastability 
of potential independent variables into consideration when making specifi-
cation choices. For instance, when deciding which of two redundant variables 
should be included in an equation to be used for forecasting, you should 
choose the one that is easier to forecast accurately. When you can, you should 
choose an independent variable that is regularly forecasted by someone else 
(an econometric forecasting firm, for example) so that you don’t have to 
forecast X yourself.

The careful selection of independent variables can sometimes help you 
avoid the need for conditional forecasting in the first place. This opportunity 
can arise when the dependent variable can be expressed as a function of lead-
ing indicators. A leading indicator is an independent variable whose move-
ments anticipate movements in the dependent variable. The best known 
leading indicator, the Index of Leading Economic Indicators, is produced 
each month.

For instance, the impact of interest rates on investment typically is not 
felt until two or three quarters after interest rates have changed. To see this, 
let’s look at the investment function of the small macroeconomic model of 
Section 14.3:

 It = β0 + β1Yt + β2rt - 1 + et (15.6)
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where I equals gross investment, Y equals GDP, and r equals the interest rate. 
In this equation, actual values of r can be used to help forecast IT + 1. Note, 
however, that to predict IT + 2, we need to forecast rT + 1. Thus, leading indica-
tors like r help us avoid conditional forecasting for only a time period or two. 
For long-range predictions, a conditional forecast is usually necessary.

Forecasting with Serially Correlated Error terms

Recall from Chapter 9 that pure first-order serial correlation implies that the 
current observation of the error term et is affected by the previous error term 
and an autocorrelation coefficient, ρ:

 et = ρet - 1 + ut

where ut is a non–serially correlated error term. Also recall that when serial 
correlation is severe, one remedy is to run Generalized Least Squares (GLS) as 
noted in Equation 9.21:

 Yt - ρYt - 1 = β011 - ρ2 + β11X1t - ρX1t - 12 + ut (9.21)

Unfortunately, whenever the use of GLS is required to rid an equation of 
pure first-order serial correlation, the procedures used to forecast with that 
equation become a bit more complex. To see why this is necessary, note that 
if Equation 9.21 is estimated, the dependent variable will be:

 Y*t = Yt - ρNYt - 1 (15.7)

Thus, if a GLS equation is used for forecasting, it will produce predictions of 
Y*T + 1 rather than of YT + 1. Such predictions thus will be of the wrong variable.

If forecasts are to be made with a GLS equation, Equation 9.21 should first 
be solved for Yt before forecasting is attempted:

 Yt = ρYt - 1 + β011 - ρ2 + β11Xt - ρXt - 12 + ut (15.8)

We now can forecast with Equation 15.8 as we would with any other equation. 
If we substitute T + 1 for t (to forecast time period T + 1) and insert estimates 
for the coefficients, ρs and Xs into the right side of the equation, we obtain:

 YNT + 1 = ρNYT + βN 011 - ρN 2 + βN 11XN T + 1 - ρNXT2 (15.9)

Equation 15.9 thus should be used for forecasting when an equation has 
been estimated with GLS to correct for serial correlation.7

7. If ρN  is less than 0.3, many researchers prefer to use the OLS forecast plus ρN  times the lagged 
residual as their forecast instead of the GLS forecast from Equation 15.9.
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We now turn to an example of such forecasting with serially correlated 
error terms. In particular, recall from Chapter 9 that the Durbin–Watson  
statistic of the chicken demand equation used as an example in Section 15.1  
was 0.99, indicating significant positive first-order serial correlation. As a 
result, we estimated the chicken demand equation with GLS, obtaining 
Equation 9.25:

 YN t = 28.5 - 0.08PCt + 0.016PBt + 0.24YDt (9.25)
10.042  10.0212   10.022

t =    -2.13   + 0.74   + 13.12
R2 = .963  N = 29  ρN = 0.56

Since Equation 9.25 was estimated with GLS, Y is actually Y*t , which equals 
Yt - ρNYt - 1, PCt is actually PC*t , which equals PCt - ρNPCt - 1, and so on. Thus, 
to forecast with Equation 9.25, we have to convert it to the form of Equation 
15.9, or:

 YNT + 1 = 0.56YT + 28.511 - 0.562 - 0.081PC T + 1 - 0.56PC T2 (15.10)
+ 0.0161PBT + 1 - 0.56PBT2 + 0.241YDT + 1 - 0.56YDT2

Substituting the actual values for the independent variables into Equation 15.10, 
we obtain:

Year Forecast Actual Percent Error

2003  97.57  95.63 2.0
2004 101.02  98.58 2.5
2005 102.38 100.60 1.8

The MAPE of the GLS forecasts is 2.1 percent, far better than that of the 
OLS forecasts. In general, GLS usually will provide superior forecasting per-
formance to OLS in the presence of serial correlation.

Forecasting Confidence Intervals

Until now, the emphasis in this text has been on obtaining point (or single- 
value) estimates. This has been true whether we have been estimating 
coefficient values or estimating forecasts. Recall, though, that a point esti-
mate is only one of a whole range of such estimates that could have been 
obtained from different samples (for coefficient estimates) or different 
independent variable values or coefficients (for forecasts). The usefulness of 
such point estimates is improved if we can also generate some idea of the 
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variability of our forecasts. The measure of variability typically used is the 
confidence interval, which was defined in Section 5.5 as the range of values 
that contains the true value of the item being estimated a specified percent-
age of the time. This is the easiest way to warn forecast users that a sampling 
distribution exists.

Suppose you are trying to decide how many hot dogs to order for your 
city’s Fourth of July fireworks show and the best point forecast is that you’ll 
sell 24,000 hot dogs. How many hot dogs should you order? If you order 
24,000, you’re likely to run out about half the time! A point forecast is usu-
ally an estimate of the mean of the distribution of possible sales figures; 
you will sell more than 24,000 about as frequently as you will sell less than 
24,000. It would be easier to decide how many dogs to order if you also had 
a confidence interval that told you the range within which hot dog sales 
would fall 95 percent of the time. The usefulness of the 24,000 hot dog fore-
cast changes dramatically depending on the confidence interval; an interval 
of 22,000 to 26,000 would pin down the likely sales, but an interval of 4,000 
to 44,000 would leave you virtually in the dark about what to do.

The decision as to how many hot dogs to order would also depend on 
the costs of ordering the wrong number. These costs may not be the same 
per hot dog for overestimates as they are for underestimates. For example, if 
you don’t order enough, then you lose the entire retail price of the hot dog 
minus the wholesale price of the dog (and bun) because your other costs, 
like hiring employees and building hot dog stands, are essentially fixed. On 
the other hand, if you order too many, you lose the wholesale cost of the 
dog and bun minus whatever salvage price you might be able to get for 
day-old buns, etc. As a result, the right number to order would depend on 
your profit margin and the importance of nonreturnable inputs in your total 
cost picture.

The same techniques we use to test hypotheses can also be adapted to 
create confidence intervals. Given a point forecast, YNT + 1, all we need to gener-
ate a confidence interval around that forecast are tc, the critical t-value (for 
the desired level of confidence), and SF, the estimated standard error of the 
forecast:

 Confidence interval = YNT + 1 ± SFtc (15.11)

or, equivalently,

 YNT + 1 - SFtc … YT + 1 … YNT + 1 + SFtc (15.12)

The critical t-value, tc, can be found in Statistical Table B-1 (for a two-tailed 
test with T - K - 1 degrees of freedom). The standard error of the forecast, SF, 
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for an equation with just one independent variable, equals the square root of 
the forecast error variance:

 SF = Bs2 c1 + 1>T + 1XN T + 1 - X22n aT

t = 1
1Xt - X22 d  (15.13)

where s2  = the estimated variance of the error term
 T  = the number of observations in the sample
 XN T + 1 = the forecasted value of the single independent variable
 X  = the arithmetic mean of the observed Xs in the sample

Note that Equation 15.13 implies that the forecast error variance decreases 
the larger the sample is, the more X varies within the sample, and the closer 
XN  is to its within-sample mean. An important implication is that the farther 
the X used to forecast Y is from the within-sample mean of the Xs, the  
wider the confidence interval around the YN  is going to be. This can be seen in 
Figure 15.2, in which the confidence interval actually gets wider as XN T + 1 is far-
ther from X. Since forecasting outside the sample range is common, research-
ers should be aware of this phenomenon. Also note that Equation 15.13 
is for unconditional forecasting. If there is any forecast error in XN T + 1, then 
the confidence interval is larger and more complicated to calculate. Finally, 
Equation 15.13 should not be used in conjunction with HC standard errors.

As mentioned, Equation 15.13 assumes that there is only one independent 
variable. The equation to be used with more than one variable is similar but 
more complicated. Equation 15.13 is valid whether Yt is in the sample period 
or outside the sample period, but it applies only to point forecasts of individ-
ual Yts. If a confidence interval for the expected value of Y, E1Yt2, is desired, 
then the correct equation to use is:

 S*F = 3s231>T + 1XN T + 1 - X22>a 1Xt - X224 (15.14)

Forecasting with Simultaneous Equations Systems

As you learned in Chapter 14, most economic and business models are actu-
ally simultaneous in nature; for example, the investment equation used in 
Section 15.2 was estimated with 2SLS as a part of our simultaneous macro-
model in Chapter 14. Since GDP is one of the independent variables in the 
investment equation, when investment rises, so will GDP, causing a feedback 
effect that is not captured if we just forecast with a single equation. How 
should forecasting be done in the context of a simultaneous model? There 
are two approaches to answering this question, depending on whether there 
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are lagged endogenous variables on the right side of any of the equations in 
the system.

If there are no lagged endogenous variables in the system, then the 
reduced-form equation for the particular endogenous variable can be used 
for forecasting because it represents the simultaneous solution of the  
system for the endogenous variable being forecasted. Since the reduced-form 
equation is the endogenous variable expressed entirely in terms of the prede-
termined variables in the system, it allows the forecasting of the endogenous 
variable without any feedback or simultaneity impacts. This result explains 
why some researchers forecast potentially simultaneous dependent variables 
with single equations that appear to combine supply-side and demand-side 
predetermined variables; they are actually using modified reduced-form 
equations to make their forecasts.

If there are lagged endogenous variables in the system, then the approach 
must be altered to take into account the dynamic interaction caused by the 
lagged endogenous variables. For simple models, this sometimes can be done 
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Figure 15.2 a confidence interval for yNt + 1

A 95 percent confidence interval for YNT + 1 includes the range of values within which the 
actual YT + 1 will fall 95 percent of the time. Note that the confidence interval widens as 
XT + 1 differs more from its within-sample mean, X.
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by substituting for the lagged endogenous variables where they appear in the 
reduced-form equations. If such a manipulation is difficult, however, then a 
technique called simulation analysis can be used. Simulation involves fore-
casting for the first postsample period by using the reduced-form equations 
to forecast all endogenous variables where they appear in the reduced-form 
equations. The forecast for the second postsample period, however, uses the 
endogenous variable forecasts from the last period as lagged values for any 
endogenous variables that have one-period lags while continuing to use 
sample values for endogenous variables that have lags of two or more peri-
ods. This process continues until all forecasting is done with reduced-form 
equations that use as data for lagged endogenous variables the forecasts from 
previous time periods. Although such dynamic analyses are beyond the scope 
of this chapter, they’re important to remember when considering forecasting 
with a simultaneous system.8

15.3  ARIMA Models

The forecasting techniques of the previous two sections are applications of 
familiar regression models. We use linear regression equations to forecast the 
dependent variable by plugging likely values of the independent variables 
into the estimated equations and calculating a predicted value of Y; this bases 
the prediction of the dependent variable on the independent variables (and 
on their estimated coefficients).

ARIMA (the name will be explained shortly) is an increasingly popular 
forecasting technique that completely ignores independent variables in 
making forecasts. ARIMA is a highly refined curve-fitting device that uses 
current and past values of the dependent variable to produce often accurate 
short-term forecasts of that variable. While a traditional econometric model 
attempts to describe and estimate a variable’s underlying structure (like a 
consumption function or a money demand function), an ARIMA model 
takes these structures as “black boxes” and simply analyzes the correlation 
pattern of a variable’s movements over time in order to forecast it. Examples  
of such ARIMA forecasts are stock market price predictions created by  
brokerage analysts based entirely on past patterns of the movement of the 
stock price.

8. For more on this topic, see Chapters 12–14 in Robert S. Pindyck and Daniel L. Rubinfeld, 
Econometric Models and Economic Forecasts (New York: McGraw-Hill, 1998).
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Any forecasting technique that ignores independent variables also essen-
tially ignores all potential underlying theories except those that hypothesize 
repeating patterns in the variable under study. Since we have emphasized 
the advantages of developing the theoretical underpinnings of particular 
equations before estimating them, why would we advocate using ARIMA? 
The answer is that the use of ARIMA is appropriate when little or nothing is 
known about the dependent variable being forecasted, when the indepen-
dent variables known to be important really cannot be forecasted effectively, 
or when all that is needed is a one- or two-period forecast. In these cases, 
ARIMA has the potential to provide short-term forecasts that are superior 
to more theoretically satisfying regression models. ARIMA models are par-
ticularly well suited to forecast a system that has not undergone a profound 
structural change within the sample or forecasting period. In such a situation, 
a naïve ARIMA model often can beat a moderately sophisticated economet-
ric model in terms of forecasting outside the sample and has come close to 
the performance of state-of-the-art macro models in terms of forecasting key 
macro variables.9 In addition, ARIMA can sometimes produce better expla-
nations of the residuals from an existing regression equation (in particular, 
one with known omitted variables or other problems). This introduction to 
ARIMA is intentionally brief; a more complete coverage of the topic can be 
obtained from a number of other sources.10

The ARIMA approach combines two different specifications (called processes) 
into one equation. The first specification is an autoregressive process (hence the 
AR in ARIMA), and the second specification is a moving average (hence the MA).

An autoregressive process expresses a dependent variable Yt as a func-
tion of past values of the dependent variable. This is similar to the serial 
correlation error term function of Chapter 9 and to the dynamic model of 
Chapter 12. If we have p different lagged values of Y, the equation is often 
referred to as a “pth-order” autoregressive process.

A moving-average process expresses a dependent variable Yt as a func-
tion of past values of the error term. Such a function is a moving average of 
past error term observations that can be added to the mean of Y to obtain a 
moving average of past values of Y. If we used q past values of e, we’d call it a 
qth-order moving-average process.

9. Charles R. Nelson, “The Ex Ante Prediction Performance of the St. Louis and FRB-MIT-PENN 
Econometric Models and Some Results of Composite Predictors,” Journal of Money, Credit and 
Banking, Vol. 7, No. 1, pp. 1–32.

10. See, for example, Chapters 15–19 in Robert S. Pindyck and Daniel L. Rubinfeld, Econometric 
Models and Economic Forecasts (New York: McGraw-Hill, 1998).
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To create an ARIMA model, we begin with an econometric equation with 
no independent variables 1Yt = β0 + et2 and add to it both the autoregres-
sive and moving-average processes:

 autoregressive process

 Yt = β0 + θ1Yt - 1 + θ2Yt - 2 + g+  θpYt - p + et (15.15)
+ ϕ1et - 1 + ϕ2et - 2 + g+  ϕqet - q

 moving-average process

where the θs and the ϕs are the coefficients of the autoregressive and moving-
average processes, respectively, and p and q are the number of past values 
used of Y and e, respectively.

Before this equation can be applied to a time series, however, it must be 
ensured that the time series is stationary, as defined in Section 12.5. If a series 
is nonstationary, then steps must be taken to convert the series into a station-
ary one before the ARIMA technique can be applied. For example, a nonsta-
tionary series can often be converted into a stationary one by taking the first 
difference of the variable in question:

 Y*t = ∆Yt = Yt - Yt - 1 (15.16)

If the first differences do not produce a stationary series, then first differences 
of this first-differenced series can be taken.11 The resulting series is a second-
difference transformation:

 Y t** = ∆Y*t = Y*t - Y*t - 1 = ∆Yt - ∆Yt - 1 (15.17)

In general, successive differences are taken until the series is stationary. The 
number of differences required to be taken before a series becomes stationary is 
denoted with the letter d. For example, suppose that GDP is increasing by a fairly 
consistent amount each year. A plot of GDP with respect to time would depict 
a nonstationary series, but a plot of the first differences of GDP might depict a 
fairly stationary series. In such a case, d would be equal to 1 because one first 
difference was necessary to convert the nonstationary series into a stationary one.

The dependent variable in Equation 15.15 must be stationary, so the Y in that 
equation may be Y, Y*, or even Y**, depending on the variable in question.12 

11. For variables that are growing in percentage terms rather than absolute amounts, it often 
makes sense to take logs before taking first differences.

12. If Y in Equation 15.15 is Y*, then β0 represents the coefficient of the linear trend in the 
original series, and if Y is Y**, then β0 represents the coefficient of the second-difference trend 
in the original series. In such cases—for example, Equation 15.19—it’s not always necessary 
that β0 be in the model.

gg
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If a forecast of Y* or Y** is made, then it must be converted back into Y terms 
before its use; for example, if  d = 1, then

 YNT + 1 = YT + YN *T + 1 (15.18)

This conversion process is similar to integration in mathematics, so the “I” 
in ARIMA stands for “integrated.” ARIMA thus stands for AutoRegressive 
Integrated Moving Average. (If the original series is stationary and d therefore 
equals 0, this is sometimes shortened to ARMA.)

As a shorthand, an ARIMA model with p, d, and q specified is usually 
denoted as ARIMA (p,d,q) with the specific integers chosen inserted for p, d, 
and q, as in ARIMA (2,1,1). ARIMA (2,1,1) would indicate a model with two 
autoregressive terms, one first difference, and one moving-average term:

 ARIMA12,1,12: Y*t = β0 + θ1Y*t - 1 + θ2Y*t - 2 + et + ϕ1et - 1 (15.19)

where Y*t = Yt - Yt - 1.
It’s remarkable how very small values of p and q can model extremely rich 

dynamics.

15.4  Summary

 1. Forecasting is the estimation of the expected value of a dependent 
variable for observations that are not part of the sample data set. Fore-
casts are generated (via regressions) by estimating an equation for the 
dependent variable to be forecasted, and substituting values for each 
of the independent variables (for the observations to be forecasted) 
into the equation.

 2. An excellent fit within the sample period for a forecasting equation 
does not guarantee that the equation will forecast well outside the 
sample period.

 3. A forecast in which all the values of the independent variables are 
known with certainty is called an unconditional forecast, but if one 
or more of the independent variables have to be forecasted, it is a 
conditional forecast. Conditional forecasting introduces no bias 
into the prediction of Y (as long as the X forecasts are unbiased), 
but increased forecast error variance is unavoidable with conditional 
forecasting.
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 4. If the coefficients of an equation have been estimated with GLS (to 
correct for pure first-order serial correlation), then the forecasting 
equation is:

YNT + 1 = ρNYT + βN 011 - ρN 2 + βN 11XN T + 1 - ρNXT2
  where ρ is the autocorrelation coefficient rho.

 5. Forecasts are often more useful if they are accompanied by a confi-
dence interval, which is a range within which the actual value of the 
dependent variable should fall a given percentage of the time (the 
level of confidence). This is:

YNT + 1 ± SFtc

  where SF is the estimated standard error of the forecast and tc is the 
critical two-tailed t-value for the desired level of confidence.

 6. ARIMA is a highly refined curve-fitting technique that uses current 
and past values of the dependent variable (and only the dependent 
variable) to produce often accurate short-term forecasts of that vari-
able. The first step in using ARIMA is to make the dependent variable 
series stationary by taking d first differences until the resulting trans-
formed variable has a constant mean and variance. The ARIMA(p,d,q) 
approach then combines an autoregressive process (with θ1Yt - 1 terms) 
of order p with a moving-average process (with ϕ1et - 1 terms) of order 
q to explain the dth differenced dependent variable.

EXERCISES

(the answers to the even-numbered exercises are in appendix a.)

 1. Write the meaning of each of the following terms without referring 
to the book (or your notes), and compare your definition with the 
version in the text for each.
a. ARIMA (p. 456)
b. autoregressive process (p. 457)
c. conditional forecast (p. 450)
d. forecasting (p. 444)
e. leading indicator (p. 450)
f. MAPE (p. 446)
g. moving-average process (p. 457)
h. RMSE (p. 446)
i. unconditional forecast (p. 450)
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 2. Calculate the following unconditional forecasts:
a. the median price (PR) of a new single-family house in 2014, given 

the fact that the U.S. GDP in 2014 was roughly $17,400 billion and 
the following equation:

PRt = 12,928 + 17.08GDPt

b. the expected level of check volume at three possible future sites for 
new Woody’s restaurants, given Equation 3.4 and the following 
data. If you could only build one new eatery, in which of these 
three sites would you build (all else equal)?

Site Competition Population Income

Richburgh 6  58,000 38,000
Nowheresville 1  14,000 27,000
Slick City 9 190,000 15,000

 3. To understand the difficulty of conditional forecasting, use Equa-
tion 1.19 to forecast the weights of the next three males you see, using 
your estimates of their heights. (Ask for actual values after finishing.)

 4. Some of the most interesting applications of econometric forecasting 
are in the political arena. Examples of regression analysis in politics 
range from part-time marketing consultants who help local candi-
dates decide how best to use their advertising dollars to a fairly rich 
professional literature on U.S. presidential elections.13

   In 2008, Haynes and Stone14 added to this literature with an article 
that specified (among others) the following equation:

VOTEi = β0 + β1Pi + β21DUR*P2i + β31DOW*P2i + β41GROWTH*P2i

+ β51INFLATION*P2i + β61ARMY*P2i + β71SPEND*P2i + ei

  (15.20)

13. See, particularly, the work of Ray Fair: “The Effect of Economic Events on Votes for President,” 
Review of Economics and Statistics, Vol. 60, pp. 159–173, and “Econometrics and Presidential 
Elections,” Journal of Economic Perspectives, Vol. 10, pp. 89–102.

14. Stephen Haynes and Joe Stone, “A Disaggregate Approach to Economic Models of Voting 
in U.S. Presidential Elections: Forecasts of the 2008 Election,” Economics Bulletin, Vol. 4, No. 28 
(2008), pp. 1–11.
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where: VOTEi  =  the Democratic share of the popular two-
party presidential vote

 Pi  =  1 if the incumbent is a Democrat and -1 
if the incumbent is a Republican

 DURi  =  the number of consecutive terms the 
incumbent party has held the presidency

 DOWi  =  the annual rate of change in the Dow 
Jones Industrial Average between January 
and October of the election year

 GROWTHi  =  the annual percent growth of real per cap-
ita GDP in the second and third quarters 
of the election year

 INFLATIONi =  the absolute value of the annualized infla-
tion rate in the two-year period prior to 
the election

 ARMYi  =  the annualized percent change of the pro-
portion of the population in the armed 
forces in the two-year period prior to the 
election

 SPENDi  =  the annualized percentage change in 
the proportion of government spending 
devoted to national security in the two-
year period prior to the election

a. What kind of variable is P? Is it a dummy variable? If not, what is it?
b. The authors specified their equation as a series of interaction vari-

ables between P and the other variables of interest. Look at the 
equation carefully. Why do you think that these interaction vari-
ables were required?

c. Using the data15 in Table 15.1 (datafile = ELECTION15) estimate 
Equation 15.20 for the years 1916–1996.

d. Create and test appropriate hypotheses on the coefficients of your 
estimated equation at the 5-percent level. Do any of the coefficients 
have unexpected signs? Which ones?

e. Create unconditional forecasts for the years 2000 and 2004 and 
compare your forecasts with the actual figures in Table 15.1. How 
did you do?

15. These data are from Haynes and Stone, ibid., p. 10, but similar tables are available from a 
variety of sources, including: fairmodel.econ.yale.edu/vote2008/pres.txt.
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f. The authors wrote their article before the 2008 election. Create an 
unconditional forecast for that election using the data in Table 15.1. 
Who did the model predict would win? How did the model do?

