Time- 2 hrs

ST.JOSEPH'S UNIVERSITY, BENGALURU -27

M.Sc (CHEMISTRY) - I SEMESTER

SEMESTER EXAMINATION: OCTOBER 2022
(Examination conducted in December 2022)
CH 7521 - PRINCIPLES OF CHEMICAL ANALYSIS
Max Marks-50

This question paper contains 3 printed pages and 3 parts

PART-A

Answer any EIGHT of the following questions.
$8 \times 2=16$

1. At what time scale are reactions considered rapid? What is the experimental method used to study the kinetics of rapid reactions?
2. Explain one application of turbidimetric titration?
3. Calculate the standard deviation of the result for $1.16 \pm(0.03)+1.29 \pm(0.01)-0.55$ \pm (0.03).
4. Differentiate between co-precipitation and post precipitation.
5. Write the principle of thermogravimetric analysis.
6. Do you observe two jumps when sulphuric acid is potentiometrically titrated against sodium hydroxide? Justify.
7. Describe Volhard method for estimation of fluoride.
8. What are metallochromic indicators? Write one example.
9. How are Gran plots generated?
10. What is the effect of initial concentration of analyte on the redox titration curves?

PART-B

Answer any TWO of the following questions.
2×12=24
11. (a) Two different analytical methods were used on the same sample to determine residual concentration of chlorine in mg / L, in sewage effluents.

Sample	Method A	Method B
1	0.39	0.36
2	0.84	1.35
3	1.76	2.56
4	3.35	3.92
5	4.69	5.35
6	7.70	8.33
7	10.52	10.70
8	10.92	10.91

What type of t test should be used to compare the two methods? State and test the appropriate hypotheses at the 95% and 99% confidence level.
(b) Discuss the common types of chemical interferences in AAS? How are these interferences eliminated?
12. (a). The following are relative peak areas for chromatograms of standard solutions of methyl vinyl ketone (MVK).

MVK concentration	$\mathrm{mmol} / \mathrm{L}$ Relative peak area
0.5	3.76
1.50	9.16
2.50	15.03
3.50	20.41
4.50	25.33
5.50	31.97

By the least square method, calculate the slope, intercept, and the equation of the least square line. A sample containing MVK yielded relative peak area of 12.9. Calculate the concentration of MVK in the solution. Assume that the result represents a single measurement as well as the mean of four measurements. Calculate the respective absolute and relative standard deviations for the two cases. Given: $\Sigma \mathrm{x}_{\mathrm{i}}=18 ; \Sigma \mathrm{x}_{\mathrm{i}}{ }^{2}=71.5 ; \Sigma \mathrm{y}_{\mathrm{i}}{ }^{2}=2404.6103 ; \sum \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=414.485 ; \Sigma \mathrm{y}_{\mathrm{i}}=105.67$.
(b) What is two-point fixed-time integral method? Assuming pseudo first order kinetics, obtain an expression for determination of initial concentration by this method. What is the advantage of this method?
(7+5)
13. (a) Discuss the various methods of determining completion of precipitation reactions with suitable examples.
(b)What are auxiliary oxidising and reducing agents? Write one example each.

Mention their use.
(c) Discuss the various methods of performing EDTA titrations.

PART-C

Answer any TWO of the following questions

$2 \times 5=10$

14. (a) Give reasons
(i)When CdS is precipitated, MnS is detected as an impurity. [Hint: MnS and CdS have a difference in size $<5 \%$ and crystallize in similar forms].
(ii) the quantum efficiencies for fluorene and biphenyl are nearly 1.0 and 0.2 , respectively under similar conditions of measurement.
(b) Calculate the gravimetric factor in the conversion of BaSO_{4} to FeS_{2}. (atomic weight of $\mathrm{Ba}=137.3 \mathrm{~g} / \mathrm{mol}, \mathrm{Fe}=55.8 \mathrm{~g} / \mathrm{mol}, \mathrm{S}=32.0 \mathrm{~g} / \mathrm{mol}$ and $\mathrm{O}=16.0 \mathrm{~g} / \mathrm{mol})$.
15. A 5.00 mL sample of brandy was diluted to 1.000 L in a volumetric flask. The ethanol ($\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$) in a 25.00 mL aliquot of the diluted solution was distilled into 50.00 mL of $0.020 \mathrm{M}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and oxidized to acetic acid with heating:
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2+}+16 \mathrm{H}^{+} \rightarrow 4 \mathrm{Cr}^{3+}+3 \mathrm{CH}_{3} \mathrm{COOH}+11 \mathrm{H}_{2} \mathrm{O}$.
After cooling, 20.00 mL of $0.1253 \mathrm{M} \mathrm{Fe}^{2+}$ was pipetted into the flask. The excess Fe^{2+} was then titrated with 7.46 mL of the standard $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ to a diphenylamine sulfonic acid end point. Calculate the percent $(\mathrm{w} / \mathrm{v}) \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(46.07 \mathrm{~g} / \mathrm{mol})$ in the brandy.
16. A 0.5000 g sample containing NaHCO_{3}, and $\mathrm{Na}_{2} \mathrm{CO}_{3}$, was dissolved and diluted to 250.0 mL . A 25.00 mL aliquot was then boiled with 50.00 mL of 0.01255 M HCl . After cooling, the excess acid in the solution required 2.34 mL of 0.01063 M NaOH when titrated to a phenolphthalein end point. A second 25.00 mL aliquot was then treated with an excess of BaCl_{2} and 25.00 mL of the base. All the carbonate precipitated, and 7.63 mL of the HCl was required to titrate the excess base. Determine the composition of the mixture.

Table: Values of t for various levels of probability

Degrees of Freedom	80%	90%	95%
1	3.08	6.31	12.7
2	1.89	2.92	4.30
3	1.64	2.35	3.18
4	1.53	2.13	2.78
5	1.48	2.02	2.57
6	1.44	1.94	2.45
7	1.42	1.90	2.36
8	1.40	1.86	2.31
9	1.38	1.83	2.26

