Max Marks-60

 $[7 \times 2 = 14]$

This question paper contains <u>**THREE</u>** printed pages, <u>**THREE**</u> parts and <u>**TWENTY**</u> questions. The periodic table is provided at the end of the question paper.</u>

Part A

Answer any SEVEN of the following questions.

- 1. Give the Lewis structure of NO_2 . Calculate the formal charge on N in this ion.
- 2. Write two differences between σ and π bonds.
- 3. Write the autoionization reaction of a) liquid NH_3 and b) H_2O .
- 4. What do you mean by aprotic solvents? Give one example.
- 5. State zeroth law of thermodynamics.
- 6. Write one difference between homogeneous and heterogeneous catalysis.
- 7. What is the role of a catalytic promotor?

1

- 8. State Grotthus-Draper law of photochemistry.
- 9. Write an expression for temperature co-efficient of a reaction.

Answer any <u>SIX</u> of the following questions.	[6 × 6 = 36]
 10. a) Draw the Lewis structure of SF₆. Does it obey octet rule? b) Sketch the MO energy level diagram of N₂ molecule. 	(3+3)
11. Explain the structure of the following compounds using concept of hybridization a) PCI_5 and b) CO_2). (3+3)
 12. a) Both NH₃ and CH₄ are sp³ hybridized but the bond angle for NH₃ is 107.5° in regular tetrahedral angle. Justify. b) Set up the Born-Haber cycle for CaCl₂. From this cycle arrive at an expression energy of CaCl₂. 	nstead of a on for the lattice (3+3)

Part B

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU -27 B.Sc (CHEMISTRY) – III SEMESTER SEMESTER EXAMINATION: OCTOBER 2022 (Examination conducted in December 2022) CH 322 – CHEMISTRY III

Time- 2 h

CH322_A_22

Registration Number:

Date & Session:

13 a) What is a levelling solvent? Explain with an example.

b) Derive an expression for the rate constant of a second order reaction when the initial concentration of the two reactants is same. (3+3)

- 14. Derive Gibbs-Helmholtz equation starting from the relation dG = VdP-SdT.
- 15. What is Carnot's engine? Name the working substance in it. Derive an expression for the efficiency of a Carnot's heat engine based on entropy concept.
- 16. a) From the values of ΔH and ΔS, predict which of the following reactions would be spontaneous at 25 °C. Show the calculation or reasoning employed to arrive at your prediction. Reaction A: ΔH = 10.5×10³ J; ΔS = 30 JK⁻¹ Reaction B: ΔH = 1.8×10³ J; ΔS = 113 JK⁻¹
 b) Write the equation for van't Hoff reaction isotherm and explain the terms involved in it. Write any one application of this equation. (3+3)
- 17. a) Sketch the Jablonski diagram and label the following: singlet states, triplet states, intersystem crossing (ISC), internal conversion (IC), fluorescence and phosphorescence.
 b) Calculate the entropy change involved in the isothermal reversible expansion of 5 moles of an ideal gas from a volume of 10 L to a volume of 100 L at 300 K. [R=8.314 J K⁻¹ mol⁻¹] (3+3)

Part C

Answer any <u>TWO</u> of the following questions.

[5 × 2 = 10]

- 18. a) Which of these species has a higher bond length, B_2 or B_2^+ ? Explain.
 - b) The compound IF₇ has been prepared, but a similar compound FCI₇ has never been prepared. Give an explanation based on the bonding theories that you have studied. **(2+3)**
- 19. a) In each of the following pairs find which system has higher value of entropy?
 - i. CO2 at 15 $^\circ\!C$ and 1 atm or dry ice at 1 atm
 - ii. One mole of $CaCO_{3(s)}$ or a mixture of $CaO_{(s)}$ and $CO_{2(g)}$ in equal quantities
 - b) Give reasons for the following:
 - i) AgI_2^- complex is more stable than AgF_2^- complex.
 - ii) BF_3 readily combines with F^- to form stable complex BF_4^- . (2+3)
- 20. a) The standard free energy of the formation of H_2S at 298 K is -32.94 kJ/mol. Calculate the equilibrium constant (K_p). [R= 8.314 J K⁻¹ mol⁻¹]

b) Explain why N₂ has zero entropy at 0 K but CO and NO do not have zero entropy at 0 K.
 (3+2)