Table 15.1 data for the presidential election exercise

YEAR VOtE P DUR DOW GROWth INFLAtION ARMY SPEND

1916 51.682 1 1 12.00 6.38 7.73 2.33 4.04

1920 36.119 1 2 -23.50 -6.14 8.01 -107.60 11.24

1924 41.756 -1 1 6.00 -2.16 0.62 -3.38 -23.05

1928 41.240 -1 2 31.30 -0.63 0.81 -0.48 10.15

1932 59.140 -1 3 -25.00 -13.98 10.01 -2.97 -37.56

1936 62.458 1 1 24.90 13.41 1.36 7.60 28.86

1940 54.999 1 2 -12.90 6.97 0.53 16.79 8.33

1944 53.774 1 3 9.00 6.88 1.98 53.10 17.16

1948 52.370 1 4 6.30 3.77 10.39 -38.82 -86.56

1952 44.595 1 5 -1.80 -0.34 2.66 43.89 71.59

1956 42.240 -1 1 2.40 -0.69 3.59 -9.93 -14.34

1960 50.090 -1 2 -13.90 -1.92 2.16 -4.10 -8.44

1964 61.344 1 1 15.80 2.38 1.73 -3.68 -5.88

1968 49.596 1 2 10.00 4.00 3.94 0.06 6.28

1972 38.210 -1 1 5.40 5.05 5.17 -11.91 -19.71

1976 51.050 -1 2 3.00 0.78 7.64 -2.56 -20.15

1980 44.697 1 1 12.40 -5.69 8.99 -1.37 -0.44

1984 40.830 -1 1 -6.90 2.69 3.68 -0.22 7.38

1988 46.070 -1 2 12.60 2.43 3.30 -1.58 -1.09

1992 53.455 -1 3 -0.90 1.34 3.15 -7.33 -10.11

1996 54.736 1 1 24.54 3.08 1.95 -5.62 -12.67

2000 50.265 1 2 -5.02 2.95 1.80 -2.00 1.83

2004 48.586 -1 1 -8.01 3.49 2.50 -0.51 14.91

2008 ? -1 2 30.70 2.10 3.70 -0.87 0.41

source: stephen haynes and Joe stone, “a disaggregate approach to economic Models  
of Voting in u.s. presidential elections: Forecasts of the 2008 election,” Economics Bulletin, 
Vol. 4, no. 8 (2008), p. 10.

datafile = election15
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 5. Suppose you have been given two different ARIMA (1,0,0) fitted time-
series models of the variable Yt:

Model A: Yt = 15.0 + 0.5Yt - 1 + et

Model T: Yt = 45.0 - 0.5Yt - 1 + et

where et is a normally distributed error term with mean 0 and stan-
dard deviation equal to 1.
a. The final observation in the sample (time period 06) is  Y06 = 31. 

Determine forecasts for periods 07, 08, and 09 for both models.
b. Suppose you now find out that the actual Y07 was equal to 33. 

Revise your forecasts for periods 08 and 09 to take the new infor-
mation into account.

c. Based on the fitted time series and your two forecasts, which model 
(model A or model T) do you expect to exhibit smoother behavior? 
Explain your reasoning.

M15_STUD2742_07_SE_C15.indd   464 1/16/16   12:36 PM



465

Experimental  
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16.1 Experimental Methods in Economics

16.2 Panel Data

16.3 Fixed versus Random Effects

16.4 Summary and Exercises

Chapter 16

This chapter is a brief introduction to experimental data and panel data. The 
first section is devoted to experimental methods in economics.1 The experi-
mental approach is important because it offers a possible way for regression 
analysis to provide evidence of causality. If one group is exposed to a par-
ticular policy (like an increased tax or a decreased price) and a control group 
isn’t, then any meaningful difference between the behavior of the two groups 
is evidence that the policy caused that difference. Such experiments already 
are standard procedure in some areas of research, for example the testing 
of the safety and effectiveness of new medicines by the U.S. Food and Drug 
Administration.

The remainder of the chapter focuses on panel data. As mentioned in 
Chapter 11, panel data are formed when cross-sectional and time-series data 
sets are combined to create a single data set. Although some researchers use 
panel data to increase their sample size, the main reason for working with 
panel data is to provide an insight into analytical questions that can’t be 
answered by using time-series or cross-sectional data alone.

1. We use this awkward phrase to avoid confusion with the already existing field of experimen-
tal economics. Experimental economists run actual laboratory experiments on human subjects. 
By offering real-world incentives (usually money), experimental economists can reproduce 
supply and demand equilibria, test economic theories, and study market phenomena that oth-
erwise are difficult to observe. For accessible examples and innovative applications of random 
experiments to economic questions, see Uri Gneezy and John List, The Why Axis (London: 
 Random House Books, 2014).
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16.1  Experimental Methods in Economics

Any good statistician knows that correlation doesn’t prove causality, but 
understanding causality is important if we’re going to assess the effectiveness 
of economic policies, the profitability of business practices, or the value of 
not-for-profit programs. To try to solve this problem, some econometricians 
have imported experimental techniques from medicine and psychology. Can 
experimental methods provide evidence of causality in economics?

Random assignment Experiments

When medical researchers want to examine the effect of a new drug, they 
use an experimental design called random assignment. You’re probably 
familiar with random assignment experiments because medical research 
studies are in the news virtually every week. The experiment generally pro-
ceeds as follows. First, a sample of subjects is chosen or recruited, and then 
they are randomly assigned to one of two groups—the control group or the 
treatment group. The treatment group receives the medicine that is being 
tested, and the control group receives a harmless, ineffective placebo. 
Similar experiments are possible in economics. To test whether a job train-
ing program has an impact on earnings, for example, the treatment group 
would receive the training and the control group wouldn’t. If the treatment 
and control groups are chosen randomly, then such experiments are called 
random assignment experiments.

It’s not hard to see why some researchers refer to random assignment as 
the gold standard in terms of establishing causality. Randomization helps 
ensure that any difference in the outcome between the control and the 
treatment group is causal and that the difference in outcome was caused 
by the treatment and not merely correlated with the treatment. The sub-
jects’ random assignment to the groups should be enough to guarantee 
that the only systematic reason for observed differences between the treat-
ment and control groups is the treatment. Any other differences are the 
chance consequence of the random assignment. For example, the random 
assignment may result in more males in one group than in the other, or 
one of the subjects may die for a reason that is unrelated to the disease 
or treatment being studied. With reasonably sized samples, such random 
fluctuations will most likely balance out so that, on average, the two 
groups are similar except that one group receives the treatment and the 
other doesn’t. The larger the sample, the more likely it is that random 
fluctuations will balance out.
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Factors other than the treatment that may affect the outcome are put in the 
error term, and the resulting equation is:

 OUTCOMEi = β0 + β1TREATMENTi + ei (16.1)

where:  OUTCOMEi    

=  a measure of the desired outcome in the ith  
individual

  TREATMENTi =  a dummy variable equal to 1 for individuals in 
the treatment group and 0 for individuals in the 
control group

β1 is often called the differences estimator because it measures the difference 
between the average outcome for the treatment group and the average outcome 
for the control group. If the estimated value of β1 is substantially different from 
zero in the direction predicted by theory, then we have evidence that the treat-
ment did indeed cause the outcome to move in the expected direction.

However, random assignment can’t always control for all other possible 
factors, and we may be able to identify some of these factors and add them to 
our equation. In our job training example, suppose that random assignment, 
by chance, results in one group having more males and being slightly older 
than the other group. If gender and age matter in determining earnings, then 
we can control for the different composition of the two groups by including 
gender and age in our regression equation:

 OUTCOMEi = β0 + β1TREATMENTi + β2X1i + β3X2i + ei (16.2)

where X1 is a dummy variable for the individual’s gender and X2 is the indi-
vidual’s age.

Our recommendation is to use Equation 16.2 rather than Equation 16.1 if 
important additional factors are observable. After all, if the estimates of β1 in 
the two equations are quite similar, then the choice doesn’t matter. However, 
if the estimates differ, then we have evidence that random assignment did 
not control for other factors by evenly distributing these factors between the 
treatment and control groups. If that’s the case, then including these other 
factors (as in Equation 16.2) is likely to provide a better estimate of the dif-
ference caused by the treatment.

Unfortunately, random assignment experiments are not common in 
economics because they’re subject to problems that typically do not plague 
medical experiments. For example:

1. Non-Random Samples. Many subjects in economic experiments are vol-
unteers, and samples of volunteers often aren’t random. Not everyone is 
willing to volunteer, some potential subjects are willing to participate if 
they’re in the treatment group but not if they’re in the control group, and 
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some volunteers change their mind and drop out during the experiment. 
Unsurprisingly, the characteristics of a volunteer sample are not neces-
sarily representative of the population. Suppose, for example, that our 
research question is whether financial incentives for student achievement 
actually increase test scores. The professors and students who are willing 
to participate in this experiment may not be representative of the overall 
population and, as a result, our conclusions may not apply to everyone.

2. Unobservable Heterogeneity. In Equation 16.2, we added observable fac-
tors to the equation to avoid omitted variable bias, but not all omitted 
factors in economics are observable. This “unobservable omitted vari-
able” problem is called unobserved heterogeneity. Of course, if we can 
truly randomize the treatment, then this problem goes away because 
treatment is uncorrelated with the unobservables.2

3. The Hawthorne Effect. Human subjects typically know that they’re being 
studied, and they usually know whether they’re in the treatment group 
or the control group. The fact that human subjects know that they’re 
being observed sometimes can change their behavior, and this change 
in behavior could clearly change the results of the experiment. For ex-
ample, workers at the Western Electric Company’s Hawthorne Works 
plant were once put in a special room where researchers could study 
their productivity under controlled conditions. In one study, the lights 
were dimmed and the workers seemed to work harder, mainly because 
they knew that the researchers were watching to see if they worked 
harder! The fact that people behave differently when they know they 
are being watched is now called the Hawthorne Effect.

4. Impossible Experiments. It’s often impossible (or unethical) to run a ran-
dom assignment experiment in economics. Think about how difficult it 
would be to use a random assignment experiment to study the impact 
of marriage on earnings. On average, married men earn more than sin-
gle men even after accounting for observable differences in factors such 
as education and work experience. Unfortunately, there are a number 
of potential sources of unobservable heterogeneity, such as the possibil-
ity that women are more likely to marry men whom they judge to have 
high future earnings. A random assignment experiment might be able 
to sort these issues out, but imagine what such an experiment would 
entail. You’d have to randomly assign some men to marry and others 
to stay single! As you can see, this experiment, just like many other ran-
dom assignment experiments in economics, simply isn’t feasible.

2. With thanks to David Philips.
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Natural Experiments

If random assignment experiments aren’t always feasible in economics, what’s 
a good alternative? One approach is to use data from natural experiments to try 
to get at issues of causality. Natural experiments (or quasi-experiments) are 
similar to random assignment experiments except that observations fall into 
treatment and control groups “naturally” (because of an exogenous event) 
instead of being randomly assigned by the researcher. This approach requires 
finding natural events or policy changes that can be analyzed as if they were 
treatments in a random assignment experiment. As long as the natural event 
is exogenous (for example, not under the control of either of the groups), it 
turns out that a natural experiment can come very close to mimicking a ran-
dom assignment experiment. The key is to find naturally occurring events that 
mimic a random assignment experiment.

For instance, in 1992, New Jersey increased its minimum wage substan-
tially, while Pennsylvania kept its minimum wage constant. This led some 
economists to expect a decrease in employment at New Jersey fast-food res-
taurants (and other businesses that paid workers the minimum wage). In a 
famous study, Card and Krueger compared fast-food restaurants in New Jersey 
(the “treatment group”) with similar restaurants in nearby parts of Pennsylvania 
(the “control group”) and found no indication that the rise in the minimum 
wage reduced employment.3 Their study was a natural experiment!

A strict approach to natural experiments would seem to require that one 
find equivalents of “treatment” and “control” groups that have no systematic 
differences except for the treatment variable and other factors that can be 
observed and added to the equation. However, in economics, the treatment 
and control groups seem quite likely to have started off with different levels 
of the outcome measure. In addition, unobserved heterogeneity or nonran-
dom samples could result in the groups having different outcome measures. 
If the outcomes don’t start off equal, then comparing outcomes after the 
treatment won’t give us a true measure of the impact of the treatment. To 
understand why this is a problem, suppose that you were studying the impact 
of job training on income, and further suppose that your treatment group 
was earning an average of $30,000 per year while the control group was earn-
ing an average of $29,000 before the treatment. If the treatment group ended 
up earning $1,000 more than the control group after the treatment, would 

3. David Card and Alan Krueger, “Minimum Wages and Employment: A Case Study of the 
 Fast-Food Industry in New Jersey and Pennsylvania,” American Economic Review, Vol. 84, No. 4, 
pp. 772–793.
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this be convincing evidence that the treatment had a positive causal effect on 
income? Of course not!

To get around this problem, economists who run natural experiments 
don’t compare outcomes between the treatment and control groups. Instead, 
they compare the changes in the outcomes. Using this approach, we compare 
the change in the treatment group caused by the treatment with any change 
in the control group. The resulting “difference in differences” measures the 
impact of the treatment on the outcome in the natural experiment.

In a regression equation, the appropriate dependent variable in such a 
natural experiment thus is the difference in the outcome measure, not the 
outcome level we used in Equation 16.2. If we make this adjustment in 
Equation 16.2, we get:

 ∆OUTCOMEi =  β0 +  β1TREATMENTi +  β2X1i +  β3X2i +  ei (16.3)

where ∆OUTCOMEi is defined as the outcome after the treatment minus 
the outcome before the treatment for the ith observation. β1 is called the 
difference-in-differences estimator, and it measures the difference between 
the change in the treatment group and the change in the control group, 
holding constant X1 and X2. If the estimate of β1 is statistically significantly 
different from zero in the expected direction, then we have evidence that the 
treatment caused this change.

In essence, the difference-in-differences estimator uses the change in the 
control group as a measure of what would have happened to the treatment 
group if there hadn’t been a treatment. The validity of this approach thus 
depends on the assumption that the changes in the outcome would have 
been the same in both the treatment and control group had there been no 
treatment.

Be careful, however. Because the dependent variable has changed in 
Equation 16.3 from what it was in Equation 16.2, we also should change 
our interpretation of the independent variables and their coefficients. β2 
now measures the impact of a one-unit increase in X1 on the change in the 
 outcome (holding constant the other independent variables), not the level of 
the outcome. In addition, we should choose independent variables for Equa-
tion 16.3 keeping in mind that the dependent variable now is a difference.4

4. In addition, there’s evidence that the SE(βN )s are underestimated and need to be corrected 
when difference-in-difference models are estimated with OLS. See M. Bertrand, A. Diamond, 
and J. Hainmueller, “Synthetic Control Methods for Comparative Case Studies: Estimating the 
Effect of California’s Tobacco Control Program,” Journal of the American Statistical Association, 
Vol. 105, pp. 113–132.
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One final note. It’s important to think through the appropriate “before” 
and “after” time frames when you’re collecting data for a natural experiment. 
Data on the control and treatment groups should come from a time period 
far enough in advance of the policy change (treatment) that you are not pick-
ing up any anticipatory effects of the intended policy change. For example, 
if a company announces that it’s going to increase prices in the future, many 
people will buy the product just before the price increase takes effect in order 
to save money. As a result, data collected just before the price increase will 
overstate the true “before” quantity. Similarly, “after” data need to be col-
lected a reasonable amount of time after the policy change in order to allow 
individuals and firms to adjust to the change.

an Example of a Natural Experiment

Let’s take a look at an example of a natural experiment. In 1997, ARCO, one 
of the largest petroleum refiners and gasoline retailers in the world, acquired 
the Thrifty Oil Company, by far the biggest independent chain of gas stations 
in Southern California.5 Economists and consumers were concerned that the 
acquisition would reduce competition and therefore allow ARCO to increase 
prices.

This topic has the potential to be a good natural experiment, as the gas 
stations can be split into a treatment group (gas stations that competed with 
each other before the merger) and a control group (gas stations that didn’t 
compete with each other before the merger). To measure the impact of the 
merger on gasoline prices, a researcher would compare the difference in 
prices between the treatment and control groups before the acquisition with 
the price difference after the acquisition.

The treatment group consisted of ARCO gas stations that had a competing 
Thrifty station within a one-mile radius, and the control group was made up 
of ARCO gas stations that didn’t compete directly with a Thrifty station. Data 
were collected on a station-by-station basis, and gasoline prices before the 
acquisition were compared to those afterward.

Before the acquisition, prices in the treatment group were, on average, two 
to three cents lower than in the control group, which makes sense because 
the ARCO gas stations had to compete with the nearby Thrifty gas stations. 
After the acquisition, however, the treatment group prices were two to three 
cents higher than those in the control group!

5. This example is drawn from Justine Hastings, “Vertical Relationships and Competition in 
Retail Gasoline Markets: Empirical Evidence from Contract Changes in Southern California,” 
American Economic Review, March 2004, pp. 317–328.
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Take a look at Figure 16.1, which illustrates these results for Los Angeles. 
As can be seen, prices in the treatment group were lower than in the control 
group before the acquisition and were higher afterward. In essence, prices at 
ARCO gas stations that competed with Thrifty gas stations rose dramatically 
after ARCO acquired Thrifty.

Does this constitute evidence that the acquisition reduced gasoline price 
competition in Southern California? Take another look at Figure 16.1 
and compare the slopes of the two lines. The price trends in the treatment 
and  control groups are virtually parallel in other time periods, suggesting 
that these results do indeed provide preliminary evidence that the elimina-
tion of an independent competitor raised market prices by 4 to 6 cents.6
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Gasoline prices in the treatment group were lower than those in the control group 
 before the acquisition and higher afterward.

6. Ibid., p. 323. Because Prof. Hastings had data from five time periods instead of just two, she 
didn’t estimate her equation using the difference-in-differences model of this section. Instead, 
she used the fixed-effects estimation technique to be described in Section 16.2.
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16.2  Panel Data

Let’s think for a second about the data in the ARCO gasoline price example 
of the previous section. Is it a time-series data set? Is it a cross-sectional data 
set? Well, the data set includes gasoline prices from five different months, so 
it clearly has a time-series component. However, the data set also includes 
prices for hundreds of individual gas stations for each month, so it clearly 
has a cross-sectional component. Because it has both time-series and cross-
sectional dimensions, it’s neither time-series nor cross-sectional; it’s a panel 
data set!

What are Panel Data?

Panel (or longitudinal) data combine time-series and cross-sectional data in 
a very specific way. Panel data include observations on the same variables 
from the same cross-sectional sample from two or more different time peri-
ods. For example, if you surveyed 200 students when they graduated from 
your school and then administered the same questionnaire to the same indi-
viduals five years later, you would have created a panel data set.

Not every data set that combines time-series and cross-sectional data meets 
this definition. In particular, if different variables are observed in the different 
time periods or if the data are drawn from different samples in the different 
time periods, then the data are not considered to be panel data.7

Some panel data sets are created by large-scale, long-term longitudinal sur-
veys, for instance the 1979 National Longitudinal Survey of Youth (NLSY). 
Available through the Bureau of Labor Statistics, the NLSY has followed a 
cohort of 12,686 men and women who were 14 to 22 years old in 1979. 
These individuals were surveyed annually from 1979 through 1994 and have 
been surveyed every other year since then.8 Quite obviously, a panel data set 
of this many individuals collected over such a long time period provides an 

7. Instead, we refer to these data sets as “pooled cross sections across time.” An example of 
pooled cross sections across time would be if you administered a survey to 200 graduating se-
niors from the class of 2009 and combined the results of this survey with the results of a survey 
of 200 graduating seniors from the class of 2004. The combined data set is not a panel data 
set because the sample changed as the time period changed. Equations can be estimated with 
pooled cross sections across time data by using a variant of the difference-in-differences estima-
tor of the previous section. For more, see Jeff Wooldridge, Introductory Econometrics (Mason, 
OH: South-Western, 2009), pp. 445–455.

8. http://www.bls.gov/nls/nlsy79.htm.
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extremely rich source of labor force data. Other well-known longitudinal 
surveys include the U.S. Panel Survey of Income Dynamics (PSID), the  British 
Household Panel Data Survey, and the Canadian National Public Health 
Survey.

Why use panel data? As mentioned earlier, panel data certainly will 
increase sample sizes, but a second advantage of panel data is to provide 
insight into analytical questions that can’t be answered by using time-series 
or cross-sectional data alone. For example, panel data can help policymakers 
design programs aimed at reducing unemployment by allowing research-
ers to determine whether the same people are unemployed year after year 
or whether different individuals are unemployed in different years.9 A final 
advantage of using panel data is that it often allows researchers to avoid 
omitted variable problems that otherwise would cause bias in cross-sectional 
studies. We’ll come back to this topic soon.

There are four different kinds of variables that we encounter when we use 
panel data. First, we have variables that can differ between individuals but 
don’t change over time, such as gender, ethnicity, and race. Second, we have 
variables that change over time but are the same for all individuals in a given 
time period, such as the retail price index and the national unemployment 
rate. Third, we have variables that vary both over time and between individu-
als, such as income and marital status. Fourth, we have trend variables that 
vary in predictable ways such as an individual’s age.

To estimate an equation using panel data, it’s crucial that the data be in 
the right format because regression packages like Stata and EViews need to 
identify which observations belong to which time periods and which cross-
sectional entities. Unfortunately different software programs have different 
format requirements for panel data. Stata, for example, requires that a panel 
data set include a date counter and an id number counter, but it doesn’t 
require that the data be in any particular order. Many other programs, how-
ever, require the data to be in a specific order, typically by grouping all the 
observations from one cross-sectional entity together before moving on to 
another cross-sectional entity. As a result, it’s important to check to make sure 
that your data format matches what is required by your regression program.

Finally, the use of panel data requires a slight expansion of our notation. 
In the past we’ve used the subscript i to indicate the observation number in a 
cross-sectional data set, so Yi indicated Y for the ith cross-sectional observa-
tion. Similarly, we’ve used the subscript t to indicate the observation number 

9. Peter Kennedy, A Guide to Econometrics (Malden, MA: Blackwell, 2008), p. 282.
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in a time-series data set, so Yt indicated Y for the tth time-series observation. 
In a panel data set, however, variables will have both a cross-sectional and a 
time-series component, so we’ll use both subscripts. As a result, Yit indicates 
Y for the ith cross-sectional and tth time-series observation. This notation 
expansion also applies to independent variables and error terms.

the Fixed Effects Model

What’s the best way to estimate panel data equations? The two main 
approaches10 are the fixed effects model discussed in this section and the ran-
dom effects model featured in the next section.

The fixed effects model estimates panel data equations by including 
enough dummy variables to allow each cross-sectional entity (like a state or 
country) and each time period to have a different intercept:

 Yit = β0 + β1Xit + α2EF2 + g + αNEFN + ρ2TF2 + g + ρ  TTF T + eit (16.4)

where:  EFi 

= N - 1 Entity Fixed Effects dummies, equal to 1 for the ith 
    entity and 0 otherwise

 TFt = T - 1 Time Fixed Effects dummies, equal to 1 for the tth  
 period and 0 otherwise

βs, αis, and ρts = regression coefficients to be estimated
 e   = a classical error term

As you’d expect with a panel data set, Y, X, and e have two subscripts. 
Although there is only one X in Equation 16.4, the model can be generalized 
to any number of independent variables.

Why do we need something as complicated as Equation 16.4? To answer, 
let’s begin by taking a look at the problems that would arise if we estimated 
our model without accounting for the fact that our observations are from a 
panel data set. Our equation would look like this:

 Yit = β0 + β1Xit + Vit (16.5)

That looks pretty familiar, except that you’re probably thinking, “Where did 
that weird looking big Vit come from?” It’s the error term, and you’re right, it 
is weird looking.

10. Other methods of estimating panel data equations include the differencing model (the subject 
of Exercise 6) and the demeaned model (in which the mean of Y is subtracted from each observa-
tion of Y, the mean of X is subtracted from each observation of X, and the regression is run on 
these “demeaned” variables).
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To understand V, remember that because we’re dealing with panel data, 
we have observations from several, maybe many, entities and from several, 
maybe many, time periods. Just about everyone would agree that no two 
states are exactly alike. They have different cultures, histories, and institutions. 
It’s easy to imagine that those differences might lead to different outcomes in 
all sorts of things we might want to explain. Our Yit could be income, health, 
or crime, for instance.

