

	B.Sc. – I SEMESTER	
	SUPPLEMENTARY EXAMINATION – October 2019	
Time · 2½ hrs	PH: 115 : Mechanics, Heat and Thermodynamics May	Marke: 70
This This	question paper has two printed pages and three part	S.
(ATTACH THE QUESTION PAPER WITH THE ANSWER BOOKLET)		
	PART – A	
Answer any four of the following:		$(10 \times 4 = 40)$
1a) Explain the ter in a frame of referen	m - inertial frame of reference. Show that Newton's second eference which is moving with uniform acceleration with res	law is not valid pect to a fixed
b) Distinguish between conservative and non-conservative forces		[7+3]
2a) Mention the dif b) Show that the inverse ratio of	fference between elastic and inelastic collision. centre of mass divides internally the line joining the two pai of their masses	ticles in
		[4+6]
3a) State perpendi b) Calculate the r	icular axis theorem. noment of inertia of a uniform solid sphere about its diamet	er. [2+8]
4a) Write the assu b) Based on kine gas.	mptions of kinetic theory of gasses. tic theory of gases deduce an expression for pressure exer	ted by an ideal [4+6]
5 a) Distinguish be b) For an adiaba	etween adiabatic and isothermal process. tic process prove that PV^{γ} = constant	[3+7]
6a) Explain the the b) Using van der-	ermodynamic potential - enthalpy. Waal's equation deduce expressions for critical constants. PART – B	[3+7]
Answer any four o	of the following:	$(5 \times 4 = 20)$
7. A block is given the incline does	an initial velocity of 5 m/s up a frictionless 30° incline plane the block slide before coming to rest?	. How far up

8. Three particles, each of mass 200 g, are kept at the corners of an equilateral triangle of side 10 cm. Find the moment of inertia of the system about an axis along the line joining two of the particles .

ST.JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

- 28
- 38
 - 4
 - al 5]
- 5
- 6
- ⊦7]

- 9. A solid cylinder of mass 20 kg rotates about its axis with angular speed 100 rad/s. The radius is 0.25 m. What is the K.E associated with the rotation of the cylinder. What is the magnitude of angular momentum of the cylinder about its axis?
- 10. The mean speed of a gas molecule is 450 m/s. Calculate the viscosity of the gas. Given the density of the gas = 1.25 kgm⁻³ and mean free path = 8.85×10^{-8} m.
- 11. One litre of hydrogen at 27°C and pressure 10⁵ Nm⁻² expands isothermally until its volume is doubled. Find the final pressure and work done.
- 12. If the van der Waal's constants for carbon dioxide are a = 1.32 x 10⁴ Nm⁴mol⁻² and b=3.64 x 10⁻⁵ m³mol⁻¹ and its critical temperature is 132 K, calculate its critical pressure and critical volume.

PART – C

- 13. Answer any **five** of the following:
- a) If the sum of all the forces acting on a body is zero is it necessarily be in equilibrium?
- b) Is a lift falling down under gravity an inertial frame or non -inertial frame? Give reason.
- c) Does the work done in raising a load on to a platform depend upon how fast it is raised? Justify.
- d) The number of molecules in a container is doubled. What will be the effect on the speed of the molecules? Give reason.
- e) What is meant by "path function"? Give an example.
- f) Why does adiabatic demagnetization produce cooling effect?

 $(2 \times 5 = 10)$