1 IA 11A											2						18 VIIIA 8A
1 H Hydrogen 1.008	2 11A 2A					Perio	odic I	able	of the	Eler	nents	13 IIIA 3A	14 IVA 44	15 VA 54	16 VIA 64	17 VIIA 7A	Performance Provide Automatic Providence Pro
3 Li Lithium 6.941	4 Be Beryllium 9.012											5 B 10,811	6 C Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15,999	9 F Fluorine 18,998	10 Ne 20,180
11 Na Sodium 22.990	12 Mg Magnesium 24.305	3 111B 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 VIII	10	11 IB 1B	12 IIB 2B	13 Al Aluminum 26.982	14 Silicon 28.086	15 P Phosphorus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Ar 39.948
19 K Potassium 39.098	20 Ca Calcium 40.078	21 Scandium 44.956	22 Ti Titanium 47.88	23 V Vanadium 50.942	24 Cr Chromium 51.996	25 Mn Manganese 54.938	26 Fe tron 55.933	27 Co Cobalt 58.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn Zinc 65.39	31 Gallium 69.732	32 Germanium 72.61	33 As Arsenic 74.922	34 Se Selenium 78.09	35 Br Bromine 79.904	36 Kr Krypton 84.80
37 Rb Rubidium 84.468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr ^{Zirconium} 91.224	41 Nb Nioblum 92.906	42 Mo Molybdenum 95.94	43 Tc Technetium 98.907	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.906	46 Pd Palladium 106.42	47 Ag 5ilver 107.868	48 Cd Cadmium 112.411	49 In Indium 114.818	50 Sn ^{Tin} 118.71	51 Sb Antimony 121.760	52 Te Tellurium 127.6	53	54 Xe xenon 131.29
55 Cs Cesium 132.905	56 Ba Barium 137.327	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.85	75 Re Rhenium 186.207	76 Os Osmium 190.23	77 Ir 192.22	78 Pt Platinum 195.08	79 Au _{Gold} 196.967	80 Hg Mercury 200.59	81 TI Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 Po Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018
87 Fr Francium 223.020	88 Ra Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 Hs Hassium [269]	109 Mt Meitnerium [268]	110 Ds Darmstadtiur [269]	111 Rg Roentgenium [272]	112 Cn Copernicium (277)	113 Uut Ununtrium unknown	114 Fl Flerovium [289]	115 Ununpentium unknown	116 Lv Livermorium [298]	117 Ununseptium unknown	118 Uuo Ununoctium unknown
	Lanth Ser	anide ries	La 58	59 1 1 1 1	Pr 60 Nodymium Neod 0.908 14	1d Prom	ethium	63 E B marium 50.36	EU oplum 1.966 64 C Gad	65 65 01101um 57.25	Fb rbium 18,925 66 E Dyst 10	by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by b by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by by	10 10 10 10 10 10 10 10 10 10	Er 57,26 169	70 11 12 12 12 12 12 12 12 12 12	71 b 12 12 12 12 12 12 12 12 12 12	- U etium 4.967
	Acti Ser	nide ries Ac	Ac 7 1028 7	Prota 2.038 23	Pa 92 Urau 1.036 01 Urau 238	J 93 Nept .029 23	94 Ip unium 7.048 94 Piut 24	Pu 95 A tonium 4.064 24	4 96 C 0 0 0 0 0 0 0 0 0 0 0 0 0	97 Em E rium 7.070 24	98 Bk (Kelium 17.070 25	Cf [formium 1.080 [2]	Es teinium 254] 100 Fer 25	mium 7.095	Ad lelevium 58.1	103 Jo elium 9.101	_ F encium 2621