It’s also easy to see that things like a state’s history and culture are pretty 
constant from year to year. They might be hard to measure, but we know that 
they don’t change, and we know that they make each state different from all 
the others. It is very likely that these unchanging and unmeasured differences 
are correlated with X, but Equation 16.5 doesn’t include them, so they are 
omitted variables.

And that’s a problem, right? In Chapter 6 we learned that omitting a 
relevant variable from a model forces much of its influence into the error 
term. And that partly explains the weird error term V in Equation 16.5. 
But there’s more. Remember that we’re dealing with panel data. Not only 
have we combined several cross sections, but we’ve also combined some 
time series! That means we have even more potential omitted variables. 
Why is that?

Well, it’s entirely possible that during each time period, certain things 
affect all the entities, but that those common influences change from period 
to period. Suppose you’re investigating annual traffic fatalities in states over 
a period of many years. If the federal government raises or lowers the maxi-
mum highway speed limit, it affects traffic fatalities in all states. Similarly, 
changing social norms affect traffic fatalities over time. Attitudes about seat 
belts, for instance, could play a big role. People didn’t always buckle up with-
out thinking! If you doubt this, ask your grandparents how many of them 
used seatbelts back when they were kids.

With the omitted entity characteristics and the omitted time characteristics, 
the error term in Equation 16.5 can be broken down into three components:

Vit = eit + ai + zt

where eit is a classical error term, ai refers to the entity characteristics omitted 
from the equation, and zt refers to the time characteristics omitted from the 
equation. If ai and zt are correlated with Xit, we’re going to have a problem 
because we will have violated Classical Assumption III. Our estimate of β1 
will be biased.

As we learned in Chapter 6, the solution in theory is simple. Just include 
the omitted variables in the model, and the omitted variable bias will disap-
pear. But the omitted variables often are unobservable. And even if we could 
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see them, we might not be able to measure them. For instance, if the entities 
are states, the unobserved characteristics could be such things as culture or 
history. How in the world would we ever discover what they are, much less 
measure them?

As it happens, we already have something in our econometric toolbox that 
can solve the problem—dummy variables! By including dummy variables 
for every entity (EFi) but one, we can control for those unobservable but 
unchanging entity effects. We call them entity fixed effects. And by including 
dummy variables for every time period (TFt) but one, we can control for time 
fixed effects. These entity and time fixed effects will no longer be omitted 
variables because they will be represented by the dummy variables. Including 
the dummies transforms V into e and transforms Equation 16.5 into the basic 
fixed effects model, Equation 16.4:

 Yit = β0 + β1Xit + α2EF2 + g + αNEFN + ρ2TF2 + g + ρ  TTF T + eit (16.4)

The major advantage of the fixed effects model is that it avoids bias due to 
omitted variables that don’t change over time (like geography) or that change 
over time equally for all entities (like the federal speed limit). What we’re in 
essence doing is allowing each entity’s intercept and each time period’s inter-
cept to vary around the omitted condition baseline (when all the fixed effect 
dummies equal zero). And the beauty of it is that we don’t even have to know 
exactly what things go into the entity and time fixed effects. The dummy vari-
ables include them all!

The fixed effects model has some drawbacks, however. Degrees of free-
dom for fixed effects models tend to be low because we lose one degree of 
freedom for every dummy variable (the EFs and the TFs) in the equation. For 
example, if the panel contains 50 states and two years, we lose 50 degrees of 
freedom by using 49 state dummies and one year dummy. Another potential 
pitfall is that no substantive explanatory variables that vary across entities, 
but do not vary over time within each entity, can be used because they would 
create perfect multicollinearity.

Luckily, these drawbacks are minor when compared to the advantages of 
the fixed effects model, so our recommendation is that readers of this text use 
the fixed effects model whenever they estimate panel data models.

an Example of Fixed Effects Estimation

Let’s take a look at a simple application of the fixed effects model. Suppose 
that you’re interested in the relationship between the death penalty and the 
murder rate, and you collect data on the murder rate in the 50 states.
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If you were to estimate a cross-sectional model (Table 16.1) of the annual 
murder rate as a function of, say, the number of convicted murderers who 
were executed in the previous three years, you’d end up with:

 MRDRTEi = 6.20 + 0.90EXECi (16.6)
 (0.22)

 t = 4.09
 N = 50 (states  in 1990)  R 

2 = .24

where:     MRDRTEi 5  the number of murders per 100,000 people in the 
ith state in 1990

 EXECi     5  the number of executions in the ith state in 
1987–89

In a cross-sectional model for 1990, the murder rate appears to increase with 
the number of executions, quite probably because of omitted variable bias 
or because of simultaneity. This result implies that the more executions there 
are, the more murders there are! Such a result is completely counter to our 

∏
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Figure 16.2 in a single-Year cross-sectional model, the murder rate 
 appears to increase with Executions

In a cross-sectional model for 1990, the murder rate appears to increase with the 
 number of executions.
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Table 16.1 data for the murder Example

OBS StatE YEaR MRDRtE EXEC tF93
 1 al 90 11.6 5 0
 2 al 93 11.6 2 1
 3 aK 90  7.5 0 0
 4 aK 93 9 0 1
 5 aZ 90  7.7 0 0
 6 aZ 93  8.6 3 1
 7 ar 90 10.3 2 0
 8 ar 93 10.2 2 1
 9 ca 90 11.9 0 0
10 ca 93 13.1 2 1
11 co 90  4.2 0 0
12 co 93  5.8 0 1
13 ct 90  5.1 0 0
14 ct 93  6.3 0 1
15 dE 90 5 0 0
16 dE 93 5 0 1
17 Fl 90 10.7 8 0
18 Fl 93  8.9 7 1
19 Ga 90 11.8 2 0
20 Ga 93 11.4 3 1
21 hi 90 4 0 0
22 hi 93  3.8 0 1
23 id 90  2.7 0 0
24 id 93  2.9 0 1
25 il 90 10.3 0 0
26 il 93 11.4 0 1
27 in 90  6.2 0 0
28 in 93  7.5 0 1
29 ia 90  1.9 0 0
30 ia 93 2.3 0 1
31 Ks 90 4 0 0
32 Ks 93  6.4 0 1
33 KY 90  7.2 0 0
34 KY 93  6.6 0 1
35 la 90 17.2 4 0
36 la 93 20.3 2 1
37 mE 90  2.4 0 0
38 mE 93  1.6 0 1
39 md 90 11.5 0 0
40 md 93 12.7 0 1
41 ma 90 4 0 0
42 ma 93  3.9 0 1
43 mi 90 10.4 0 0

(continued)
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Table 16.1 (continued )

OBS StatE YEaR MRDRtE EXEC tF93
44 mi 93  9.8 0 1
45 mn 90  2.7 0 0
46 mn 93  3.4 0 1
47 ms 90 12.2 1 0
48 ms 93 13.5 0 1
49 mo 90  8.8 5 0
50 mo 93 11.3 6 1
51 mt 90  4.9 0 0
52 mt 93 3 0 1
53 nE 90  2.7 0 0
54 nE 93  3.9 0 1
55 nV 90  9.7 3 0
56 nV 93 10.4 0 1
57 nh 90  1.9 0 0
58 nh 93 2 0 1
59 nJ 90  5.6 0 0
60 nJ 93  5.3 0 1
61 nm 90  9.2 0 0
62 nm 93 8 0 1
63 nY 90 14.5 0 0
64 nY 93 13.3 0 1
65 nc 90 10.7 0 0
66 nc 93 11.3 2 1
67 nd 90  0.8 0 0
68 nd 93  1.7 0 1
69 oh 90  6.1 0 0
70 oh 93 6 0 1
71 oK 90 8 1 0
72 oK 93  8.4 2 1
73 or 90  3.8 0 0
74 or 93  4.6 0 1
75 pa 90  6.7 0 0
76 pa 93  6.8 0 1
77 ri 90  4.8 0 0
78 ri 93  3.9 0 1
79 sc 90 11.2 1 0
80 sc 93 10.3 1 1
81 sd 90 2 0 0
82 sd 93  3.4 0 1
83 tn 90 10.5 0 0
84 tn 93 10.2 0 1
85 tx 90 14.1 11 0
86 tx 93 11.9 34 1

(continued)
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expectations. To make things worse, it’s not a fluke. If we collect data from 
another year, 1993, and estimate a single-time-period regression on the 1993 
data set, we also get a positive slope.

However, if we combine the two cross-sectional data sets to create the 
panel data set in Table 16.1, we can estimate a fixed effects model, using the 
fixed effects model of Equation 16.4, adjusted to account for 50 states (with 
Alabama as the omitted condition) and two time periods (with 1990 as the 
omitted condition):

 MRDRTEit = β0 + β1EXECit + α2EF2 + g + α50EF50 + ρ2TF93 + eit (16.7)

If we now estimate Equation 16.7 with the data from Table 16.1, we obtain:

 MRDRTEit = 7.15 - 0.104EXECit + 0.35TF93 (16.8)
 (0.04) (0.16)
 t =  - 2.38 + 2.23
 N = 100 R 

2 = .96

As can be seen in Equation 16.8 and Figure 16.3, a fixed effects model 
estimated on panel data from 1990 and 1993 results in a significant negative 
estimated slope for the relationship between the murder rate and the number 

∏

OBS StatE YEaR MRDRtE EXEC tF93
87 Ut 90 3 1 0
88 Ut 93  3.1 1 1
89 Vt 90  2.3 0 0
90 Vt 93  3.6 0 1
91 Va 90  8.8 3 0
92 Va 93  8.3 11 1
93 Wa 90  4.9 0 0
94 Wa 93  5.2 1 1
95 WV 90  5.7 0 0
96 WV 93  6.9 0 1
97 Wi 90  4.6 0 0
98 Wi 93  4.4 0 1
99 WY 90  4.9 0 0

100 WY 93  3.4 1 1

source: U.s. department of Justice, FBi Annual, www.deathpenaltyinfo.org/execution

datafile 5 mUrdEr16

Table 16.1 (continued )
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of executions.11 This example illustrates how the omitted variable bias arising 
from unobserved heterogeneity can be mitigated with panel data and the fixed 
effects model. When the dataset is expanded to include another year, you’re in 
essence looking at each state and comparing the state to itself over time.

Note that we included TF93, a year fixed effect variable, in Equation 16.8. A 
year fixed effect captures any impact that altered the level of executions across 
the country for a given year. For example, if the Supreme Court declared a mor-
atorium on a type of execution in that year, we would see a decline in execu-
tions across states that used that type of execution during the year for reasons 
unrelated to the relation between murders and executions for each state.12

11. This example was kept simple to illustrate the value of panel data and to show how to apply 
the fixed effects model to panel data, so no inferences about the death penalty should be drawn 
from it. The correct specification surely includes a number of other variables. In addition, 
the state of Texas plays too large a role in determining the coefficients in this sample, in part 
 because many states didn’t allow capital punishment between 1987 and 1993.

12. With thanks to Doug Steigerwald.

Figure 16.3 in a panel data model, the murder rate decreases with 
 Executions

If we use the fixed effects model to estimate panel data from 1990 and 1993, the mur-
der rate decreases with the number of executions, as you’d expect.

20

15

10

5

0 5
Total executions, past 3 years

10

0

Fitted values Murders per 100,000 people
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You might have noticed the big increase in R 

2 between Equations 16.7 and 
16.8. The increase comes from the addition of all the dummy variables for 
state and time fixed effects. So why don’t the coefficients of the state dum-
mies appear in Equation 16.8? Unless the entity fixed effects are the main 
focus of the research, the coefficients usually are omitted from the results to 
save space. Some large panel data sets have hundreds or even thousands of 
entity fixed effects!

In our example, we used only two time periods, but the fixed effects model 
can be extended to many more time periods. Fixed effects estimation is a 
standard statistical routine in most econometric software packages, making 
it particularly accessible for researchers. Notice that we report an intercept. 
Depending upon which software program you use to estimate the fixed 
effects model, you may or may not be provided with an intercept estimate.

16.3  Fixed versus Random Effects

The fixed effects model does a good job of estimating panel data equations, 
and it also helps avoid omitted variable bias due to unobservable heterogene-
ity. As a result, the fixed effects model is the panel data estimation procedure 
that we recommend to most readers of this text.

However, if you read the panel data literature, you’ll find that many expe-
rienced researchers use an advanced panel data method called the random 
effects model. Although we don’t suggest that beginning researchers use the 
random effects model, we think that it’s important to have a general under-
standing of that model.

the Random Effects Model

An alternative to the fixed effects model is called the random effects model. 
While the fixed effects model is based on the assumption that each cross-
sectional unit has its own intercept, the random effects model is based on 
the assumption that the intercept for each cross-sectional unit is drawn from 
a distribution that is centered around a mean intercept. Thus each intercept is 
a random draw from an “intercept distribution” and therefore is independent 
of the error term for any particular observation.

The random effects model has several clear advantages over the fixed 
effects model. In particular, a random effects model will have quite a few 
more degrees of freedom than a fixed effects model, because rather than esti-
mating an intercept for virtually every cross-sectional unit, all we need to do 
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is to estimate the parameters that describe the distribution of the intercepts. 
Another nice property is that you can estimate coefficients for explanatory 
variables that are constant over time (like race or gender). However, the 
random effects estimator has a major disadvantage in that it requires us 
to assume that the unobserved impact of the omitted variables is uncorre-
lated with the independent variables, the Xs, if we’re going to avoid omitted 
 variable bias.

Choosing Between Fixed and Random Effects

How do researchers decide whether to use the fixed effects model or the ran-
dom effects model? One key is the nature of the relationship between ai and the 
Xs. If they’re likely to be correlated, then it makes sense to use the fixed effects 
model, as that sweeps away the ai and the potential omitted variable bias.13

Many researchers use the Hausman test, which is well beyond the scope 
of this text, to see whether there is correlation between ai and X. Essentially, 
this procedure tests to see whether the regression coefficients under the 
fixed effects and random effects models are statistically different from each 
other.14 If they are different, then the fixed effects model is preferred even 
though it uses up many more degrees of freedom. If the coefficients aren’t 
different, then researchers either use the random effects model (in order to 
conserve degrees of freedom) or provide estimates of both the fixed effects 
and  random effects models.

16.4  Summary

1. Random assignment experiments are considered the gold standard 
when it comes to establishing a causal effect from treatment to out-
come. A randomly chosen treatment group is exposed to a treatment 
while a control group isn’t, and we test to see if the outcome is signifi-
cantly different between the two groups. Unfortunately, such experi-
ments aren’t feasible in many areas of economics.

13. For an excellent explanation of the choice between fixed and random effects, see Peter Ken-
nedy, A Guide to Econometrics (Malden, MA: Blackwell, 2008), pp. 284–292.

14. For an illustration of the Hausman test, see E. DiCioccio and P. Wunnava, “Working and 
Educated Women: Culprits of a European Kinder-Crisis,” Eastern Economic Journal, April 2008, 
pp. 213–222.

M16_STUD2742_07_SE_C16.indd   484 1/18/16   10:34 AM



485ExErcisEs

2. Natural experiments can be used to provide evidence of causality in 
economics if a naturally occurring event (or a policy change) can 
be found that mimics a random assignment treatment. If the event 
causes the mean of the outcome for the treatment group to change 
substantially more than the mean of the outcome for the control 
group does, then we have evidence that the treatment was a causal 
 factor in the outcome.

3. Equations involving data from natural experiments can be estimated 
with a difference-in-differences model, which compares the difference 
between the change in the treatment group and the change in the 
control group.

4. Panel data combine time-series and cross-sectional data by includ-
ing observations on the same variables from the same cross-sectional 
sample from two or more time periods. Panel data often are produced 
by large, multi-year survey projects and provide a rich source of mate-
rial for econometric analysis.

5. Equations involving panel data can be estimated using the fixed effects 
model and a more advanced technique, the random effects model.

EXERCISES

(the answers to the even-numbered questions are in appendix a.)

 1. Write the meaning of each of the following terms without referring to 
the book (or your notes), and then compare your definition with the 
version in the text for each.
a. control group (p. 466)
b. difference-in-differences (p. 470)
c. fixed effects model (p. 475)
d. natural experiments (p. 469)
e. panel data (p. 473)
f. random assignment experiments (p. 466)
g. random effects model (p. 483)
h. treatment group (p. 466)

 2. Fifteen years ago, the town of Easton decided to increase its annual 
spending on education so that its high school graduates would be 
able to earn higher wages. Now Easton has asked you to evaluate the 
effectiveness of the spending increase. Their data show that before 
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the spending increase, the average annual salary of recent high school 
graduates was $25,000 and that now that average salary has risen to 
$28,500. Fortunately for your analysis, a neighboring community 
(Allentown) did not change its annual spending on education. Fif-
teen years ago, recent Allentown high school graduates earned an 
average of $22,500, and now that average is $23,750.
a. Use a difference-in-differences estimator to determine whether 

Easton’s spending increase caused the wages of their high school 
graduates to increase.

b. What underlying assumption do you have to make in order for 
your estimate to be valid? What might cause your underlying 
 assumption to be invalid?

c. This data set contains only two observations. Even if the underlying 
assumption in part b is met, how much confidence can you have in 
conclusions based on two observations?

 3. The discussion of random assignment experiments in Section 16.1 
includes models both with (Equation 16.2) and without (Equa-
tion 16.1) two additional observable factors (X1 and X2). In con-
trast, the discussion of natural experiments in Section 16.1 jumped 
immediately to Equation 16.3 below (which includes these factors) 
without discussing an equation similar to Equation 16.1.

 ∆OUTCOMEi = β0 + β1TREATMENTi + β2X1i + β3X2i + ei (16.3)

  Was this a mistake? What reasons are there for thinking that a natural 
experiment is more likely to benefit from the inclusion of additional 
observable factors than is a random assignment experiment? Explain.

 4. In 2003, ten states increased the taxes they placed on cigarettes. 
Because taxes increase the price of cigarettes, we’d expect that a tax 
increase would reduce the consumption of cigarettes. In Table 16.2, 
we present cross-sections of state level data on cigarette consump-
tion for the years 2000 and 2006. Forty-four states plus the District 
of Columbia are listed here, with those states that did not have a tax 
increase in 2003 listed first.
a. Would you consider this to be a random assignment experiment 

data set, a natural experiment data set, or a panel data set? Explain.
b. Depending on your answer to part a, use the appropriate estima-

tion technique to determine the impact of the cigarette tax increase 
on the consumption of cigarettes.

c. Do these results conform with your expectations? If they don’t, 
what problems do you see with this research design?
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Table 16.2 cigarette consumption by state

State tax 2000 2006
alabama 0 25.3 23.2
arizona 0 18.6 18.2
alaska 0 25 24
arkansas 0 25.2 23.7
colorado 0 20.1 17.9
connecticut 0 20 17
delaware 0 23 21.7
hawaii 0 19.7 17.5
illinois 0 22.3 20.5
indiana 0 27 24.1
iowa 0 23.3 21.4
Kentucky 0 30.5 28.5
louisiana 0 24.1 23.4
maine 0 23.8 20.9
maryland 0 20.6 17.7
massachusetts 0 20 17.8
michigan 0 24.2 22.4
minnesota 0 19.8 18.3
montana 0 18.9 18.9
nebraska 0 21.4 18.7
new hampshire 0 25.4 18.7
new Jersey 0 21 18
new York 0 21.6 18.2
north carolina 0 26.1 22.1
ohio 0 26.3 22.4
oklahoma 0 23.3 25.1
oregon 0 20.8 18.5
pennsylvania 0 24.3 21.5
rhode island 0 23.5 19.2
tennessee 0 25.7 22.6
texas 0 22 17.9
Utah 0 12.9  9.8
Virginia 0 21.5 19.3
Washington 0 20.7 17.1
Wisconsin 0 24.1 20.8
Washington, dc 1 20.9 17.9
Georgia 1 23.6 19.9
idaho 1 22.4 16.8
Kansas 1 21.1 20
nevada 1 29.1 22.2
new mexico 1 23.6 20.1
south dakota 1 22 20.3
Vermont 1 21.5 18
West Virginia 1 26.1 25.7
Wyoming 1 23.8 21.6

datafile 5 ciGi6          
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 5. Suppose that you’re interested in the effect of price on the demand for 
a “salon” haircut and that you collect the following data for four U.S. 
cities for 2003:

Location Year Average Price Per Capita Quantity

New York 2003 $75 2

Boston 2003 $50 1

Washington, DC 2003 $60 1.5

Philadelphia 2003 $55 0.8

  and for 2008:

Location Year Average Price Per Capita Quantity

New York 2008 $85 1.8

Boston 2008 $48 1.1

Washington, DC 2008 $65 1.4

Philadelphia 2008 $60 0.7

a. Estimate a cross-sectional OLS regression of per capita quantity as a 
function of average price for 2003. Is the slope positive or negative? 
Does that meet your expectations?

b. Now estimate a cross-sectional regression on the data for 2008. 
How is the result different?

c. Now estimate a fixed effects model on the combined data and 
compare your results with parts a and b.

d. What’s your conclusion? Which model offers the best approach to 
answering your question?

 6. A simple alternative to the fixed effects model is called the differencing 
model, in which all the variables and the error term are expressed as 
differences. For a panel data set with two time periods, the estimating 
equation would be:

∆Yi = β0 + β1∆Xi + ∆ei

  where: ∆Yi = Y2i - Y1i, ∆Xi = X2i - X1i, and ∆ei = e2i - e1i.
a. Using the data in Exercise 5, estimate a differencing model for the 

price of salon haircuts.
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b. Now compare your answer in part a to your answer for part c of 
Exercise 5. What do you notice? What does this tell you about the 
relationship between the differencing model and the fixed effects 
model when there are exactly two time periods?

c. Think about the error term in the differencing model. Which of the 
Classical Assumptions does ∆e i seem likely to violate? How might 
you deal with this problem?
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Answers
Appendix A

Chapter 1

1.2. Using Stata:
 a. Install and launch the regression software.
 b. Open the datafile. All datafiles can be found in Stata format at 

www.pearsonhighered.com/studenmund. This particular datafile 
is “HTWT1.”

 c. Run the regression. Type “reg Y X” in the command window. This 
tells Stata to run a regression using Y as the dependent variable 
and X as the independent variable. Hit enter and the results will 
appear in the results window.

 Using EViews:
 a. Install and launch the software.

 b. Open the datafile. All datafiles can be found in EViews format at 
www.pearsonhighered.com/studenmund. This particular datafile 
is “HTWT1.”

 c. Run the regression. Type “LS Y C X” on the top line, making sure 
to leave spaces between the variable names. (LS stands for Least 
Squares and C stands for constant.) Press Enter, and the regres-
sion results will appear on your screen.

1–4. a.  The estimated slope coefficient of 3.62 represents the change in 
the size of a house (in square feet) given a one thousand dol-
lar increase in the price of the house. The estimated intercept of 
-290 is the value of SIZE when PRICE equals zero. The estimated 
intercept is negative, but because the estimate includes the con-
stant value of any omitted variables, any measurement errors, 
and/or an incorrect functional form, we shouldn’t attach any 
importance to the negative sign.

 b. No. All we have shown is that a statistical relationship exists 
between the price of a house and its size.

 c. The new slope coefficient would be 0.00362 (or 3.62/1000), but 
nothing else would change.
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1–6. a.  2.29 is the estimated constant term, and it is an estimate of the 
gift when the alum has no income and no calls were made to that 
alum. 0.001 is an estimate of the slope coefficient of INCOME, 
and it tells us how much the gift would be likely to increase 
when the alum’s income increases by a dollar, holding constant 
the number of calls to that alum. 4.62 is an estimate of the slope 
coefficient of CALLS, and it tells us how much the gift would be 
likely to increase if the college made one more call to the alum, 
holding constant the alum’s income. The signs of the estimated 
slope coefficients are as expected, but we typically do not develop 
hypotheses involving constant terms.

 b. Once we estimate the equation, the left-hand variable now is the 
estimated value of the dependent variable because the right-hand 
side of the equation also consists of estimated coefficients (in all 
but one case multiplied by independent variables).

 c. An error term is unobservable and couldn’t be included in an 
estimated equation from which we actually calculate a Yn .

 d. The right-hand side of the equation would become 
2.29 + 1.0INCOME + 4.62CALLS. Nothing has changed except 
the scale of the coefficient of INCOME.

 e. Many good possibilities exist. However, we don’t suggest adding 
“last year’s GIFT” (as tempting as that may seem). While the fit 
would be good, there would be very little analytical content to 
the result.

1–8. a.  At first glance, the answer is yes, because both coefficients are 
positive (as we’d expect) and the coefficient of HOT is 59 times 
the size of the coefficient of EASE (as the article predicted). 
However, the variable HOT has a maximum value of 5 while 
the variable EASE has a maximum value of 1, so the two coef-
ficients aren’t directly comparable. In addition, there surely 
are some important variables that have been omitted from this 
equation, and it’s very risky to draw conclusions from regres-
sion results when important variables have been left out. We’ll 
address this topic (omitted variable bias) in more detail in 
Chapter 6.

 b. Other possibly important variables include communication 
skills, knowledge of the field, enthusiasm, organization, etc.

 c. Our guess is that the coefficient of HOT would decrease in size 
quite a bit. The coefficient of EASE already is extremely low, so it 
might actually go up.
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Chapter 2

2–2. a. βn1 = -0.55, βn0 = 12.29
 b. R2 = .46, R 

2 = .40
 c. Income = 12.29 - 0.55 (8) = 7.89

2–4. a.  Yes. The new coefficient represents the impact of HEIGHT on 
WEIGHT, holding MAIL constant, while the original coefficient 
did not hold MAIL constant. We’d expect the estimated coeffi-
cient to change (at least slightly) because of this new constraint.

 b. One weakness of R2 is that adding a variable will usually decrease 
(and will never increase) the summed squared residuals no mat-
ter how nonsensical the variable is. As a result, adding a nonsen-
sical variable will usually increase (and will never decrease) R2.

 c. R 

2 is adjusted for degrees of freedom and R2 isn’t, so it’s com-
pletely possible that the two measures could move in opposite 
directions when a variable is added to an equation.

 d. The coefficient is indeed equal to zero in theory, but in any 
given sample, MAIL may have some random correlation with 
WEIGHT and therefore may provide some minor explanatory 
power beyond that provided by HEIGHT. In fact, it’s typical to get 
a nonzero estimated coefficient even for nonsensical variables.

2–6.   As we’ll learn in future chapters, there’s a lot more to getting the 
best equation than maximizing R 

2. For example, see pp. 55–56.

Chapter 3

3–2. a. D = 1 if graduate student and D = 0 if undergraduate.
 b. Yes; for example, E = how many exercises the student did.
 c. If D is defined as in answer a, then its coefficient’s sign would be 

expected to be positive. If D is defined as 0 if graduate student, 1 
if undergraduate, then the expected sign would be negative.

 d. A coefficient with value of 0.5 indicates that holding constant 
the other independent variables in the equation, a graduate stu-
dent would be expected to earn half a grade point higher than an 
undergraduate. If there were only graduate students or only under-
graduates in class, the coefficient of D could not be estimated.

 e. With three categories, use two dummies. It doesn’t matter which 
two you pick.
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3–4. If you need help getting started, see the answer to Exercise 1–2.

3–6. a.  All positive except for the coefficient of Fi, which in today’s male-
dominated movie industry probably has a negative expected 
sign. The sign of βnB certainly is unexpected.

 b. Fred, because $500,000 6 1$4,000,000 - $3,027,0002.
 c. Yes, since 200 * 15.4 = $3,080,000 7 $1,200,000.
 d. Yes, since $1,770,000 7 $1,000,000.
 e. Yes, the unexpected sign of βnB.

Chapter 4

4–2. a.  An additional pound of fertilizer per acre will cause corn yield to 
increase by 0.10 bushels per acre, holding rainfall constant. An 
additional inch of rain will increase corn yield by 5.33 bushels 
per acre, holding fertilizer per acre constant.

 b.  No, for a couple of reasons. First, it’s hard to imagine zero inches 
of rain falling in an entire year, so this particular intercept has no 
real-world meaning. More generally, recall that the OLS estimate 
of the intercept includes the nonzero mean of the error term, so 
even if rainfall were zero, it wouldn’t make sense to attempt to 
analyze the OLS estimate of the intercept.

 c.  No. An unbiased estimator will produce a distribution of esti-
mates that is centered around the true β, but individual estimates 
can vary widely from that true value. 0.10 is the estimated coef-
ficient for this sample, not for the entire population, so it could 
be an unbiased estimate.

 d.  Not necessarily: 5.33 still could be close to or even equal to the 
true value. More generally, an estimated coefficient produced by 
an estimator that is not BLUE still could be accurate. For exam-
ple, the amount of the bias could be very small, or the variation 
due to sampling could offset the bias.

4–4. a. Classical Assumption II.
 b. Classical Assumption VI.
 c. R: A one-unit increase in yesterday’s R will result in a 0.1 percent 

increase in today’s Dow Jones average, holding constant the other 
independent variables in the equation.

  M: The Dow Jones will be 0.017 percent lower on a Monday, 
holding constant the other independent variables in the equation.

Z01_STUD2742_07_SE_APP1.indd   494 02/02/16   2:54 PM



495Answers

 d. Technically, C is not a dummy variable because it can take on 
three different values. Saunders assumed (at least implicitly) that 
all levels of cloud cover between 0 percent and 20 percent have 
the same impact on the Dow and also that all levels of cloud 
cover between 21 percent and 99 percent have the same impact 
on the Dow. In addition, by using the same variable to represent 
both sunny and cloudy days, the equation constrains the impact 
of 100 percent sunny and 100 percent cloudy to be equal (though 
in opposite directions).

 e. In our opinion, this particular equation does little to support 
Saunders’ conclusion. The poor fit and the constrained specifi-
cation combine to outweigh the significant coefficients of Rt−1  
and M.

4–6. a.  The coefficient of DIVSEP implies that a divorced or separated 
individual will drink 2.85 more drinks than otherwise, holding 
constant the other independent variables in the equation. The 
coefficient of UNEMP implies that an unemployed individual 
will drink 14.20 more drinks than otherwise, holding constant 
the other independent variables in the equation. The signs of the 
estimated coefficients make sense, but we wouldn’t have expected 
the coefficient of UNEMP to be five times the size of the coeffi-
cient of DIVSEP.

 b. The coefficient of ADVICE implies that an individual will drink 
11.36 more drinks, holding constant the other independent vari-
ables in the equation, if a physician advises them to cut back on 
drinking alcohol. This coefficient certainly has an unexpected 
sign! Our guess is that DRINKS and ADVICE are simultaneously 
determined, since a physician is more likely to advise an indi-
vidual to cut back on their drinking if that individual is drink-
ing quite a bit. As a result, this equation almost surely violates 
 Classical Assumption III. For more, see Chapter 14.

 c. We’d expect each sample to produce different estimates of 
βADVICE. The entire group of sample means is called a sampling 
distribution of βn S.

 d. The βnADVICE for this subsample is 8.62, which is a little lower 
than the coefficient for the entire sample. The other coefficients 
for this subsample differ even more from the coefficients for the 
entire sample, and the estimated coefficient of EDUC actually 
has an unexpected sign. These results are clear evidence of the 
advantages of large samples.
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Chapter 5

5–2. For all three parts:

X1 X2 X3

H0: β1 … 0 β2 Ú 0 β3 Ú 0

HA: β1 7 0 β2 6 0 β3 6 0

t1 = 2.1 t2 = 5.6 t3 = -0.1

 a. tc = 1.363. For β1, we reject H0, because � t1 � 7 1.363 and the 
sign of t1 is that implied by HA. For β2, we cannot reject H0, even 
though � t2 � 7 1.363, because the sign of t2 does not agree with 
HA. For β3, we cannot reject H0, even though the sign of t3 agrees 
with HA, because � t3 � 6 1.363.

 b. tc = 1.318. The decisions are identical to those in part a, except 
that tc = 1.318.

 c. tc = 3.143. For β1, we cannot reject H0, even though the sign of 
t1 is that implied by HA, because � t1 � 6  3.143. For β2 and β3, 
the decisions are identical to those in parts a and b, except that 
tc = 3.143.

5–4.  For βN: Reject H0: β … 0, HA: β 7 0, if � -4.42 � 7 tc and -4.42  
is negative.

  For βP: Reject H0: β Ú 0, HA: β 6 0, if � 4.88 � 7 tc and 4.88 is 
positive.

  For βI: Reject H0: β Ú 0, HA: β 6 0, if � 2.37 � 7 tc and 2.37  
is positive.

 a. tc = 1.943; reject the null hypothesis for all three coefficients.
 b. tc = 1.311; reject H0 for all three coefficients.
 c. tc = 6.965; cannot reject the null hypothesis for any of the three 

coefficients.

5–6. a.  For all three, H0: β … 0,   HA: β 7 0, and the critical 5-percent, 
one-sided t-value for 24 degrees of freedom is 1.711. For LOT, 
we can reject H0 because � +7.0 � 7 1.711 and +7.0 is positive. 
For BED, we cannot reject H0 because � +1.0 � 6 1.711 even 
though +1.0 is positive. For BEACH, we can reject H0 because 
� +10.0 � 7 1.711 and +10.0 is positive.

 b. H0: β Ú 0,   HA: β 6 0, and the critical 10-percent, one-sided 
t-value for 24 degrees of freedom is 1.318, so we reject H0 
because � -2.0 � 7 1.318 and -2.0 is negative.
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 c. H0: β = 0,   HA: β ≠ 0, and the critical 5-percent, two-sided t-value 
for 24 degrees of freedom is 2.064, so we cannot reject H0 because 
� -1.0 � 6 2.064. Note that we don’t check the sign because the test  
is two-sided and both signs are in the alternative hypothesis.

 d. The main concern is the possibility that BED and/or FIRE may be 
irrelevant.

 e. Given that we weren’t sure what sign to expect for the coeffi-
cient of FIRE, the insignificant coefficient for BED is the most 
worrisome.

 f. Unless you’ve read Chapter 6, this will be a difficult question to 
answer. The most likely answer is that BED doesn’t belong in the 
equation if LOT also is in it. Beach houses on large lots tend to 
have more bedrooms than beach houses on small lots.

5–8. a.  NEW: H0: β … 0, HA: β 7 0. Reject H0 since � 5.34 � 7 1.658 and 
+5.34 has the sign of HA.

  SCRATCH: H0: β Ú 0, HA: β 6 0. Reject H0 since � -4.00 � 7 1.658 
and -4.00 has the sign of HA.

 b. BIDRS: H0: β … 0, HA: β 7 0. Cannot reject H0 since 
� 1.23 � 6 2.358 even though +1.23 has the sign of HA.

 c. Some econometricians might drop BIDRS from the equation 
because of its low t-score, but we’d be inclined to keep the vari-
able. The theory is strong, and the estimated coefficient is in the 
expected direction. As we’ll see in Chapter 6, consistently drop-
ping variables with low t-scores will result in coefficient bias.

 d. Most good variables are attributes of the iPod, but attributes of 
the auction of that iPod (like the length of time of the auction or 
whether there was a “buy it now” option available) also make sense.

 e. Reject H0 (that all three slope coefficients equal zero) because 
55.09 is larger than 2.68, the 5-percent critical F-value with 3 and 
120 degrees of freedom.

Chapter 6

6–2.   a. Wi Ti Ci Li

H0: β1 … 0 β2 … 0 β3 … 0 β4 … 0

HA: β1 7 0 β2 7 0 β3 7 0 β4 7 0

tW = 4 tT = 3 tC = 2 tL = 0.95

tc = 1.697 tc = 1.697 tc = 1.697 tc = 1.697
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  For the first three coefficients, we can reject the null hypothesis, 
because the absolute value of tk is greater than tc and the sign 
of tk is that specified in HA. For L, however, we cannot reject the 
null hypothesis, even though the sign is as expected, because the 
absolute value of tL is less than 1.697.

 b. Almost any equation potentially could have an omitted variable, 
and this one is no exception. In addition, Li might be an irrel-
evant variable. Finally, the coefficient of C seems far too large, 
suggesting at least one omitted variable. C appears to be acting as 
a proxy for other luxury options or the general quality of the car.

 c. Theory: Bigger engines cost more, so the variable’s place in the 
equation seems theoretically sound. However, sedans with large 
engines tend to weigh more, so perhaps the two variables are 
measuring more or less the same thing.

  t-Test: The variable’s estimated coefficient is insignificant in the 
expected direction.

  R  

2: The overall fit of the equation (adjusted for degrees of 
 freedom) improves when the variable is dropped from the equation.

  Bias: When the variable is dropped from the equation, the esti-
mated coefficients remain virtually unchanged.

  The last three criteria are evidence in favor of dropping Li and 
the theoretical argument for keeping it isn’t overwhelming, so we 
prefer Model T. However, a researcher who firmly believed in the 
theoretical importance of engine size would pick Model A.

6–4. Expected bias = 1βomitted2 # αn1

 a. Expected bias = 1-2 # 1+2 = 1-2 = negative bias. (This assumes 
that peanut butter is a normal good.)

 b. 1+ 2 # 1+ 2 = 1+ 2 = positive bias; this bias will be potentially 
large since age and experience are highly correlated.

 c. 1+ 2 # 1+ 2 = 1+ 2 = positive bias.
 d. 1- 2 # 102 = 0 = no bias; it may seem as though it rains more 

on the weekends, but there is no relationship between the two.

6–6. a. X1 = either dummy variable
  X2 = either dummy variable
  X3 = Parents’ educational background
  X4 = Iowa Test score
 b. We have two variables for which we expect positive coefficients 

(Iowa score and Parents’ education) and two positive estimated 
coefficients (βn3 and βn4), so we’d certainly expect X3 and X4 to be 
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those two variables. Choosing between the two is difficult, but 
we certainly expect the Iowa test score to be more significant. 
Next, we have two variables for which we expect a zero coeffi-
cient (the dummies) and two estimated coefficients (βn1 and βn2)  
that are not significantly different from zero, so we’d certainly 
expect X1 and X2 to be the dummies. There is no evidence to 
allow us to distinguish which dummy is X1 and which is X2. (If 
you expected negative signs for the coefficients of the two dum-
mies, note that the presence of the Iowa test score variable in the 
equation should control for any bias in multiple-choice tests 
against females and students of color.)

 c. Coefficient: βD βD βPE βIT

  Hypoth. sign: 0 0 +  +
  t-value: -1.0 -0.25 +2.0 +12.0
  tc = 2.093 do not do not
  (5-percent  reject reject  
  two-sided with 19 d.f.)
  tc = 1.729   reject reject
  (5-percent one-sided    
  with 19 d.f.)

 d.  As you can see, we used a one-sided test for those coefficients for 
which we had a specific prior expectation but a two-sided test 
around zero for those coefficients for which we did not.

6–8. a.  i.  The coefficient of CV is -0.19 with a SE1βn 2 of 0.23.
     The R 

2 is .773, and the rest of the equation is extremely simi-
lar to Equation 5.15 except that the coefficient of CVN falls to 
-0.48 with a t-score of -1.86.

  ii.  The coefficient of N is 0.00054 with a SE1βn 2 of 0.063. The R 

2 
is .766, and the rest of the equation is identical (for all intents 
and purposes) to Equation 5.15.

 b. Theory:  P is a price ratio, and while it’s possible that a price ratio 
would be a function of the size of a market or a country, 
it’s not at all obvious that either variable would add any-
thing since CVN is already in the equation.

  t-score: Both t-scores are insignificant.
  R  

2: R 

2 falls when either variable is added.
  bias:  None of the coefficients change at all when N is added, so 

it clearly is irrelevant. The omission of CV does change the 
coefficient of CVN somewhat, making it likely that CV is 
redundant since CVN is in the equation.
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 c. Since CVN = f3CV/N4, it would make little theoretical sense to 
include all three variables in an equation, even though techni-
cally you don’t violate Classical Assumption VI by doing so.

 d. It’s good econometric practice to report all estimated equations 
in a research report, especially those that were undertaken for 
specification choice or sensitivity analysis.

Chapter 7

7–2. a.  Semilog right; as income increases, the sales of shoes will in-
crease, but at a declining rate.

 b. Linear (intercept dummy).
 c. Semilog right or linear are both justifiable.
 d. Double-log; some researchers prefer the inverse form mentioned 

in footnote 4 on page 197.
 e. Quadratic function; to show diminishing returns to scale.

7–4. a. To avoid confusion with β, let’s use αs as the coefficients.
  Coefficient αBETA αEARN αDIV

  Hypothesized sign: -  +  +
  Calculated t-score: -1.99 1.44 3.33
  tc = 1.671 (5% level), so: sig. insig. sig.

 b. It’s unusual to have a lagged variable in a cross-sectional model, 
but in this equation all the variables are for 1996–2000 except 
for BETA, which is for 1958–1994 and therefore is indeed lagged. 
Fair assumed that the risk characteristics of companies don’t 
change rapidly over time and stated that “five observations per 
company is not enough to get trustworthy estimates.” (p. 17)

 c. We don’t believe that any of Fair’s variables are potentially irrel-
evant, because the theory behind each variable is exceptionally 
strong. Some students will think that EARN might be irrelevant 
because its coefficient has a low t-score, but we disagree with this 
concern because earnings growth is one of the most important 
determinants of stock prices. A student who drops EARN should 
conclude, based on the four specification criteria, that the vari-
able belongs in the equation, because three of the four criteria 
support keeping EARN in the equation, and the t-score is close to 
being significant in the expected direction.

 d. The functional form is a semi-log left, which is indeed appropri-
ate on a theoretical basis and also because two of the indepen-
dent variables are expressed as percentages.
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 e. This optional question is intentionally difficult. EARN and DIV 
both include negative values, so it might seem impossible to run 
the regression. However, since the negative values are extremely 
small, one possible way to estimate the equation is to set all the 
negative values equal to +0.01, obtaining:

  LNPE = 3.23 - 0.19LNBETA + 0.071LNEARN + 0.098LNDIV
    10.112 10.0352 10.0282
   t = -1.69 2.02 3.49
   N = 65 R 

2 = .23
  However, these results, while completely reasonable, shed very 

little light on whether to use a double-log functional form, 
because we urge researchers to focus on theory, and not fit, to 
choose their functional forms. We think that Fair’s choice of a 
semi-log left is supported by the literature and by the fact that 
two of the independent variables are expressed in percentage 
growth terms.

7–6. a.  polynomial (second-degree, with a negative expected coefficient 
for age and a positive expected coefficient for age squared)

 b. double-log (We would not quibble with those who chose a linear 
form to avoid the constant elasticity properties of a double-log.)

 c. semilog (lnX)
 d. linear (All intercept dummies have a linear functional relation-

ship with the dependent variable by definition.)

7–8. a. Coefficient βB βS βD

  Hypothesized sign: +  +  -
  Calculated t-score: -0.08 1.85 -1.29
  tc = 1.682, so: insig. sig. insig.

  The insignificance of βnB could be caused by an omitted variable, 
but it’s likely that the interaction variable has “soaked up” the 
entire effect of beer consumption. Although we cannot reject the 
null hypothesis for βnD, we see no reason to consider D to be an 
irrelevant variable because of its sound theory and reasonable 
statistics.

 b. The interaction variable is a measure of whether the impact of 
beer drinking on traffic fatalities rises as the altitude of the city 
rises. For each unit increase in the multiple of B and A, F rises by 
0.011, holding constant all the other independent variables in the 
equation. Thus, the size of the coefficient has no real intuitive 
meaning in and of itself.

h
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 c. H0: βBA … 0
  HA: βBA 7 0
  Reject H0 because � +4.05 � 7 tc = 1.682 and 4.05 is positive and 

thus matches the sign implied by HA.
 d. Although there is no ironclad rule (as there is with slope 

 dummies) most econometricians include both interaction-term 
components as independent variables. The major reason for this 
practice is to avoid the possibility that an interaction term’s coef-
ficient might be significant only because it is picking up the effect 
of the omitted interaction-term component.

 e. The exception to this general practice occurs when there is no 
reason to expect the interaction-term component to have any 
theoretical validity on its own. We prefer Equation 7.22 to 
7.23 because we don’t believe that altitude typically would be 
included as an independent variable in a highway fatality equa-
tion. Of our other three specification criteria, only the increase 
in R 

2 supports considering A to be a relevant variable. However, 
even moderate theoretical support for the inclusion of A on its 
own would result in our preferring Equation 7.23.

Chapter 8

8–2. a.  EMPi UNITSi LANGi EXPi

  H0 β1 … 0 β2 … 0 β3 … 0 β4 … 0
  HA β1 7 0 β2 7 0 β3 7 0 β4 7 0

   tEM = - .098 tU = 2.39 tL = 2.08 tEX =  4.97
   tc = 1.725 tc = 1.725 tc = 1.725 tc = 1.725

  For the last three coefficients, we can reject H0, because the 
 absolute value of tk is greater than tc and the sign of tk is that 
specified in HA. For EMP, however, we cannot reject H0, because 
the sign of the coefficient is unexpected and because the absolute 
value of tEM is less than 1.725.

 b. The functional form is semilog left (or semilog lnY). Semilog 
left is an appropriate functional form for an equation with sal-
ary as the dependent variable, because salaries often increase in 
percentage terms when an independent variable (like experience) 
increases by one unit.

 c. There’s a chance that an omitted variable is pulling down the 
coefficient of EMP, but it’s more likely that EMP and EXP are 
redundant (because in essence they measure the same thing) and 
are causing multicollinearity.
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 d. This lends support to our opinion that EMPi and EXPi are 
redundant.

 e. If we knew that this particular school district didn’t give credit for 
teaching experience elsewhere, then it would make sense to drop 
EXP. Without that specific knowledge, however, we’d drop EMP 
because EXP includes EMP.

 f. Theory: EMP clearly has a theoretically strong impact on salary, 
but EMP and EXP are redundant, so we should keep only one.

  t-Test: The variable’s estimated coefficient is insignificant in the 
unexpected direction.

  R2: The overall fit of the equation (adjusted for degrees of 
 freedom) improves when the variable is dropped from the 
equation.

  Bias: The exercise gives t-scores only, but if you work back-
ward, you can calculate the SE1βn 2s. If you do this, you’ll find 
that the coefficient of EXP does indeed change by more than a 
standard error when EMP is dropped from the equation. This 
is exactly what you’d expect to happen when a redundant vari-
able is dropped from an equation; the coefficient of the remain-
ing redundant variable will adjust to pick up the effect of both 
variables.

    Thus even though it might appear that two of the specifica-
tion criteria support keeping EMP in the equation, in actuality all 
four support the conclusion that they’re redundant and that EMP 
should be removed. As a result, we have a strong preference for 
Equation 8.22 over Equation 8.21.

8-4.  Dominant variables are likely in a and d. In a, the number of 
games won should equal the number of games played (which is 
a  constant) minus the number of games lost. In d, the number of 
autos produced should equal four times the number of tires bought 
(if no spare is sold with the cars or five if a spare is included).

8–6. a. Coefficient: βM βB βA βS

  Hypoth. sign: +  +  +  +
  t-value: 5.0 1.0 −1.0 2.5
  tc = 1.645 reject do not do not reject
  (5% one-sided  reject reject 
  with infinite d.f.)
 b. The insignificant t-scores of the coefficients of A and B could have 

been caused by omitted variables, irrelevance, or multicollinearity 
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(a good choice, since that’s the topic of this chapter). Since many 
MBA students are in their 20s, the collinearity between A and B 
must be fairly spectacular (Stanford gave us no clues). In addi-
tion, experienced econometricians would be concerned that the 
dependent variable is “truncated” because it can’t be higher than 
4.0. This implies that the equation should have been estimated 
by a technique (similar to those we cover in Chapter 13) that is 
unfortunately beyond the scope of this text.

 c. It’s probably a good idea, since the improvement in GPA caused 
by extra maturity may eventually be offset by a worsening in GPA 
due to separation from an academic environment.

 d. We believe in making just one change at a time to best analyze 
the impact of each change on the estimated regression. Thus, our 
first choice would be to drop either A or B (we’d prefer to drop 
A, but on theoretical grounds, not as a result of the unexpected 
sign). Switching to a polynomial before dropping one of the 
redundant variables will only make things worse, in our opinion.

Chapter 8

Hints for the sAT Interactive regression Learning exercise

 1.  Severe multicollinearity between APMATH and APENG is the 
only possible problem in this regression. You should switch to 
the AP linear combination immediately.

 2.  An omitted variable is a distinct possibility, but be sure to choose 
the one to add on the basis of theory.

 3.  Either an omitted or irrelevant variable is a possibility. In this 
case, theory seems more important than any mild statistical 
 insignificance.

 4.  On balance, this is a reasonable regression. We see no reason to 
worry about theoretically sound variables that have slightly in-
significant coefficients with expected signs. We’re concerned that 
the coefficient of GEND seems larger in absolute size than those 
reported in the literature, but none of the specification alterna-
tives seems remotely likely to remedy this problem.

 5.  An omitted variable is a possibility, but there are no signs of bias 
and this is a fairly reasonable equation already.

 6.  We’d prefer not to add PREP (since many students take prep 
courses because they did poorly on their first shots at the SAT) or 
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RACE (because of its redundancy with ESL and the lack of real 
diversity at Arcadia High). If you make a specification change, be 
sure to evaluate the change with our four specification criteria.

 7.  Either an omitted or irrelevant variable is a possibility, although 
GEND seems theoretically and statistically strong.

 8.  The unexpected sign makes us concerned with the possibility that 
an omitted variable is causing bias or that PREP is irrelevant. If 
PREP is relevant, what omission could have caused this result? 
How strong is the theory behind PREP?

 9.  This is a case of imperfect multicollinearity. Even though the VIFs 
are only between 3.8 and 4.0, the definitions of ESL and RACE 
(and the high simple correlation coefficient between them) make 
them seem like redundant variables. Remember to use theory 
(and not statistical fit) to decide which one to drop.

 10.  An omitted variable or irrelevant variable is a possibility, but 
there are no signs of bias and this is a fairly reasonable equation 
already.

 11.  Despite the switch to the AP linear combination, we still have an 
unexpected sign, so we’re still concerned with the possibility that 
an omitted variable is causing bias or that PREP is irrelevant. If 
PREP is relevant, what omission could have caused this result? 
How strong is the theory behind PREP?

 12.  All of the choices would improve this equation except switching 
to the AP linear combination. If you make a specification change, 
be sure to evaluate the change with our four specification criteria.

 13.  To get to this result, you had to have made at least three suspect 
specification decisions, and you’re running the risk of bias due 
to a sequential specification search. Our advice is to stop, take a 
break, review Chapters 6–8, and then try this interactive exercise 
again.

 14.  We’d prefer not to add PREP (since many students take prep 
courses because they did poorly on their first shots at the SAT) or 
ESL (because of its redundancy with RACE and the lack of real 
diversity at Arcadia High). If you make a specification change, be 
sure to evaluate the change with our four specification criteria.

 15.  Unless you drop one of the redundant variables, you’re going to 
continue to have severe multicollinearity.

 16.  From theory and from the results, it seems as if the decision to 
switch to the AP linear combination was a waste of a regression 
run. Even if there were severe collinearity between APMATH 
and APENG (which there isn’t), the original coefficients are 

Z01_STUD2742_07_SE_APP1.indd   505 02/02/16   2:54 PM



506 APPENDIX A

 significant enough in the expected direction to suggest taking no 
action to offset any multicollinearity.

 17.  On reflection, PREP probably should not have been chosen in 
the first place. Many students take prep courses only because 
they did poorly on their first shots at the SAT or because they 
anticipate doing poorly. Thus, even if the PREP courses improve 
SAT scores, which they probably do, the students who think they 
need to take them were otherwise going to score worse than their 
colleagues (holding the other variables in the equation constant). 
The two effects seem likely to offset each other, making PREP an 
irrelevant variable. If you make a specification change, be sure to 
evaluate the change with our four specification criteria.

 18.  Either adding GEND or dropping PREP would be a good choice, 
and it’s hard to choose between the two. If you make a specifica-
tion change, be sure to evaluate the change with our four specifi-
cation criteria.

 19.  On balance, this is a reasonable regression. We’d prefer not to 
add PREP (since many students take prep courses because they 
did poorly on their first shots at the SAT), but the theoretical case 
for ESL (or RACE) seems strong. We’re concerned that the coef-
ficient of GEND seems larger in absolute size than those reported 
in the literature, but none of the specification alternatives seems 
remotely likely to remedy this problem. If you make a specifica-
tion change, be sure to evaluate the change with our four specifi-
cation criteria.

Chapter 9

9–2. a.  lnYt PBt PRPt Dt

  H0 β1 … 0 β2 Ú 0 β3 … 0 β4 Ú 0
  HA β1 7 0 β2 6 0 β3 7 0 β4 6 0

   tY = 6.6 tPB = -2.6 tPRP = 2.7 tD = -3.17
   tc = 1.714 tc = 1.714 tc = 1.714 tc = 1.714
  We can reject the null hypothesis for all four coefficients because 

the t-scores all are in the expected direction with absolute values 
greater than 1.714 (the 5-percent one-sided critical t-value for 23 
degrees of freedom).

 b. With a 5-percent, one-sided test and N = 28, K = 4, the critical 
values are dL = 1.10 and dU = 1.75. Since d = 0.94 6 1.10, we 
can reject the null hypothesis of no positive serial correlation.
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 c. The probable serial correlation suggests GLS or Newey-West.
 d. We prefer the GLS equation to OLS, because we’ve rid the equa-

tion of much of the serial correlation while retaining estimated 
coefficients that make economic sense. Note that the dependent 
variables in the two equations are different, so an improved fit is 
not evidence of a better equation.

9–4. a.  Except for the first and last observations in the sample, the DW 
test’s ability to detect first-order serial correlation is unchanged.

 b. GLS can be applied mechanically to correct for serial correlation, 
but this procedure generally does not make sense; this time’s 
error term is now hypothesized to be a function of next time’s 
error term.

 c. First-order serial correlation in data that have been entered in 
reverse chronological order means that this time’s observation 
of the error term is a function of next time’s, which would be 
very unusual. This might occur if decision makers are able to 
accurately predict and adjust to future random events before they 
occur (which would be the case in a world of rational expecta-
tions and perfect future information).

9–6. a. Equation 9.29:
  Coefficient: β1 β2 β3

  Hypothesized sign: +  +  +
  Calculated t-score: 0.76 14.98 1.80
  tc = 1.721, so: insig. sig. sig.

  Equation 9.30:
  Coefficient: β1 β2

  Hypothesized sign: +  +
  Calculated t-score: 1.44 28.09
  tc = 1.717, so: insig. sig.

 b. The three statistical specification criteria imply that SP is a rel-
evant variable: R 

2 increases when SP is added, SP’s coefficient is 
significantly different from zero, and the estimated coefficient of 
SY changes by more than one standard error. However, the sign 
of the coefficient of SP is an issue. Many researchers would expect 
the sign of βn3 to be negative (an idea supported by the fact that 
the authors obtained a negative sign for the subset of the sample 
from 1960 to 1976), but the authors explain a positive sign by 
stating that the Soviet leadership became “more competitive” 
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after 1977, leading the USSR to increase defense spending as SP 
increased.

 c. For both equations, DW is far below the critical value for a 
 5-percent one-sided test, so we can reject the null hypothesis of 
no positive serial correlation. (For Equation 9.29, 0.49 6 1.12,  
and for Equation 9.30, 0.43 6 1.21.) This result raises the pos-
sibility that βn3’s t-score might be inflated, making it possible that 
SP is an irrelevant variable.

 d. Such a small improvement in the DW statistic is no evidence 
whatsoever that the serial correlation is impure.

 e. Just as we suspected, running GLS makes βn3 insignificant, resulting 
in it being even more likely that lnSP is an irrelevant variable.

Chapter 10

10–2. a.  Yes, heteroskedasticity is much more likely when CV is the de-
pendent variable than it is when P is the dependent variable, 
because the aggregate consumption of pharmaceuticals will vary 
much more widely by country than will the prices of those 
 pharmaceuticals.

 b. Breusch–Pagan Test: NR2 = 10.91 7 7.81, so we can reject the 
null hypothesis of homoskedasticity.

  White Test: NR2 = 28.62 7 the critical chi-square value of 15.51, 
so we can reject the null hypothesis of homoskedasticity. 15.51 is 
the critical value because there are only eight degrees of freedom 
because PC is a dummy variable.

 c. The HC standard error for N is 0.107; for P it is 0.127; and for PC 
it is 10.61.

 d. lnCVi = -8.21 + 1.11lnNi + 1.46lnPi + 0.88PCi

    10.142 10.442 10.482
  t =  7.94 3.30 1.82
   N = 32 R 

2 = .71

 e. CVNi = 10.89 + 1.17GDPNi - 0.36Pi - 1.95PCi

   10.132 10.112 15.522
  t =  9.22 -3.23 -0.35
   N = 32 R 

2 = .80

  where CVN = CV/N and GDPN = GDP/N.
 f. Most experienced econometricians use HC standard errors to 

deal with heteroskedasticity, so the most obvious answer is to 
choose that approach.

h
h
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 g. Although Classical Assumption V is the focus of this chapter, we 
also have to worry about violating Classical Assumption III in 
this situation. If P is a function of CV and if CV is a function of 
P, then we have a simultaneous system, and the error term is no 
longer independent of the explanatory variables. For more on 
this, see Chapter 14.

10–4. a. COi = 1273.2 + 0.720Ii 
 10.0442
 t = 16.21 R 

2 = .97

  where: CO = average consumption
   I = average income.
 b. NR2 = 3.00 6 3.84, so we cannot reject the null hypothesis of 

homoskedasticity.
 c. The White test does not agree with the Breusch–Pagan test result.
 d. Most econometricians would consider HC standard errors if 

the Breusch–Pagan test or White test indicated heteroskedastic-
ity. In this case, however, there’s another reason for considering 
HC standard errors. The ranges of the income brackets are not 
constant in Ando and Modigliani’s dataset, so the variables are 
means of ranges of differing widths. Thus it would seem reason-
able to think that different range widths might produce different 
variances for the error term, making heteroskedasticity even more 
likely.

10–6. a. Coefficient: βP βI βQ βA βS βT

  Hypoth. sign: -  +  +  +  -  +?

  t-value: -0.97 6.43 3.62 1.93 1.6 -2.85

  tc = 1.684 do not reject reject reject do not do not
  (5-percent reject    reject reject
  one-sided with  
  40 d.f., closest to 43)

  The expected signs for the coefficients of the last two variables 
are tricky. Our opinion is that having more suburban newspa-
pers should hurt metropolitan newspaper circulation but that 
the number of television stations is a measure more of the size 
of a city than of the competition a newspaper faces. By the way, 
we see Q as a proxy for quality and A as an endogenous variable 
(note that the authors did indeed estimate the equation with 
2SLS, a technique that covered in Chapter 14).

8
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 b. Heteroskedasticity seems extremely likely, since larger cities will 
have larger newspaper circulation, leading to larger error term 
variances, and it turns out that we can indeed reject the null 
hypothesis of homoskedasticity.

 c. Heteroskedasticity, multicollinearity, and omitted variables all 
seem likely.

 d. While it’s tempting to reformulate the equation by making 
the dependent variable per capita circulation, this probably 
would lessen the equation’s usefulness. Instead, we would try 
to improve the specification. Reasonable possibilities include 
attempting to reduce some of the multicollinearity (redundancy) 
among the independent variables, trying to find a better measure 
of quality than the number of editorial personnel, and substitut-
ing the number of major metropolitan newspaper competitors 
for S and T.

Chapter 11

Hints for the Housing Price Interactive exercise

  The biggest problem most students have with this interactive ex-
ercise is that they run far too many different specifications “just to 
see” what the results look like. In our opinion, all but one or two of 
the specification decisions involved in this exercise should be made 
before the first regression is estimated, so one measure of the qual-
ity of your work is the number of different equations you estimated. 
Typically, the fewer the better.

   As to which specification to run, most of the decisions involved 
are matters of personal choice and experience. Our favorite model 
on theoretical grounds is:

 +  -  -  +  +  +
Pi =  β0 +  β1Si +  β2Ni +  β3Ai +  β4A

2
i  +  β5Yi +  β6CAi +  ei

  We think that BE and BA are redundant with S. In addition, we can 
justify both positive and negative coefficients for SP, giving it an 
ambiguous expected sign, so we’d avoid including it. We would not 
quibble with someone who preferred a linear functional form for 
A to our quadratic. In addition, we recognize that CA is quite insig-
nificant for this sample, but we’d retain it, at least in part because it 
gets quite hot in Monrovia in the summer.

Z01_STUD2742_07_SE_APP1.indd   510 02/02/16   2:54 PM



511ANSWERS

   As to interactive variables, the only one we can justify is between 
S and N. Note, however, that the proper variable is not S # N but 
instead is S # (5 - N), or something similar, to account for the differ-
ent expected signs. This variable turns out to improve the fit while 
being quite collinear (redundant) with N and S.

   In none of our specifications did we find evidence of serial cor-
relation or heteroskedasticity, although the latter is certainly a pos-
sibility in such cross-sectional data.

Chapter 12

12–2. a.  The double-log functional form doesn’t change the fact that this 
is a dynamic model. As a result, Y and M almost surely are related 
by a distributed lag.

 b. In their relationship to M, both Y and R have the same distrib-
uted lag pattern over time, since the λn  of 0.60 applies to both. 
(The equation is in double-log form, so technically the relation-
ships are between the logs of those variables.)

 c. Serial correlation is always a concern in a dynamic model. Many 
students will look at the Durbin–Watson statistic of 1.80 and 
conclude that there is no evidence of positive serial correlation 
in this equation, but that statistic is biased toward 2 in the pres-
ence of a lagged dependent variable. Ideally, we would use the 
Lagrange Multiplier Serial Correlation Test, but we don’t have 
the data to do so. Durbin’s h test, which is beyond the scope of 
this text, provides evidence that there is indeed serial correlation 
in the equation. For more, see Robert Raynor, “Testing for Serial 
Correlation in the Presence of Lagged Dependent Variables,” The 
Review of Economics and Statistics, Vol. 75, No. 4, pp. 716–721.

12–4.  LM = NR2 = 24*0.0056 = 0.134 6 3.84 = 5-percent critical chi-
square value with one degree of freedom, so we cannot reject the 
null hypothesis of no serial correlation.

Chapter 13

13–2. a.  WN: The log of the odds that a woman has used a recognized form 
of birth control is 2.03 higher if she doesn’t want any more chil-
dren than it is if she wants more children, holding ME constant.
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  ME: A one-unit increase in the number of methods of birth con-
trol known to a woman increases the log of the odds that she has 
used a form of birth control by 1.45, holding WN constant.

  LPM: If the model were a linear probability model, then each 
individual slope coefficient would represent the impact of a one-
unit increase in the independent variable on the probability that 
the ith woman had ever used a recognized form of birth control, 
holding the other independent variable constant.

 b. Yes, but we didn’t expect βnME to be more significant than βnWN.
 c. As we’ve said before, β0 has virtually no theoretical significance. 

See Section 7.1.
 d. We’d add one of a number of potentially relevant variables; for 

instance, the educational level of the ith woman, whether the ith 
woman lives in a rural area, and so on.

13–4. a.  There are only two women in the sample who are over 65, and 
both of them are out of the workforce. Because this causes a near 
singular matrix, most Logit programs, including Stata’s, will not 
be able to estimate this equation.

 b. In both models, the coefficient of A is insignificantly different 
from zero, R 

2
P falls when A is added, and the other coefficients 

don’t change by a standard error when A is added. As a result, 
you’d include A in the equation only if you believe it clearly 
belongs there on the basis of theory.

 a. Dn i = - 0.22 - 0.38Mi - 0.001Ai + 0.09Si

   10.162 10.0072 10.042
   t = -2.43 -0.14 2.42
   R 

2 = .29 N = 30 R 

2
p = .806

 b. ln3Di/11 - Di24 = -5.27 - 2.61Mi - 0.01Ai + 0.67Si

   11.202 10.042 10.322
   -2.17 -0.25 2.10
   R 

2
p = .76

Chapter 14

14–2. a. If e2 decreases, Y2 decreases and then Y1 decreases.
 b. If eD increases, QD increases, and then QS increases (equilibrium 

condition) and Pt increases. (Remember that the variables are 
simultaneously determined, so it doesn’t matter which one is on 
the left-hand side.)

∏
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 c. If e1 increases, CO increases, and then Y increases and YD 
increases.

14–4. a.  There are three predetermined variables in the system, and both 
equations have three slope coefficients, so both equations are 
exactly identified. (If the model specified that the price of beef 
was determined jointly with the price and quantity of chicken, 
then it would not be predetermined, and the equations would be 
 underidentified.)

 b. There are two predetermined variables in the system, and both 
equations have two slope coefficients, so both equations are 
exactly identified.

 c. There are seven predetermined variables in the system, and there 
are three slope coefficients in both equations, so the first two 
equations are overidentified. Note that we don’t worry about the 
identification properties of the third equation because it isn’t 
part of the simultaneous system.

 d. There are five predetermined variables in the system, and there 
are three, two, and four slope coefficients in the first, second, 
and third equations, respectively, so all three equations are 
overidentified.

14–6. a.  OLS estimation will still encounter simultaneity bias because 
price and quantity are simultaneously determined. Not all en-
dogenous variables will appear on the left-hand side of a struc-
tural equation.

 b. The direction of the bias depends on the correlation between the 
error term and the right-hand-side endogenous variable. If the 
correlation between the error term and price is positive, as it most 
likely is, then the simultaneity bias will also be positive.

 c. Three: stage one: P as a function of YD and W
  stage two: QD as a function of Pn and YD: QS as a function of Pn and W

 d. OLS:  Qn D = 57.3 - 0.86P + 1.03YD
    Qn S = 167.5 + 3.95P - 1.42W

  2SLS: Qn D = 95.1 - 6.11Pn + 2.71YD
   Qn S = 480.2 + 13.5Pn - 5.50W

Chapter 15

15–2. a. $310,120.00
 b. 117,276; 132,863; 107,287; Nowheresville
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15–4. a.  P isn’t a dummy variable. Instead, it’s a variable whose main function 
is to be multiplied by other variables so that the sign of the resulting 
interaction variable changes depending on the incumbent’s party.

 b. The interaction variables were required because the dependent 
variable measures the percentage of votes won by the Democrats, 
but the independent variables measure items that support (or 
damage) public support for the incumbent party. For example, if a 
Democrat is in office in a time of high growth, that growth should 
increase the share of votes won by Democrats, so a positive sign 
makes sense. However, if a Republican is in office in a time of high 
growth, the growth should decrease the share of votes won by the 
Democrats, so a negative sign makes sense. Multiplying GROWTH 
by +1 if the incumbent is a Democrat and -1 if the incumbent is 
a Republican (by using P) is a way of accomplishing this goal.

 c. 
VOTE = 48.70 + 8.183P - 1.845DUR*P + 0.087DOW*P + 0.535GROWTH*P
   12.3962 10.8432 10.0702 10.1972
 t =   3.42 -2.19 1.25 2.71
 -0.762INFLATION*P + 0.040ARMY*P - 0.078SPEND*P
 10.3632 10.0342 10.0362
 -2.10 1.15 -2.18
 N = 21 R 

2 = .77 DW = 2.20
 d. The coefficient of DUR*P is negative, while the coefficient of 

ARMY*P is positive, both opposite of their expected signs. The 
coefficients of the other interactive terms have the expected signs. 
We can reject the null hypotheses for P (assuming a positive 
expected sign), GROWTH*P, INFLATION*P, and SPEND*P. We 
cannot reject for DUR*P, DOW*P, and ARMY*P.

 e. Plugging the actual values for 2000 into the equation, we get a 
forecast of 52.740, which is 2.475 percentage points higher than 
the actual 50.265. For 2004, we get a forecast of 44.280, which is 
4.306 percentage points below the actual 48.586.

 f. To do this, we should estimate Equation 15.20 with data through 
2004, producing:

VOTE = 48.76 + 7.340P - 1.659DUR*P + 0.116DOW*P + 0.496GROWTH*P
 12.2082 10.8122 10.0642 10.1892
 t =  3.32 -2.04 1.80 2.63
 -0.727INFLATION*P + 0.039ARMY*P - 0.081SPEND*P
 10.3422 10.0342 10.0342
 -2.13 1.14 -2.36
   N = 23 R 

2 = .75 DW = 2.23

h
h
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  Plugging the actual values for 2008 into this equation, we get 
a forecast of 42.892, surprisingly below the share that Barack 
Obama actually earned.

Chapter 16

16–2. a. ∆OUTCOMEEaston = 28,500 - 25,000 = 3,500
  ∆OUTCOMEAllentown = 23,750 - 22,500 = 1,250
 b. We must assume that the changes in the outcome would have 

been the same in both the treatment and control group (had 
there been no treatment) in order for this estimation to be valid. 
However, there was a $2,500 disparity between the average 
incomes prior to the treatment, so there most likely are several 
differences between the two groups.

 c. Even if the underlying assumption in part b is met, we should be 
cautious when interpreting our conclusions. A data set with only 
two observations is absurdly small and is unlikely to provide 
accurate results except by chance.

16–4. a.  This is a natural experiment dataset that also happens to be a 
panel dataset because it contains observations on the same vari-
able from the same cross-sectional sample from two different 
time periods.

 b. The appropriate technique is the difference-in-differences estima-
tor, resulting in:

  ∆SMOKE = -2.43 - 0.73TAX
   10.572
   t =  -1.29
   N = 45 R 

2 = .015
 c. The estimated coefficient is almost significant in the expected 

direction, but the fit is terrible. Most experienced researchers 
won’t be surprised by this result, because of the design of the 
research. In particular, it seems extremely optimistic to expect 
to explain cigarette consumption by state using a dummy for 
whether the cigarette tax rate increased as the only independent 
variable. Variables other than tax rates certainly play a role, as 
does the fact that some states increased cigarette taxes by substan-
tially more than did others, and yet that information is lost if you 
limit yourself to a dummy variable, since it tells you only whether 
taxes increased, not the amount by which they increased.

®
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16–6. a. ∆Q = 0.039 - 0.025∆P
   (0.002)
   t =  -12.33
   N = 4 R 2 = .98
 b. Fixed effects and differencing produce identical results for the 

coefficient and standard error on the price variable. The fixed 
effect approach, however, produces estimates for coefficients 
on time and entity dummy variables. The adjusted R-squared 
will also differ. But since the variables of interest should be the 
same in the differencing and fixed effect approaches, the identi-
cal results for the price variable produced by the two methods is 
reassuring. They produce identical answers.

 c. The error term in the differencing model certainly appears to be 
defined in such a way as to be serially correlated.

8
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Statistical Tables
Appendix B

The following tables present the critical values of various statistics used pri-
marily for hypothesis testing. The primary applications of each statistic are 
explained and illustrated. The tables are:

B-1 Critical Values of the t-Distribution

B-2 Critical Values of the F-Statistic: 5-Percent Level of Significance

B-3 Critical Values of the F-Statistic: 1-Percent Level of Significance

B-4 Critical Values of the Durbin–Watson Test Statistics dL and dU

B-5 The Normal Distribution

B-6 The Chi-Square Distribution
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Table B-1: The t-Distribution

The t-distribution is used in regression analysis to test whether an estimated 
slope coefficient (say, βn k) is significantly different from a hypothesized value 
(such as βH0

). The t-statistic is computed as:

tk = 1βn k - βH0
2/SE1βn k2

where βn k is the estimated slope coefficient and SE1βn k2 is the estimated stan-
dard error of βn k. To test the one-sided hypothesis:

 H0: βk … βH0

 HA: βk 7 βH0

the computed t-value is compared with a critical t-value tc, found in the t-table  
on the opposite page in the column with the desired level of significance 
for a one-sided test (usually 5 percent) and the row with N - K - 1 degrees 
of freedom, where N is the number of observations and K is the number of 
explanatory variables. If 0 tk 0 7 tc and if tk has the sign implied by the alterna-
tive hypothesis, then reject H0; otherwise, do not reject H0. In most econo-
metric applications, βH0

 is zero and most computer regression programs will 
calculate tk for βH0

= 0. For example, for a 5-percent one-sided test with 15 
degrees of freedom, tc = 1.753, so any positive tk larger than 1.753 would 
lead us to reject H0 and declare that βn k is statistically significant in the hy-
pothesized direction at the 5-percent level.

For a two-sided test, H0: βk = βH0
 and HA: βk ≠ βH0, the procedure is 

identical except that the column corresponding to the two-sided level of sig-
nificance is used. For example, for a 5-percent two-sided test with 15 degrees 
of freedom, tc = 2.131, so any tk larger in absolute value than 2.131 would 
lead us to reject H0 and declare that βn k is significantly different from βH0

 at 
the 5-percent level of significance. For more on the t-test, see Chapter 5.
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Table B-1 Critical Values of the t-Distribution

Level of Significance

Degrees of 
Freedom

One-Sided: 10% 
Two-Sided: 20%

5% 
10%

2.5% 
5%

1% 
2%

0.5% 
1%

 1 3.078 6.314 12.706 31.821 63.657
 2 1.886 2.920 4.303 6.965 9.925
 3 1.638 2.353 3.182 4.541 5.841
 4 1.533 2.132 2.776 3.747 4.604
 5 1.476 2.015 2.571 3.365 4.032
 6 1.440 1.943 2.447 3.143 3.707
 7 1.415 1.895 2.365 2.998 3.499
 8 1.397 1.860 2.306 2.896 3.355
 9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617
(Normal)

∞ 1.282 1.645 1.960 2.326 2.576

Source: Reprinted from Table IV in Sir Ronald A. Fisher, Statistical Methods for Research 
Workers, 14th ed. (copyright © 1970, University of Adelaide) with permission of Hafner, a  
division of the Macmillan Publishing Company, Inc.
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Table B-2: The F-Distribution

The F-distribution is used in regression analysis to deal with a null hypoth-
esis that contains multiple hypotheses or a single hypothesis about a group 
of coefficients. To test the most typical joint hypothesis (a test of the overall 
significance of the regression):

 H0: β1 = β2 = g  = βK = 0

 HA: H0 is not true

the computed F-value is compared with a critical F-value, found in one of 
the two tables that follow. The F-statistic has two types of degrees of free-
dom, one for the numerator (columns) and one for the denominator (rows). 
For the null and alternative hypotheses above, there are K numerator (the 
number of restrictions implied by the null hypothesis) and N - K - 1 de-
nominator degrees of freedom, where N is the number of observations and 
K is the number of explanatory variables in the equation. This particular F-
statistic is printed out by most computer regression programs. For example, 
if K = 5 and N = 30, there are 5 numerator and 24 denominator degrees 
of freedom, and the critical F-value for a 5-percent level of significance  
(Table B-2) is 2.62. A computed F-value greater than 2.62 would lead us to 
reject the null hypothesis and declare that the equation is statistically signifi-
cant at the 5-percent level. For more on the F-test, see Section 5.6.
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Table B-2 Critical Values of the F-Statistic: 5-Percent Level of Significance

v1 = Degrees of Freedom for Numerator

1 2 3 4 5 6 7 8 10 12 20 H

 1 161 200 216 225 230 234 237 239 242 244 248 254

 2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.5

 3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.79 8.74 8.66 8.53

 4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.96 5.91 5.80 5.63

 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.74 4.68 4.56 4.36

 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.06 4.00 3.87 3.67

 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.64 3.57 3.44 3.23

 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.35 3.28 3.15 2.93

 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.14 3.07 2.94 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.98 2.91 2.77 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.85 2.79 2.65 2.40

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.75 2.69 2.54 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.67 2.60 2.46 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.60 2.53 2.39 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.54 2.48 2.33 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.49 2.42 2.28 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.45 2.38 2.23 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.41 2.34 2.19 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.38 2.31 2.16 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.35 2.28 2.12 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.32 2.25 2.10 1.81

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.30 2.23 2.07 1.78

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.27 2.20 2.05 1.76

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.25 2.18 2.03 1.73

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.24 2.16 2.01 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.16 2.09 1.93 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.08 2.00 1.84 1.51

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 1.99 1.92 1.75 1.39

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.91 1.83 1.66 1.25

∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.83 1.75 1.57 1.00

Source: Abridged from M. Merrington and C. M. Thompson, “Tables of percentage points 
of the inverted beta (F) distribution,” Biometrika, Vol. 33, 1943, p. 73, by permission of the 
Biometrika trustees.
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Table B-3: The F-Distribution

The F-distribution is used in regression analysis to deal with a null hypoth-
esis that contains multiple hypotheses or a single hypothesis about a group 
of coefficients. To test the most typical joint hypothesis (a test of the overall 
significance of the regression):

 H0: β1 = β2 = g   = βK = 0

 HA: H0 is not true

the computed F-value is compared with a critical F-value, found in Tables B-2  
and B-3. The F-statistic has two types of degrees of freedom, one for the 
 numerator (columns) and one for the denominator (rows). For the null and 
alternative hypotheses above, there are K numerator (the number of restric-
tions implied by the null hypothesis) and N - K - 1 denominator degrees 
of freedom, where N is the number of observations and K is the number of 
explanatory variables in the equation. This particular F-statistic is printed out 
by most computer regression programs. For example, if K = 5 and N = 30,  
there are 5 numerator and 24 denominator degrees of freedom, and the criti-
cal F-value for a 1-percent level of significance (Table B-3) is 3.90. A com-
puted F-value greater than 3.90 would lead us to reject the null hypothesis 
and declare that the equation is statistically significant at the 1-percent level. 
For more on the F-test, see Section 5.6.
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Table B-3 Critical Values of the F-Statistic: 1-Percent Level of Significance

v1 = Degrees of Freedom for Numerator

1 2 3 4 5 6 7 8 10 12 20 H

1 4052 5000 5403 5625 5764 5859 5928 5982 6056 6106 6209 6366

2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.5

3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.2 27.1 26.7 26.1

4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.5 14.4 14.0 13.5

5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.1 9.89 9.55 9.02

6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.87 7.72 7.40 6.88

7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.62 6.47 6.16 5.65

8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.81 5.67 5.36 4.86

9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.26 5.11 4.81 4.31

10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.85 4.71 4.41 3.91

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.54 4.40 4.10 3.60

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.30 4.16 3.86 3.36

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.10 3.96 3.66 3.17

14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 3.94 3.80 3.51 3.00

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.80 3.67 3.37 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.69 3.55 3.26 2.75

17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.59 3.46 3.16 2.65

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.51 3.37 3.08 2.57

19 8.19 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.43 3.30 3.00 2.49

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.37 3.23 2.94 2.42

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.31 3.17 2.88 2.36

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.26 3.12 2.83 2.31

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.21 3.07 2.78 2.26

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.17 3.03 2.74 2.21

25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.13 2.99 2.70 2.17

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 2.98 2.84 2.55 2.01

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.80 2.66 2.37 1.80

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.63 2.50 2.20 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.47 2.34 2.03 1.38

∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.32 2.18 1.88 1.00

Source: Abridged from M. Merrington and C. M. Thompson, “Tables of percentage points 
of the inverted beta (F ) distribution,” Biometrika, Vol. 3, 1943, p. 73, by permission of the 
Biometrika trustees.
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Table B-4: The Durbin–Watson Statistic

The Durbin–Watson statistic is used to test for first-order serial correla-
tion in the residuals. First-order serial correlation is characterized by  
et = ρet - 1 + ut, where et is the error term found in the regression equation 
and ut is a classical (not serially correlated) error term. Since ρ = 0 im-
plies no serial  correlation, and since most economic and business models 
imply positive serial correlation if any pure serial correlation exists, the 
typical hypotheses are:

 H0: ρ … 0

 HA: ρ 7 0

To test the null hypothesis of no positive serial correlation, the Durbin– 
Watson statistic must be compared to two different critical d-values, dL and 
dU found in Table B-4, depending on the level of significance, the number of 
explanatory variables (K) and the number of observations (N). For example, 
with 2 explanatory variables and 30 observations, the 5-percent one-tailed crit-
ical values are dL = 1.28 and dU = 1.57, so any computed Durbin– Watson 
statistic less than 1.28 would lead to the rejection of the null hypothesis.  
For computed DW d-values between 1.28 and 1.57, the test is inconclusive, 
and for values greater than 1.57, we can say that there is no evidence of posi-
tive serial correlation at the 5-percent level. These ranges are illustrated in the 
following diagram:

0 2 4dL

1.28  

dU

  1.57

Reject H0

Test
Inconclusive

1-Percent One-Sided Test of H0 :  t … 0 vs. HA : t 7 0

Do Not Reject H0

Two-sided tests are done similarly, with 4 - dU and 4 - dL being the 
 critical DW d-values between 2 and 4.
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Table B-4  Critical Values of the Durbin–Watson Test Statistics dL and dU: 
5-Percent One-Sided Level of Significance  
(10-Percent Two-Sided Level of Significance)

N
K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

dL dU dL dU dL dU dL dU dL dU dL dU dL dU

15 1.08 1.36 0.95 1.54 0.81 1.75 0.69 1.97 0.56 2.21 0.45 2.47 0.34 2.73
16 1.11 1.37 0.98 1.54 0.86 1.73 0.73 1.93 0.62 2.15 0.50 2.39 0.40 2.62
17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.66 2.10 0.55 2.32 0.45 2.54
18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06 0.60 2.26 0.50 2.46
19 1.18 1.40 1.07 1.53 0.97 1.68 0.86 1.85 0.75 2.02 0.65 2.21 0.55 2.40
20 1.20 1.41 1.10 1.54 1.00 1.68 0.89 1.83 0.79 1.99 0.69 2.16 0.60 2.34
21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96 0.73 2.12 0.64 2.29
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94 0.77 2.09 0.68 2.25
23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92 0.80 2.06 0.72 2.21
24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90 0.84 2.04 0.75 2.17
25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89 0.87 2.01 0.78 2.14
26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88 0.90 1.99 0.82 2.12
27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.00 1.86 0.93 1.97 0.85 2.09
28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85 0.95 1.96 0.87 2.07
29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84 0.98 1.94 0.90 2.05
30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83 1.00 1.93 0.93 2.03
31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83 1.02 1.92 0.95 2.02
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82 1.04 1.91 0.97 2.00
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81 1.06 1.90 0.99 1.99
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.14 1.81 1.08 1.89 1.02 1.98
35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80 1.10 1.88 1.03 1.97
36 1.41 1.52 1.35 1.59 1.30 1.65 1.24 1.73 1.18 1.80 1.11 1.88 1.05 1.96
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80 1.13 1.87 1.07 1.95
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.20 1.79 1.15 1.86 1.09 1.94
39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79 1.16 1.86 1.10 1.93
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79 1.18 1.85 1.12 1.93
45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78 1.24 1.84 1.19 1.90
50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77 1.29 1.82 1.25 1.88
55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.37 1.77 1.33 1.81 1.29 1.86
60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77 1.37 1.81 1.34 1.85
65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77 1.40 1.81 1.37 1.84
70 1.58 1.64 1.55 1.67 1.53 1.70 1.49 1.74 1.46 1.77 1.43 1.80 1.40 1.84
75 1.60 1.65 1.57 1.68 1.54 1.71 1.52 1.74 1.49 1.77 1.46 1.80 1.43 1.83
80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77 1.48 1.80 1.45 1.83
85 1.62 1.67 1.60 1.70 1.58 1.72 1.55 1.75 1.53 1.77 1.50 1.80 1.47 1.83
90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78 1.52 1.80 1.49 1.83
95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78 1.54 1.80 1.51 1.83

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78 1.55 1.80 1.53 1.83

Source: N. E. Savin and Kenneth J. White, “The Durbin–Watson Test for Serial Correlation 
with Extreme Sample Sizes or Many Regressors,” Econometrica, November 1977, p. 1994. 
 Reprinted with permission.

Note: N = number of observations, K = number of explanatory variables excluding the constant 
term. We assume that the equation contains a constant term and no lagged dependent variables.
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Table B-5: The Normal Distribution

The normal distribution is usually assumed for the error term in a regression 
equation. Table B-5 indicates the probability that a randomly drawn number 
from the standardized normal distribution (mean = 0 and variance = 1) 
will be greater than or equal to the number identified in the side tabs, 
called Z. For a normally distributed variable e with mean μ and variance σ2,  
Z = 1e - μ2/σ. The row tab gives Z to the first decimal place, and the 
 column tab adds the second decimal place of Z.
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Table B-5 The Normal Distribution

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247

0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859

0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483

0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451

0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148

0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611

1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170

1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985

1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823

1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455

1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367

1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294

1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143

2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110

2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084

2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036

2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026

2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0020 .0020 .0019

2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014

3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0011 .0010

Source: Based on Biometrika Tables for Statisticians, Vol. 1, 3rd ed., 1966, with the permission 
of the Biometrika trustees.

Note: The table plots the cumulative probability Z 7 z.
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Table B-6: The chi-Square Distribution

The chi-square distribution describes the distribution of the estimate of the 
variance of the error term. It is useful in a number of tests, including the 
White test of Section 10.3 and the Lagrange Multiplier Serial Correlation 
Test of Section 9.4. The rows represent degrees of freedom, and the columns 
denote the probability that a number drawn randomly from the chi-square 
distribution will be greater than or equal to the number shown in the body 
of the table. For example, the probability is 10 percent that a number drawn 
randomly from any chi-square distribution will be greater than or equal to 
22.3 for 15 degrees of freedom.

To run a White test for heteroskedasticity, calculate NR2, where N is the 
sample size and R2 is the coefficient of determination (unadjusted R2) from 
Equation 10.9. (This equation has as its dependent variable the squared 
residual of the equation to be tested and has as its independent variables 
the independent variables of the equation to be tested plus the squares and 
cross-products of these independent variables.)

The test statistic NR2 has a chi-square distribution with degrees of freedom 
equal to the number of slope coefficients in Equation 10.9. If NR2 is larger 
than the critical chi-square value found in Statistical Table B-6, then we reject 
the null hypothesis and conclude that it’s likely that we have heteroskedastic-
ity. If NR2 is less than the critical chi-square value, then we cannot reject the 
null hypothesis of homoskedasticity.
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Table B-6 The Chi-Square Distribution

Degrees  
of  

Freedom

Level of Significance 
(Probability of a Value at Least as Large as the Table Entry)

10% 5% 2.5% 1%

1 2.71 3.84 5.02 6.63

2 4.61 5.99 7.38 9.21

3 6.25 7.81 9.35 11.34

4 7.78 9.49 11.14 13.28

5 9.24 11.07 12.83 15.09

6 10.64 12.59 14.45 16.81

7 12.02 14.07 16.01 18.48

8 13.36 15.51 17.53 20.1

9 14.68 16.92 19.02 21.7

10 15.99 18.31 20.5 23.2

11 17.28 19.68 21.9 24.7

12 18.55 21.0 23.3 26.2

13 19.81 22.4 24.7 27.7

14 21.1 23.7 26.1 29.1

15 22.3 25.0 27.5 30.6

16 23.5 26.3 28.8 32.0

17 24.8 27.6 30.2 33.4

18 26.0 28.9 31.5 34.8

19 27.2 30.1 32.9 36.2

20 28.4 31.4 34.2 37.6

Source: Based on Biometrika Tables for Statisticians, Vol. 1, 3rd ed., 1966, with the permission 
of the Biometrika trustees.

Note: The table plots the cumulative probability Z 7 z.
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Applied regression analysis, steps in
data collection, inspection, and  

cleaning, 69–71, 75, 76–77, 
90–91

defined, 66
documenting results, 72–73, 78–79, 91
dummy variables and, 79–83, 80
equation estimating and evaluating, 

72, 78, 91
exercise (econometric lab), 89–91
hypothesize expected signs of coeffi-

cients, 68–69, 75, 90
independent variables and functional 

form selection, 67–68, 74–75, 90
literature review and theoretical 

 modeling, 66–67, 74, 89–90
overview, 66–73
practical tips, 351–352
restaurant location decisions, 73–79. 

See also Woody’s restaurant 
 locations example

ARIMA forecasting technique
defined, 456
models, 457–459

Assumptions, in Classical model.  
See Classical Assumptions

Atukeren, Erdal, 375n8
Autocorrelation. See Serial correlation
Autoregressive equations, 367, 378
Autoregressive process, defined, 457
Average observations, 401

Barkley, Andrew, 176n10
Batte, Marvin T., 217, 217n9
Baum, Christopher F., 320n11

Acceptance regions, 119, 120, 133, 135, 
287, 287

Additive error term, 93–94
Adjusted R2, 52–54

dummy dependent variable models 
and, 402

incorrect functional form and,  
206–207

misuse example, 55–56
specification criteria for potential 

variable, 166
misuse example, 168
selection example, 177

specification search bias and,  
171–172

AIC (Akaike’s Information Criterion), 
187–188

Akaike, Hirotogu, 187n19
Akaike’s Information Criterion (AIC), 

187–188
Allen, R. C., 190n1
Alternative functional forms,  

192–201
Alternative hypotheses, 116–118

defined, 117
Amatya, Ramesh, 408n10
Amemiya, T., 404n8
American Economic Review, 73n5
Analysis

regression, 5–14. See also Regression 
analysis

residual, 164
sensitivity, 72, 174, 177
single-equation linear regression, 5

Ando, Albert, 332n17

INDEX

NOTE: Page numbers in italics refer to figures and tables; footnotes are indicated by 
“n” following the page number.
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Bayaner, Ahmet, 217n9
Bayesian Information Criterion (BIC), 

187–188
Bayesian statistics, 116, 116n1
Becketti, Sean, 373n4
Belsley, D. A., 233n5
Bertrand, M., 470n4
Best Linear Unbiased Estimator (BLUE), 

106
Best practices, for specification searches, 

170
βn

sampling distribution of, 100–105, 
103, 104

SE(βn), 105
β0 (constant or intercept term), 7, 8, 

190–192
Classical Assumptions, 191
components, 190–191, 190n1
dummy variable and, 80n8
estimates, 192
regression equation and, 71
suppression, 191, 191–192
use and interpretation, 190–192

β1 (slope coefficient), 7–8
cross-sectional model, 22

Bias
Best Linear Unbiased Estimator, 106
in distributions of βn , 103
Durbin–Watson test, 284n5
in dynamic models, 368
expected, 161, 162–163, 162n4, 164
Generalized Least Squares, 295
heteroskedasticity, 312–313
measurement errors, 442
multicollinearity, 226–227, 236
Newey–West standard errors, 296
omitted variable. See Omitted 

 variable bias
Ordinary Least Squares, 418–421
serial correlation, 280n1
specification, 158
specification criteria, 166

independent variable selection 
 example, 177

misuse example, 168

specification searches, 171–172
t-tests, 171–172
Two-Stage Least Squares, 424n5

Bias equations, omitted variables, 161, 
162–163, 162n4

Biased estimator, 102, 102n7
BIC (Bayesian Information Criterion), 

187–188
Binomial logit, defined, 397
Binomial logit model, 397–404

example, 403–404
Binomial probit

defined, 404
model, 404–405

BLUE (Best Linear Unbiased Estimator), 
106

Borders
null hypothesis, 122
values, 130n8

Brada, Josef C., 300n18, 301
Brazilian black market for dollars  

(data set), 336–337
Breusch, T. S., 316n6
Breusch–Godfrey test, 289n11
Breusch–Pagan test, 316–318, 317n8, 320

defined, 316
British Household Panel Data Survey, 

474
Brown, Eleanor, 86
Bruggink, Thomas H., 150n15
Buckles, Stephen, 181n11
Bucklin, R. E., 334, 334n19
Bureau of Labor Statistics, 473

Cahill, Preston, 218n10
Campbell, J., 378n12
Campbell, John Y., 380n15
Canadian National Public Health 

 Survey, 474
Card, David, 469, 469n3
Carnot, N., 444n3
Cassel, Eric, 360n8
Causality

dual, 412
Granger, 374–376
regression analysis and, 5–6

532 INDEX
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Caves, R. E., 334, 334n19
Census Catalog and Guide, 345
Checklist, regression projects,  

354–355
Chi-square test

heteroskedasticity, 317, 319, 327
serial correlation, 373

Chicken consumption example
Durbin–Watson statistic, 288n8, 452
forecasting and, 445–447, 447, 452
Generalized Least Squares,  

294–295
Cigarette consumption (data set), 487
City expenditures functions

aggregate, 323
per capita, 324

Classical Assumptions, 92
constant variance for error term (V), 

96–98, 97
explanatory variables uncorrelated 

with error term (III), 95–96
independence of observations of error 

term (IV), 96
linear regression model (I), 93–94, 

93n1
multicollinearity of explanatory 

 variables (VI), 98
normal distribution for error term 

(VII), 98–99, 99
violations

constant term, 191
heteroskedasticity, 306, 307
instrumental variables, 421–422
multicollinearity, 221–222
omitted variables and, 

 consequences of, 159–160
serial correlation, 273, 275, 282, 

371–372
simultaneous equations, 411,  

415, 416
zero population mean, error terms 

with (II), 94, 94–95
Classical error term, 93
Classical model, 92–108

Classical Assumptions, 92–99, 93n1
Gauss–Markov Theorem, 106–107

sampling distribution of βn , 100–105
standard econometric notation,  

107–108, 108
Classical normal error term, 93
Classical null hypothesis, 116–118
Cleaning data, 71, 75, 90–91
Cochrane, D., 293n14
Cochrane–Orcutt method, 293, 293n15
Coefficient errors, applied regression 

analysis, 72, 73n4, 78, 78n7
Coefficient estimators, properties, 107
Coefficients, 7

double-log functions, 195, 195
dummy variable, 81–82
estimated/estimating, 78, 78n7

t-values and, 78, 78n7
estimated logit, interpreting, 400–403
expected signs, 68–69, 75, 90
F-tests, 142
heteroskedasticity, 312–313
linear in the, 93n1, 193
multicollinearity, 226–228
multivariate regression, 12, 41–42
omitted variable, 158
Ordinary Least Squares and, 38, 

38n3, 392
partial regression, 41–42
random, estimation of, 105
reduced-form, 417
regression, notation for, 108
seasonal dummy, 147
serial correlation, 275
simple correlation, 232–233, 232n3, 

233n4
slope. See Slope coefficient (β1)
structural, 413
true, 15n9
unexpected sign, handling of,  

348–350
Cohen, Kalman, 335n21
Cohen, Malcolm, 409n11
Cointegration, 382–384

defined, 383
Cola supply and demand model,  

414, 416
Collection, of data, 69–71, 75
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Critical values
defined, 119
F-value, 145, 145n14
t-values, 119, 123–125, 132, 133, 135

selecting, 130
Cross-sectional data sets/models

defined, 21
heteroskedasticity in, 309
housing prices, 20–23, 22
pooled cross sections across time, 

473n7
time series studies vs., 274–275

Data
cleaning, 71, 75, 90–91
collecting, 69–71, 75, 90–91
inspecting, 71, 75, 90–91
missing, 346
panel. See Panel data
research projects, 342–346

Data collection
advanced sources for, 346–348
missing data, 346
panel data, 347–348
for regression projects, 342–346
surveys, 347

Data entry errors, finding, 71, 91
Data mining, 172–173
Data sets

Brazilian black market for dollars, 
336–337

cigarette consumption, 487
college application, 61–62
cross-sectional. See Cross-sectional 

data sets/models
financial aid example, 46–47
Four Musketeers, 388
heteroskedasticity in, 308–309
homeowners’ (non-self-employed) 

income and consumption, 333
housing prices, 361–362
labor force participation of women, 396
murder rate example, 479–481
MVP 1998, 243
petroleum consumption, 326–327
pharmaceutical price discrimination, 

154

College application (data set), 61–62
Collinearity, 98, 222n1. See also 

 Multicollinearity
Common Application, 60, 60n9

data set example, 61–62
Compound null hypotheses, 142, 147
Condition number, 233n5
Conditional forecast/forecasting, 

450–451
defined, 450

Conditions
omitted, dummy variables and, 80, 

82–83
order, 433–434
rank, 433n11

Confidence intervals, 139–142
defined, 139
forecasting, 449, 452–454, 455

Confidence level, 127
Consequences

heteroskedasticity, 312–314
irrelevant variables, 165
multicollinearity, 226–231
omitted variables, 159–160
serial correlation, 281–284

Constant term, defined, 7. See also β0 
(constant or intercept term)

Constant variance, 96–98, 97, 306
Constants, 7
Control groups, 465–472, 472

defined, 465
Corrections

Error Correction Model, 384n20
heteroskedasticity, 320–324,  

337–339
multicollinearity, 235–240
omitted variables, 163–164
serial correlation, 291–296

in dynamic models, 373–374
Correlation

serial. See Serial correlation
simple correlation coefficients,  

232–233, 232n3, 233n4
spurious, 376–385

Covariance stationarity, 377n11
Criteria specification, 166–167

misuse example, 167–169
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measurement errors, 440–441
other techniques, 404–406
variations in. See under Y variable

Derivatives, partial, 401
Description, 2–3
Deseasonalizing data, 146
Detection

heteroskedasticity, 314–320
econometric lab exercise, 337–338

multicollinearity, 232–235
nonstationarity, 386
serial correlation, 284–291

Deterministic component, regression 
equation, 9

Deviations, standard, 107
Dewald, W. G., 73n5
Diamond, A., 470n4
Diaz, Jaime, 25n11
DiCioccio, E., 484n14
Dickey, D. A., 380n14
Dickey–Fuller test, 379–382

defined, 380
Diekmann, Florian, 217, 217n9
Difference-in-differences estimator, 

 defined, 470
Differences

estimator, 467
observed, systematic reasons for, 466

Differencing models, 475n10, 
 488–489

Discrete heteroskedasticity, 308, 309
Dispersion. See Variance
Distributed lag models, 365–367

defined, 365
Distributions

biases, 103
discrete heteroskedasticity, 309

homoskedasticity vs., 307, 308
impure serial correlation, 278
intercept, 484
multicollinearity, 226–227, 227
normal, 420n4

error terms and, 98–99, 99
sampling distribution of βn , 100–105, 

103, 104
simultaneity bias, 421
Standard Normal, 99

pooled cross sections across time, 
473n7

Presidential election, 463
from RateMyProfessor.com, 29
salon haircut, 488
SAT interactive learning exercise, 

248–249
small macromodel, 426
Soviet defense spending, 301
stock price, 212–213
student consumption, 229
Woody’s restaurant locations 

 example, 76–77
Decision rules

acceptance and rejection regions,  
285, 287

defined, 119
F-test, 143
hypothesis testing, 119, 120, 121
t-test, 123–125, 131

Decomposition, variance, 47, 48
Degree of confidence, 127
Degrees of freedom

critical t-value and, 123
defined, 53
dynamic models, 366–368
F-tests, 143–145
heteroskedasticity and, 319, 320n11, 

327n15
number of observations and, 69–70
regression equation and

adjustment, 54
calculating, 70, 70n3

sequential specification criteria and, 
186, 187

t-tests, 123, 124
variance of distribution and, 104

Δ notation, 194n2
Demeaned model, 475n10
Denny’s restaurants, 73n6. See also 

Woody’s restaurant locations 
 example

Dent, W., 375n9
Dependent variables, 5–6, 390

binomial logit model, 397–404
estimated vs. actual value, 15–16
linear probability model, 390–397
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Durbin–Watson tables (Stanford 
 University), 289n10

Durbin–Watson test
defined, 284
for serial correlation detection,  

284–286, 285n7
dynamic models, 372, 372n3
examples, 286–289, 287
one-sided, 287

Dynamic models, 364, 367–371
basic form, 367–371
bias, 368
defined, 367
distributed lag models, 365–367
example, 369–370
geometric weighting schemes, 369
Granger causality and, 374–376
serial correlation, 371–374

corrections, 373–374
testing for, 372–373

serial correlation and, 374–376

ECM (Error Correction Model),  
384n20

EconLit, 67, 67n1, 345
Econometric Labs

applied regression analysis, 89–91
heteroskedasticity, detection and 

 correction exercise, 337–339
hypothesis testing, 155–156
regression analysis, 63–64
serial correlation, 303–305
specification, 217–220

Econometrics
alternative approaches, 4–5
Classical model, 92–108
definitions, 1–2
ethical behavior and, 351–352
notation conventions, 107–108, 108
software. See individually named 

 applications; Software
uses, 2–4

Economic activity, relationships 
 describing, 2–3

Economic data, sources, 345. See also 
Data collection

Disturbance (error) terms. See Stochas-
tic error terms

Documentation, results, 72–73,  
78–79, 91

Dominant variable, defined, 224
Dorfman, J. J., 393n2
Dornbusch, Rudiger, 334, 334n20
Double-log functional forms, 194–196, 

195, 201
defined, 194

Driver’s license test, binomial logit 
 example, 403–404

Dropping variables, 162n4, 164,  
170, 171

redundant variables, 236–238
Dual causality, 412
Dummy variable trap, 81
Dummy variables, 14, 146–147, 

319n10
applied regression analysis and, 

79–83, 80
defined, 79
dependent, 390

binomial logit mode, 397–404
binomial probit model, 404–405
linear probability model, 391–392
multinomial models, 405–406
Ordinary Least Squares and, 392
other techniques, 404–406

examples, 175
independent

functional forms, 196, 203–206
in housing price exercise, 359, 361
log of, 196

omitted condition and, 82–83
one-time, 83
seasonal, 146–147
slope, 203–206, 205

Durbin, J., 284n4
Durbin–Watson statistic

heteroskedasticity, 325
serial correlation

equation, 284–286
software calculation, 289n9
tables, 289n11
use examples, 286–289
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estimated regression equation, 16
homoskedastic vs. heteroskedastic, 

310–311, 310–311
notation, 108
observations, 96
standard deviation, notation for, 108
stochastic, 8–11, 94, 94–95, 95n2, 96
with zero population mean, 94, 

94–95
Errors

coefficients, 73n4
data entry, finding, 71, 91
explanatory variables, 95–96
heteroskedasticity, 307, 321

homoskedasticity vs., 310–311, 
310–311

impure serial correlation, 307
irrelevant variables, 165–166
Mean Square Error, 105
measurement, 441–442

Y variation and, 9
nonlinear relationships, 10
normal distribution, 98–99, 99
Ramsey Regression Specification Error 

Test, 185–186
rounding, 39
serial correlation, 275
specification, 68, 157–158
standard. See Standard errors
term distribution with a mean of 

zero, 94, 94–95
Type I Errors, 118–119
Type II Errors, 118–119
variables, 440–442

ESS (explained sum of squares), 48–49, 
48n6, 145, 145n13

defined, 48
estat bgodfrey lag, 289n11
Estimated coefficients, 78, 78n7

logit, interpreting, 400–403
random, 105
regression, weight/height example, 40

Estimated regression equation, 14–17
defined, 14
Ordinary Least Squares technique 

and, 50–54

Economics, experimental, 465n1
methods, 466–472

Efficiency, of estimators, 106
Elasticity, defined, 194
Elder, John, 381n16
Elliott, G., 444n3
Endogenous variables, 412–413, 428n9

defined, 412
Engel curves, 198
Engle, Rob, 290n12, 382n17, 384n19
Equations

autoregressive, 367, 378
Best Linear Unbiased Estimator, 106
bias, omitted variables and, 161, 

162–163, 162n4
distributed lag models, 366
Durbin–Watson test, 284
Generalized Least Squares, 292–295
identification problem, 430–434
independent variables, 161n3
investment, 427n9
linear

in the coefficients, 193
defined, 8, 8n5
in the variables, 192–193

multiple regression, 121
Ordinary Least Squares, 392
Ramsey Regression Specification Error 

Test, 186, 186n16
reduced-form, 416–417

OLS and, 423
regression. See Regression equation
second-degree polynomial, 200, 200, 

201
serial correlation, 282
simultaneous. See Simultaneous 

equations
single-equation linear models, 6–8
stochastic error terms, 8–11
supply and demand simultaneous, 416
weight-guessing, 17–19, 20

Error Correction Model (ECM), 384n20
Error term

additive, 93–94
classical, 93
constant variance, 96–98, 97
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Exogenous variables, 412–413
defined, 412

Expectations
signs of coefficients, 68–69, 75, 90
values, 9

estimated coefficients, notation  
for, 108

Expected bias, 161, 162–163, 162n4, 164
Expected value, defined, 9
Experimental economics, 465n1

methods, 466–472
Experiments

impossible, 468
natural, 469–472
random assignment, 466–468

Explained sum of squares (ESS), 48–49, 
48n6, 145, 145n13

defined, 48
Explanatory variables. See Independent 

variables

F-statistic, 143
Breusch–Pagan test, 316n7

F-test, 142–147, 376, 376n10
defined, 142
other uses, 146–147
overview, 142–144
significance, 144–146

F-values, 143–144
Fair, Ray C., 211, 211n6, 444n2, 

461n13
Fallows, James, 246n7
FDA (Food and Drug Administration), 

116
Feedback effects, 412
Financial aid (multivariate regression 

model example), 43–47
as ability to pay, 45
data set, 46–47
as function of high school rank, 45

First-order autocorrelation coefficient, 
defined, 275

First-order serial correlation, 275
Durbin–Watson test, 284–289, 285n6
Generalized Least Squares, 292
Lagrange Multiplier test, 289

Estimates
constant terms, 192
defined, 36
heteroskedasticity, 312–313
multicollinearity and, 226
Ordinary Least Squares, 384
regression, 288
serial correlation, 282–283
Two-Stage Least Squares, 424n5
validity, 49–50

Estimation
binomial logit, 397–400
coefficients, 78, 78n7
distributed lag models, 365–367
dynamic models, 368, 370
fixed effects models, 472n6, 477–483
linear probability model, 392
Ordinary Least Squares, 37

estimator properties, 106–107
example, 39–40
multivariate regression model, 

40–49
properties, 37, 37n2
regression equations, 50–54, 72, 78
single-independent-variable 

 models, 35–40
random coefficients, 105
sample size and, 69
standard errors, 78, 78n7, 314n4
Two-Stage Least Squares, 428n10

Estimators, 100
Best Linear Unbiased Estimator, 106
biased, 102, 102n7
defined, 37
differences, 467

difference-in-differences, 470
efficiency, 106
Ordinary Least Squares coefficients, 

properties of, 106–107
Two-Stage Least Squares, 424–425, 

424n5
unbiased, 101, 102n7, 106, 107

Ethics, 351–352
EViews, 72

Durbin–Watson statistic, 288n9
Generalized Least Squares, 294n16
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inverse, 197, 197n4
lagged independent variables and, 

202–203
linear, 194, 201
polynomial, 199–201, 200, 201
pure serial correlation and, 275
quadratic, 200, 201, 200
selecting, 201, 201
semilog, 196–199, 198, 201
stochastic error and, 9–10

Functions
double-log, 194–196, 195
investment, 427n8
linear, 98
polynomial, 199–201, 200
semilog, 196–199, 198

Gauss–Markov Theorem, 106–107
heteroskedasticity, 313

GDP (Gross Domestic Product),  
3–4, 344

Generalized Least Squares (GLS), 
292–295

defined, 292
Gensemer, Bruce, 438n12
Geometric weighting schemes, 369
Geweke, John, 375n9
GLS (Generalized Least Squares), 

292–295
defined, 292

Gneezy, Uri, 465n1
Goldman, Dana, 409n12
Goodman, Allen C., 360n9
Goodness-of-fit measures, 50–52, 51

spurious regression and, 56
Granger, C. W. J., 375n7, 379n13, 

382n17, 384n19, 444n3
Granger, Clive, 4n4
Granger causality, 374–376, 389n22

defined, 375
Graves, Ronald L., 300n18, 301
Greene, William H., 406n9, 442n14
Grether, G. M., 359n6
Griffiths, W. E., 187n20
Griliches, Zvi, 290n12, 442n15
Gross Domestic Product (GDP), 3–4, 344

Fit
goodness of. See Goodness of fit 

 measures
mathematical vs. statistical, in X,Y 

 coordinate system, 69–70, 70, 71
measuring, linear probability model 

and, 392
Fixed effects model, 475–477

defined, 475
estimation, 472n6, 477–483
panel data and, 481–482, 482n11
random effects model vs., 484

Fluctuations, random, 466
Food and Drug Administration (FDA), 

116
Forecasting, 3–4, 21, 443–444

ARIMA models, 456–459
complex problems, 449–456
defined, 444
examples, 447
uses, 444–449

Forms. See Functional forms
Forst, Jerry, 176n10
Four Musketeers (data set), 388
Four specification criteria, 166. See also 

Specification criteria
Fowles, Richard, 216, 216n8
FRED (Federal Reserve Economic 

 Database), 345
Freeman, Vera, 181n11
Friedman, Milton, 116
Friend, I., 332n17
Fuller, W. A., 380n14
Functional form test, RESET as, 186n18
Functional forms

alternatives, 192–201, 201
applied regression analysis, 67–68, 

74–75, 90
constant term, use and interpretation 

of, 190–192
double-log, 194–196, 195, 201
dummy variables and, 196, 203–206, 

205
impure serial correlation and,  

278–279, 280, 281
incorrect, problems with, 206–209, 208
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Heteroskedasticity-consistent covari-
ance matrix (HCCM), 321n12

Heteroskedasticity-corrected standard 
errors (HCSEs), 321, 323n11, 
330

detected, 321
Hill, R. Carter, 187n20
Hirschfield, Mary, 86
Homeowners’ (non-self-employed) 

 income and consumption  
(data set), 333

Homoskedasticity, 306, 307, 308
errors, 310–311, 311
heteroskedasticity vs., 307, 308

error terms, 310–311, 310–311
in linear probability model, 392

Hoover, Kevin, 375n8
Housing prices

cross-sectional model, 21–23, 22
data set, 361–362
interactive exercise, 360–363
regression analysis explaining, 20–23

Hypothesis
alternative, 116–118
classical null, 116–118
expected signs of coefficients, 68–69, 

75, 90
priors and, 68

Hypothesis testing, 3, 5, 99, 115–116, 
155–156

confidence level, 127
data mining and, 172–173
decision rules, 119, 120, 121
error types, 118–119
exercise (econometric lab), 155–156
overview, 116–121
serial correlation, 283–284
t-tests, 121–139

“i” subscript, in regression equation, 
13–14

order, 14n8
Identification

defined, 430
problem, 430–434

Ihlanfeldt, Keith, 360, 360n8

Groups
control, 465–472, 472
treatment, 465–472, 472

Grubb, David, 368n2
Guides, regression projects, 356, 357

Hainmueller, J., 470n4
Hamermesh, Daniel S., 73n5
Hastings, Justine, 471n5, 471n6
Hausman test, 484
Hawthorne Effect, 468
Haynes, Stephen, 461n14, 462n15, 463
HCCM (heteroskedasticity-consistent 

covariance matrix), 321n12
HCSEs (heteroskedasticity-corrected 

standard errors), 321, 323n11, 
330

detected, 321
Hedonic models, 21n10, 87–89, 87n11

housing prices, 358–360
Hendry, David F., 137n10
Heo, Uk, 389, 389n21
Heterogeneity, unobservable, 468
Heteroskedasticity

bias, 312–313
Classical Assumptions, 97, 98, 306, 

307
coefficients, 312–313
consequences, 312–314
data sets, 308–309
defined, 307
detection and correction exercise 

(econometric lab), 337–339
discrete, 308, 309
errors, 310–311, 311
estimates, 312–313
example, 324–330
Gauss–Markov Theorem, 313
homoskedasticity vs., 307, 308

error terms, 310–311, 310–311
impure, 311–312
pure, 307–311
remedies for, 320–324
statistics, 313n3
testing for, 314–320
time-series models, 311
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Indifference curves, 195, 195–196
Inflation, high variance inflation factors 

and, 233–235, 233n5, 235n6
Inspection, of data, 71, 75, 90–91
Instrumental variables, 421–422, 

428n9, 442
defined, 421

Interaction terms, 203–204
defined, 203

Intercept dummy, 205
defined, 203

Intercept term. See also β0 (constant or 
intercept term)

defined, 7
distribution, 484

Internet resources, for project data, 345
Interpreting estimated logit coefficients, 

400–403
defined, 400

Intervals, confidence, 139–142
Intriligator, M. D., 290n12
Inverse functional form, 197, 197n4
Investment functions, 427n8
Irrelevant variables, 165–167

defined, 165
Isoquant, 195, 195

Jacobs, Rodney, 375n9
Jevons, Stanley, 6
Johnson, Bruce, 55n7, 63n11
Joint null hypotheses, 142, 147
Jones, R., 332n17
Journal of Economic Literature, 67
Journal of Money, Credit, and Banking, 

73n5
Judge, George C., 187n20

Kain, J., 359n6
Keele, Luke, 374n6
Keeler, James, 438n12
Kelly, Nathan, 374n6
Kenkel, Donald S., 113n10
Kennedy, Peter, 100n6, 116n1, 350n5, 

381n16, 383n18, 384n20, 
446n5, 474n9, 484n13

Keynes, John Maynard, 89, 116

Impact multipliers, defined, 417
Imperfect multicollinearity, 224–225, 

225
defined, 224

“Importance,” testing of, 138–139
Impossible experiments, 488
Impure heteroskedasticity, 311–312

defined, 311
Impure serial correlation, 278–281, 

279, 281
defined, 278
Lagrange Multiplier test, 365
simple lags, 365

Inconclusive region, serial correlation 
detection, 285n7, 287

Incorrect functional forms, problems 
with, 206–209, 208

Independent variables, 5–6, 12
data mining, 172–173
equations, 161n3
error term relationship and, 96
examples, 174–177
interaction terms as, 203–204
lagged, 202–203
measurement errors, 441–442
multicollinearity, 222n1
multivariate regression coefficients 

and, 41
notation in regression analysis, 11–12
omitted. See Omitted variables
omitted variables, 158–164
in regression equation, examples, 

13–14
selecting

in applied regression analysis,  
67–68, 74–75, 90

example, 174–177
sensitivity analysis, 174, 177
single-independent-variable models, 

OLS and, 35–40
specification, 170–174. See also 

 Specification
errors, 68, 157–158

stochastic error and, 8, 8n6
Index of Leading Indicators, 450
Indicator, leading, 450–451
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defined, 126
marginal, 127
t-test value, 123, 130

selecting, 126–127
Likelihood ratio test, 185n14
Linear equations, 8n5

defined, 8
Linear functional forms, 98, 198, 201, 

281
nonlinear forms vs, 208, 208–209

Linear in the coefficients, 93n1
defined, 193

Linear in the variables, 192–193
defined, 192

Linear probability model, 390–397
defined, 390
example of, 394–396
Ordinary Least Squares and, 392, 399
problems with, 392–394, 393

Linear regression model, 93–94, 93n1, 
194, 280

Linneman, Peter, 359, 359n7
List, John, 465n1
Literature review, in applied regression 

analysis, 66–67, 74, 89–90
Lo, A. W., 334, 334n19
Loeb, Peter D., 216, 216n8
Log-log (double-log) functional forms, 

194–196, 195, 201
Log (logarithm)

defined, 196
natural, 196–197
zero value and, 196, 197n4

Longitudinal data. See Panel data
Lott, William F., 334n20, 337
Lutkepohl, Helmut, 187n20

MacKinnon, J. G., 382n17, 384n19
Macromodel, small (data set), 426
Maddala, G. S., 186n18, 399n5, 404n8
Maeshiro, Asatoshi, 374n5
Malkiel, Burton, 449n6
Mankiw, N. G., 378n12
MAPE (mean absolute percentage 

error), defined, 446
Marginal significance level, 127

Keynesian macroeconomic model, 
naive linear, 425–429, 427n7

Kmenta, Jan, 118, 118n2
Kobayashi, Masahito, 293n15
Koen, V., 444n3
Koopmans, T. C., 1n1
Koyck, L. M., 368n1
Koyck distributed lag models, 368n1
Krueger, Alan, 469, 469n3

Labor force participation of women 
(data set), 396

Lagged independent variables,  
202–203, 413, 416, 423

Lagrange Multiplier (LM) test
defined, 289
heteroskedasticity and, 314n5
for serial correlation, 289–291, 

289n11
dynamic models and, 372–373

Lags
defined, 202
distributed lag models, 365–367
estat bgodfrey, 289n11
Koyck distributed lag models, 368n1
lagged values, 364
lagged variables, 202–203, 413, 416, 

423
dependent as independent, 364–372

time, 412n1
Lancaster, Tony, 116n1
Leading indicator, 450–451

defined, 450
Leamer, Ed, 1n1, 118n4, 375n9
Least squares. See Generalized Least 

Squares (GLS); Ordinary Least 
Squares (OLS); Two-Stage Least 
Squares (2SLS); Weighted Least 
Squares (WLS)

Lee, Tsoung-Chao, 187n20
Left-out variables. See Omitted variables
Left-side semilog, 199, 208
Lerman, Robert I., 409n11
Level of confidence, 127
Level of significance

choosing, 130
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demeaned, 475n10
differencing, 475n10, 488–489
distributed lag, 365–367
dynamic. See Dynamic models
Error Correction, 384n20
fixed effects, 475–477

estimation, 477–483
random effects model vs., 484

forecasting. See Forecasting
functional forms. See Functional 

forms
hedonic, 21n10, 87–89, 87n11, 

358–360
Keynesian, 427n7
Koyck distributed lag, 368n1
linear probability, 390–397
multinomial, 405–406
multivariate regression, estimating 

with OLS, 40–49
Ordinary Least Squares, 392, 399
panel data, 482
random effects, 483–484
simultaneous equation, forecasting 

and, 449
single-equation linear, 6–8
single-independent-variable, 

 estimating with OLS, 35–40
specifying, in applied regression 

 analysis, 67–68, 74–75, 90
supply and demand, 414, 416
theoretical, in applied regression 

analysis, 66–67, 74, 89–90
time-series. See Time-series models

Modigliani, Franco, 332n17
Monte Carlo studies, 187n20, 419n3
Moore, Robert L., 86
Mosteller, Frederick, 160n2
Moving-average process, defined, 457
MSE (Mean Square Error), 105
Multicollinearity, 98

bias, 236
consequences, 226–231
correction, 235–240
defined, 222n1
detection of, 232–235
distribution, 226–227, 227

Markov scheme, 275
Martinez-Vasquez, Jorge, 360, 360n8
Maximum likelihood (ML), 399, 399n4
Mayer, Thomas, 173n9
McCulloch, J. Huston, 306n1
McCullough, B. D., 290n12
McGillvray, R. G., 392n1
McIntosh, C. S., 393n2
Mean

forecasting methods and, 446
properties, 102–103
zero population, 94, 94–95

Mean absolute percentage error 
(MAPE), defined, 446

Mean Square Error (MSE), 105
Measurement error

simultaneous equations, 441–442, 
442n15

Y variation and, 9
Measurement unit, of variables, 70–71
Measurements. See also Equations

economic, 1–2. See also Econometrics
forecasting accuracy, 445–447, 447
overall fit, linear probability model, 

392
Meese, R., 375n9
Mendelsohn, Robert, 360n8
Methods

Cochrane–Orcutt, 293, 293n15
experimental economics, 466–472
mean absolute percentage error, 446
Prais–Winsten, 293, 293n15
Root mean square error, 446

Michener, Ron, 329
Mieszkowski, Peter, 359n6
Miller, Roger Leroy, 167n6
Missing data, 346
Misuse of adjusted R2, 55–56
ML (maximum likelihood), 399, 399n4
Models

ARIMA, 456–459
binomial logit, 397–404
binomial probit, 404–405
classical. See Classical model
cross-sectional. See Cross-sectional 

data sets/models
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Newey–West standard errors, 295–296
defined, 295
heteroskedasticity, 321n12

Nixon, Clair J., 217n9
NLSY (National Longitudinal Survey of 

Youth), 473
No serial correlation, 278
Non-random samples, 467–468
Nonexperimental quantitative research, 

steps in, 4–5
Nonstationarity, 376–385

cointegration, 382–384
detecting, 386
Dickey–Fuller test, 382–384
macroeconomic model, 429
sequences for dealing with, 384–385
spurious correlation and, 376–385
spurious regression, 379
testing for, 379–382

Nonstationary
defined, 377
time series, 377–378

Normal distributions, 420n4
error terms, 98–99, 99

Notation
delta, as used in text, 194n2
independent variables, 11–12
regression, extending, 11–14
standard econometric, 107–108, 108
time series studies, 274

Null hypothesis, 116–118
acceptance, 119, 120, 121
border for, 121–122, 130n6
defined, 117
F-test, 142–147
heteroskedasticity, 320, 320n11, 327, 

327n15, 328
homoskedasticity, 316–317
rejection, 117–119, 120, 123–125
stating, 130n8
testing, 155–156

Oat market supply and demand model, 
437–438

Observations
average, 401

Multicollinearity (continued)
imperfect, 224–225, 225
perfect, 98, 221, 222–224, 224
remedies for, 235–238
severe, 227, 366, 370
t-scores, 227–228
unadjusted, 238–240
unavoidable, 366
unexpected sign and, 349
variances, 226–227, 227

Multinomial logit, 406n9
Multinomial models, 405–406
Multiple regression equations, t-statistic 

and, 121
Multipliers

impact, 417
Lagrange. See Lagrange Multiplier 

(LM) test
Multivariate regression coefficients, 12, 

41–42
defined, 41

Multivariate regression model
defined, 12
equation, 12, 42–43, 43n4
estimating with OLS, 40–49
example, 43–47

Murder rate (data set), 479–481
Murti, V. N., 216, 216n7
MVP 1998 (data set), 243

Narrow distribution, 308, 309
National Health Interview Survey 

(1990), 113n11
National Longitudinal Survey of Youth 

(NLSY), 473
Natural experiments, 469–471

defined, 469
example, 471–472

Natural logs, 196–197
defined, 196

Negative critical values, 382n17
Negative serial correlation,  

276, 279
Nelson, C. R., 378n12, 457n10
Newbold, P., 379n13
Newey, W. K., 295n17
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distributed lag models, 365–367
estimation using

estimator properties, 106–107
example, 39–40
multivariate regression model, 

40–49
regression equations, 50–54, 72, 78
single-independent-variable 

 models, 35–40
F-test, 143
heteroskedasticity and, 313–314
linear equations and, 195
linear probability models, 392, 399
mechanics, 38
misuse of adjusted R2, 55–56
multicollinearity and, 223, 228
reduced-form equations and, 423
regression equations, evaluating 

 quality of, 49–50
serial correlation, 282–283
simultaneous equations and, 411
using, reasons for, 36–37

Otto, James, 28n13
Outlier, 71
Overall fit, measuring, 392

p-values, 127–128
defined, 127
limitations, 137n9

Pagan, A. R., 316n6
Panel data, 473–475, 482

defined, 473
fixed effects model applied to,  

481–482, 482n11
formation, 465
regression project and, 347–348

Parameters, Ordinary Least Squares 
 estimate, 37

Park, R. E., 317n8
Park test, 317n8
Partial derivatives, 401
Partial regression coefficients, 41–42
Pechman, Clarice, 334, 334n20
Perfect multicollinearity, 98, 221, 

 222–224, 224
defined, 222

differences in, systematic reasons for, 
466

error term, 96
error variance and, 97n5
estimated regression equation, 16
number, 69
order, 273, 274, 291n13, 294
outlier, 71
sampling distribution, 104
serial correlation, 273

OLS. See Ordinary Least Squares (OLS)
Omitted condition

defined, 80
dummy variables and, 82–83

Omitted variable bias
avoiding, 159n1
defined, 158
example, 162–163
expected, 161, 162–163, 162n4, 164
multicollinearity, 230–231

Omitted variables, 158–164
bias. See Omitted variable bias
consequences, 159–161
correcting for, 163–164
defined, 158
evidence, 158
heteroskedasticity, 312, 328
serial correlation, 280n1

One-sided critical values, 382
One-sided test

defined, 117
Durbin–Watson test, 287
t-test, 125, 129–133, 133

One-time dummy variable, 83
Online computer databases, 345
Orcutt, G. H., 293n14
Order, observation, 273, 274, 291n13, 

294
Order condition, 433–434

defined, 433
Ordered logit model, 406n9
Ordinary Least Squares (OLS), 35–57

bias, 418–421
Classical Assumptions, 92–99, 93n1
coefficients, 38, 38n3
defined, 36
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Proportionality factor, defined, 310
Proxy variables, 346
PSID (U.S. Panel Survey of Income 

 Dynamics), 474
Publications, as data sources, 345
Pure heteroskedasticity, 307–311

defined, 307
Pure serial correlation, 275–278, 282, 

373
defined, 275

Quadratic functional form, 200, 201, 
200

Qualitative conditions, dummy 
 variables and, 203, 205

Quantitative research, nonexperimental, 
steps in, 4–5

Quasi-experiments. See Natural 
 experiments

Quigley, J., 359n6

R2, 50–52, 51
adjusted. See Adjusted R2

R 2, 54. See also Adjusted R2

R 2
p, defined, 394

Ragan, James F., Jr., 439n13
Ramanathan, Ramu, 185n14
Ramsey, J. B., 185n15
Ramsey Regression Specification Error 

Test (RESET), 185–186
equations, 186, 186n16

Random assignment experiments, 
466–468

defined, 466
Random coefficient estimation, 105
Random component, regression 

 equation, 9
Random effects model, 483–484

defined, 483
fixed effects model vs., 484

Random error term. See Stochastic error 
term

Random fluctuations, 466
Random occurrences, 105
Random variation, stochastic error 

term, 9

Peron, Pierre, 380n15
Perry, Gregory, 217n9
Perry, John, 30n15
Petroleum consumption (data set), 

326–327
Pharmaceutical price discrimination 

(data set), 154
Philips, David, 468n2
Phillips, P. C. B., 186n18
Pindyck, Robert S., 399n4, 456n8, 

457n10
Plosser, C. I., 378n12
Polynomial functional form, 199–201, 

200, 201
defined, 199

Polynomials, 185
regression, 201
serial correlation, 280

Pooled cross sections across time, 
473n7

Populations. See also Sampling
testing limits on, 139
zero population means, 94, 94–95

Positive serial correlation, 278
defined, 276

Prais, S. J., 293n15
Prais–Winsten method, 293n15, 294, 

295
defined, 293

Precedence, 374–376
Predetermined variables, 428n9

defined, 413
Presidential election (data set), 463
Priors, regression equation and, 68
Probability, 96

Durbin–Watson test, 285n7
linear probability model, 390–397

Processes
autoregressive, 457–458
moving-average, 457–458

Properties
estimators, 106–107
mean, 102–103
OLS coefficient estimators, 107
Two-Stage Least Squares, 424–425
variances, 103–105
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research projects in. See Regression 
projects

sensitivity analysis, 352
single-equation linear, 5

models, 6–8
variations, 8, 8n6

Regression coefficients, 12
double-log functions, 195, 195
estimated, weight/height example, 40
notation, 108

Regression equation
adjusted for degrees of freedom, 54
calculating degrees of freedom in, 70, 

70n3
estimated/estimating, 14–17, 72,  

78, 91
evaluating, 49–50, 72, 78, 91
“i” subscripts in, 13

order of, 14n8
Ordinary Least Squares estimate 

 validity and, 50–54
priors and, 68
quality of, 49–50
stochastic error term in, 9
“t” subscripts in, 14

order of, 14n8
weight guessing, 17–20

Regression lines
goodness-of-fit measures and,  

51, 52
slope, 22, 22
true and estimated, 16, 16–17

Regression projects
advanced data sources, 346–348
checklist, 353, 354–355, 355
data collection, 342–346
practical advice for, 348–352
running, 340–341
topic selection, 341–342
User’s Guide, 356, 357
writing, 352–353

Rejection, of null hypotheses, 117–119, 
120, 123–125

Rejection regions, 119, 120, 133, 135, 
287, 287

Research topics. See Topics

Random walk, defined, 378
Range of sample, functional forms and, 

207–209, 208
Rank condition, 433n11
Rao, Potluri, 167n6
RateMyProfessor.com, 28

ratings data set, 29
Ratio tests, 185n14
Rau, B. Bhaskara, 383n18
Ray, Subhash C., 334n20, 337
Rea, Samuel A., Jr., 409n11
Redefining variables, 321–324,  

323–324
Reduced-form coefficients, 417
Reduced-form equations, 416–417

defined, 416
Redundant variables, 236–238

defined, 237
Regression. See also Regression analysis

autoregressive equations, 367, 378
estimation, 288

Ordinary Least Squares technique 
for, 36

multivariate linear models, 12
polynomial, 201
SAT interactive regression learning 

exercise, 244–272
data set, 248–249

serial correlation and, 282n2
software packages, 319n10, 321, 

321n12
spurious, 56, 379
stepwise, 173n8

Regression analysis, 5–14
applied. See Applied regression 

 analysis
checklist, 354–355
Classical Assumptions, 92–99
defined, 5
example, 17–20
exercise (econometric lab), 63–64
housing prices, 20–23, 22
linear, 193, 194
multivariate coefficients, 12
notation extension, 11–14
practical tips, 350–351
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Sampling distribution
βn , 100–105, 103, 104
simultaneity bias and, 421

Samuelson, Paul A., 1n1
Sanford, Douglas, 28n13
Sastri, V. K., 216, 216n7
SAT interactive regression learning 

 exercise, 244–272
data set for, 248–249

Saunders, Edward M., Jr., 110n9
SC (Schwarz Criterion), 187n19
Schut, Frederick T., 152, 152n16, 153, 

154, 183n13
Schwarz, G., 187n19
Schwarz Criterion (SC), 187n19
Searches. See Specification searches
Seasonal dummies, 146–147

defined, 146
Seasonally-based serial correlation, 276
SE(βn), 105
Second-degree (quadratic) polynomial 

equations, 200, 200, 201
Second-order serial correlation, 277, 

289n10
Sego, Bob, 246n7
Selection

critical values, 130
functional form, 201, 201
independent variables, 157–158.  

See also Independent variables
applied regression analysis, 67–68, 

74–75, 90
level of significance, t-test, 126–127

Semilog
left, 199, 208
right, 199, 208

Semilog functional form, 196–199, 
198, 201

defined, 196
Sensitivity analysis, 72, 177

defined, 174
Sequences, time-series models, 384–385
Sequential binary logit, defined, 406
Sequential specification searches, 

170–171
defined, 170

RESET (Ramsey Regression  Specification 
Error Test), 185–186

equations, 186, 186n16
Residual analysis, 164
Residual sum of squares (RSS), 48–49, 

48n6, 143, 145, 145n13
defined, 48

Residuals
defined, 15
estimated regression equation, 16
heteroskedasticity, 314, 315,  

316–318, 322
Ordinary Least Squares estimate and, 

36–37
serial correlation, 280n1

Restaurant locations. See Woody’s 
 restaurant locations example

Results, documenting, 72–73, 78–79, 
91

Rezende, Leonardo, 88, 88n12,  
182n12

Rho (ρ), 275–277
Right-hand-side variables, 3n3
Right-side semilog, 199, 208
RMSE (root mean square error 

 criterion), defined, 446
Roe, Brian E., 217, 217n9
Romley, John, 409n12
Root mean square error criterion 

(RMSE), defined, 446
Ross, Douglas, 28n13
Rounding errors, 39
RSS (residual sum of squares), 48–49, 

48n6, 143, 145, 145n13
defined, 48

Rubinfeld, Daniel I., 399n4, 456n8, 
457n10

Rules. See Decision rules
Rush, Racelle, 150n15

Salon haircuts (data set), 488
Sample range, incorrect functional 

forms and, 207–209, 208
Samples

increasing size of, 238
non-random, 467–468
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Simons, James, 368n2
Simple correlation coefficients,  

232–233, 232n3, 233n4
defined, 232

Simple lags, 365
Simulation, forecasting in, 456
Simultaneity bias, 418–419

defined, 418
example, 419–420, 421
sampling distribution, 421

Simultaneous equation models, 449, 
454–456

Simultaneous equations, 3n3, 411–412
bias of Ordinary Least Squares, 

418–421
Classical Assumptions and, 415, 416
identification problem, 430–434
reduced-form, 416–417
structural, 413
systems, nature of, 412–417
Two-Stage Least Squares, 421–429

Single-equation linear regression 
 analysis, 5

models, 6–8
Single-independent-variable models, 

estimating with OLS, 35–40
Six steps in applied regression analysis,  

defined, 66. See also Applied 
 regression analysis, steps in

Slope coefficient (β1), 7–8, 69–70, 71
defined, 7
hypothesizing expected signs of, 

68–69, 69n2, 75, 90
Slope dummy

defined, 204
variables, 203–206, 205

Slopes
regression line, 22, 22
slope and intercept dummies, 205

Small macromodel (data set), 426
Software. See also EViews; Stata

Durbin–Watson statistic, 288
heteroskedasticity and, 319n10, 321, 

321n12
for OLS estimation of multivariate 

regression models, 43

Serial correlation
bias in dynamic models, 371–374
chi-square tests in, 373
Classical Assumptions, 273, 275, 282, 

371–372
consequences, 281–284
corrections, 373–374
detection of, 284–291
Durbin–Watson test, 284–289
dynamic models and, 371–374
equations, 371
error terms, 371–372

observation of, 96
exercise (econometric lab), 303–305
first-order. See First-order serial 

 correlation
forecasting, 449, 451–452
Generalized Least Squares, 292–295
hypothesis testing, 283–284
impure, 278–281, 279, 281, 365, 373
Lagrange Multiplier test, 372–373
negative, 276, 279
Newey–West standard errors, 295–296
no (absent), 278
Ordinary Least Squares, 292–295
positive, 276, 278, 287
pure, 275–278, 282, 373
remedies for, 291–296
seasonally-based, 276
second-order, 277, 289n10
statistics, 283n3
t-scores, 283–284, 296
testing for, 284–291

in dynamic models, 372–373
unreliability, 283n3

values, 280n1
Severe multicollinearity, 227, 366, 370

remedies for, 235–238
Shifting demand curve, 432
Shifting supply curve, 431, 432
Shiller, Robert J., 444n2
Sign, unexpected vs. expected, 348–349
Significance

F-test, 144–146, 144n12
level. See Level of significance, t-test

Silva, Fabio, 26n12
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Standard deviations, 107
error terms, notation for, 108
estimated coefficient terms, notation 

for, 108
Standard econometric notation,  

107–108, 108
Standard errors

border values and, 130n8
coefficients, 72, 73n4, 78, 78n7, 97, 

97n5
estimated, 78, 78n7

confidence level and, 126
data mining and, 173
heteroskedasticity and, 313–314, 

314n4
heteroskedasticity-corrected, 321, 

323n11
Newey–West. See Newey–West 

 standard errors
SE(βn), 105
White, 321n12

Standard Normal Distribution, 99
Stanford University Durbin–Watson 

tables, 289n10
Stata, 72

Durbin–Watson test, 288, 289n10
Lagrange Multiplier test, 289n11
p-value, 127n5
Prais–Winsten method, 294, 294n16
Ramsey Regression Specification Error 

Test, 185, 185n17
specification exercise, 217
terminology used by, 145n13
using, 30–34
Woody’s restaurant data set from, 

76–77
Stationarity, definitions of, 377n11
Stationary

defined, 377
time series, 377, 458

Statistical Abstract of the United States, 
345n2

Statistics
Durbin–Watson test. See  

 Durbin–Watson statistic
heteroskedasticity, 313n3

Sonstelle, Jon, 26n12
Sources, for project data, 345

advanced sources, 346–348
Soviet defense spending (data set), 301
Specification

bias, 158
criteria. See Specification criteria
defined, 67
errors, 157–158
exercise (econometric lab), 217–220
heteroskedasticity, 307
models, 67–68, 74–75, 90
multicollinearity, 228
omitted variable bias and, 158
searches. See Specification searches

Specification criteria, 166–167,  
185–188

Akaike’s Information Criterion, 
187–188

Bayesian Information Criterion, 
187–188

definitions, 166
misuse, 167–169
Ramsey’s Regression Specification 

Error Test, 185–186
Schwarz Criterion, 187–188
use cautions, 184

Specification errors, 157–158
definitions, 68, 157

Specification searches, 169–174
best practices, 170
bias, causes of, 171–172
data mining, 172–173
sensitivity analysis, 174
sequential, 170–171

Spurious correlation, 376–385
cointegration, 382–384
defined, 376
Dickey–Fuller test, 382–384
nonstationarity and, 376–385
spurious regression and, 379
time series, 377–378

sequence of steps for dealing with, 
384–385

Spurious regression, 56, 379
Srinivasan, T. N., 186n18
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t-scores, 126, 167, 168
multicollinearity, 227–228, 235–236
serial correlation, 283–284, 296

t-statistic, 121–123
defined, 121

“t” subscript, in regression equation, 14
order of, 14n8

t-test, 121–139
bias, 171–172
confidence intervals, 139–142
confidence level, 126–127
decision rules, 123–125
estimated logit coefficients, 400n6
examples, 129–136
“importance” and, 138–139
level of significance, choosing,  

126–127
limitations, 137–139
null hypothesis border, 122
one-sided, 125

examples, 129–133, 133
p-values and, 127–128
population, limits on, 139
specification criteria, 166

independent variable selection 
 example, 177

misuse example, 168
specification search bias and, 171–172
t-statistic, 121–123
theoretical validity, 137–138
two-sided, 125

examples, 134–136, 135
t-value, 78, 78n7

critical, t-test and, 119, 123–125, 130, 
132, 133, 135

estimating, 130–131
Tan, Alexander, 389, 389n21
Terza, Joseph V., 113n10
Tests/testing

Breusch–Godfrey, 289n11
Breusch–Pagan, 316–318, 320
chi-square. See Chi-square test
Dickey–Fuller, 382–384
Durbin–Watson. See Durbin–Watson 

test
errors, 118–119

serial correlation, 283n3
t-tests, 121–123

Steigerwald, Doug, 482n12
Stepwise regression, 173n8
Stochastic component, regression 

 equation, 9
Stochastic error terms, 94, 94–95,  

95n2, 96
components, 8–11
defined, 8
notation, 108
omitted variables, 159

Stock, J., 424n6
Stock, James, 333, 333n18, 428n9
Stock prices

data set, 212–213
forecasting and, 447, 447–449

Stone, J. H., 190n1
Stone, J. R., 1n1
Stone, Joe, 461n14, 462n15, 463
Structural coefficients, 413
Structural equations, defined, 413
Student consumption (data set), 229
Subscripts, order of, 14n8
Sum of squares

explained, 48–49
residual, 48–49, 48n6
total, 47, 49

Summation symbol (Σ), 36n1
Durbin–Watson test, 284–285,  

285n6
Ordinary Least Squares and, 36, 38

Summed squared residuals, 37, 38, 
42–43

Summers, Lawrence H., 172n7
Supply and demand models, 414, 416, 

437–438
Surveys

administration, 473n7
best practices, 347n4
regression project, 347

Symbols, used for stochastic error term, 
8–9

t-distribution, estimated logit 
 coefficients, 400n6
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Timmerman, A. G., 444n3
Tissot, B., 444n3
Tolerance, 235
Topics

data types for, 343–345. See also Data 
collection

selecting for regression projects, 
341–342

potential sources, 342
Total sum of squares (TSS), 49, 207

defined, 47
Transformations, Y, 206–207
Treatment groups, 465–472, 472

defined, 466
Trends, Durbin–Watson test, 285n7
True, defined, 15n9
True relationships, between variables, 16
TSS (total sum of squares), 49, 207

defined, 47
Tukey, John, 160n2
Two-sided test

defined, 117
t-test, 125

examples of, 134–136, 135
Two-Stage Least Squares (2SLS),  

421–429
defined, 422
example, 425–429
explained, 422–424
identification problem, 430–434
instrumental variables, 421–422
naive linear Keynesian macroeco-

nomic model, 425–429, 427n7
order condition, 433–434
properties of, 424–425
simultaneity bias and, 422
simultaneous equations and, 411

Two-tailed test, 117
2SLS. See Two-Stage Least Squares 

(2SLS)
Type I Errors, 118–119

border values and, 130n8
critical t-values, 123
data mining and, 173
defined, 118
level of significance and, 126

Tests/testing (continued)
F-test, 142–147, 376, 376n10
Granger causality, 374–376
Hausman, 484
for heteroskedasticity, 314–320
hypothesis. See Hypothesis testing
“importance” and, 138–139
Lagrange Multiplier. See Lagrange 

Multiplier (LM) test
likelihood ratio, 185n14
null hypotheses and, 155–156
one-sided, 117
Park, 317n8
population, limits on, 139
Ramsey Regression Specification Error 

Test, 185–186
ratios, 185n14
for serial correlation in dynamic 

models, 372–373
t-test, 121–139. See also t-test
unreliability, serial correlation and, 

283n3
White. See White test

Theoretical models, in applied regres-
sion analysis, developing, 66–67, 
74, 89–90

Theoretical validity, 137–138
Theory, specification criteria, 166

independent variable selection 
 example, 177

misuse example, 168
Time lags, 412n1

variables, 202–203, 413, 416, 423
Time series, 14

nonstationary, 377–378
stationary, 377–378
studies, 274–275

Time-series models, 364–365
dynamic models, 367–371
Granger causality, 374–376
heteroskedasticity in, 311
sequences, 384–385
serial correlation and dynamic 

 models, 371–374
spurious correlation, 376–385
stationary, 458
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Variables
bias, 171–172
dependent. See Dependent variables
dominant, 224
dropping, 162n4, 164, 170, 171
dummy. See Dummy variables
endogenous, 412–413
errors in the, 440–442
exogenous, 412–413
explanatory. See Independent variables
functional (mathematical) form of, 

67–68, 74–75, 90
independent. See Independent variables
instrumental, 421–422, 442
irrelevant, 165–167
linear in the, 192–193
movement of, 6
multicollinearity, 222n1
omitted. See Omitted variables
predetermined, 413
proxy, 346
random walk, 378
redefining, 321–324, 323–324
redundant, 236–238
relationship between, 412–413
right-hand-side, 3n3
single-independent-variable models, 

OLS and, 35–40
slope dummy, 203–206, 205
true relationships between, 16
units of measurement of, 70

Variance
coefficient estimators

notation for, 108
properties, 107

constant, 96–98, 97, 306
decomposition of, 47, 48
error terms, notation for, 108
heteroskedasticity, 307, 309–310
multicollinearity, 226–227, 227
properties, 103–105

Variance inflation factor (VIF),  
233–235, 233n5, 235n6

defined, 234
Variation. See Errors
Veal, M. R., 393n2

Type II Errors, 118–119
defined, 118
level of significance and, 126

Unbiased estimators, 101, 102n7,  
106, 107

defined, 102
Unboundedness, 397–400
Unconditional forecast, defined, 450
Unexpected sign, in regression analysis, 

handling, 348–350
Unit root, defined, 378
Units of measurement, of the variables, 

70–71
Unknown Xs, 449, 450–451
Unobservable heterogeneity, 468
U.S. economy (1945–2014),  

applied regression analysis  
(econometric lab), 89–91

U.S. News and World Report, 60n10
U.S. Panel Survey of Income Dynamics 

(PSID), 474
User’s Guides, regression projects,  

356, 357

Validity
estimates, 49–50
theoretical, 137–138

Values
borders, 130n8
critical, 119

for chi-square test, 327
for Dickey–Fuller test, 382,  

382n17
selecting, 130
t-value. See under Critical values

current, 364
double-log functions, 195, 195
expected, 9
F-value, 143, 145, 145n14
lagged, 364
p-values, 127–128
serial correlation, 280n1
t-values, 130. See also Critical t-values

VanBergeijk, Peter A. G., 152, 152n16, 
153, 154, 183n13
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Woody’s restaurant locations example, 
73–79

critical t-test values, 124, 125
data set from Stata, 76–77
data source for, 73n6
heteroskedasticity, 317–318, 320
irrelevant variables and, 165–166
omitted variable bias, 162
p-value, 128
two-sided t-test, 135

Wooldridge, Jeffrey M., 186n18, 401n7, 
473n7

Writing, regression projects, 352–353
Wunnava, P., 484n14

X variables
simultaneous equations and,  

412–413
unknown, 449, 450–451

X,Y coordinate system, 69, 70
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