Registration Number:
Date \& Session

ST. JOSEPH'S UNIVERSITY, BENGALURU-27

M. Sc (BIG DATA ANALYTICS) - I SEMESTER

SEMESTER EXAMINATION : OCTOBER 2022
(Examination conducted in December, 2022)
BDA 1321: LINEAR ALGEBRA and LINEAR PROGRAMMING
Duration: 2 Hours
Max. Marks: 50
This question paper contains TWO printed pages and THREE parts.

PART-A

Answer all questions

$5 \times 1=5$

1. Is the set of vectors $\{(1,2,5),(3,0,1),(0,0,0)\}$ linearly dependent?
2. Is $\{(x, y): x \geq 0\}$ a subspaces of \mathbb{R}^{2} ?
3. What is the dimension of the vector space $\mathbb{M}_{3 \times 3}$ (the set containing all 3 by 3 real matrices) over \mathbb{R} ?
4. Consider the map $T(x, y)=(x+1, y+1)$. Is T linear?
5. Find the eigenvalues of the matrix $\left[\begin{array}{ccc}3 & 0 & 0 \\ -1 & 1 & 0 \\ 4 & 6 & 0\end{array}\right]$.

PART-B

Answer any 5 questions
5x3=15
6. Compute the length of the vector $(-3,4,2)$.
7. Find the angle between the vectors $(4,3,1)$ and $(-1,1,1)$.
8. Find a unit vector in the direction of $(3,4,1)$.
9. Obtain the general vector for $\mathbb{R}_{30^{\circ}}^{2}$.
10. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a map defined by $T(\mathbf{v})=\|\mathbf{v}\|$. Is T linear? Justify your answer.
11. Find the standard matrix for the dilation transformation $T(\mathbf{x})=3 \mathbf{x}$ for \mathbf{x} in \mathbb{R}^{2}.
12. Define a positive definite matrix. Is the matrix $\left[\begin{array}{cc}1 & -2 \\ -2 & 6\end{array}\right]$ positive definite?

PART-C

Answer any 3 full questions
$3 \times 10=30$
13. a) Let $u=(3,-1)$ and $v=(-2,5)$. Sketch the vectors $u,-u, v, 3 v$, and $u-2 v$ on a $x y$-plane.
b) Determine whether the set $\{(1,2,3),(4,5,6),(2,1,0)\}$ is linearly independent or dependent.
14. a) Let $v_{1}=\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], v_{3}=\left[\begin{array}{c}5 \\ -6 \\ 8\end{array}\right]$ and $b=\left[\begin{array}{c}2 \\ -1 \\ 8\end{array}\right]$. Is \mathbf{b} in the $\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right)$?
b) Verify Schwarz inequality and Triangle inequality for the vectors $(3,4)$ and $(4,3)$.
15. a) Define a vector space.
b) Prove that \mathbb{M}, (the set containing all 2 by 2 real matrices) is a vector Space. Also, write a basis for this vector space.
c) Prove that \mathbb{D}, (the set of all diagonal matrices) is a subspace of \mathbb{M}.
16. (a) Solve the system of linear equations:

$$
\begin{array}{r}
4 x-2 y+5 z=6 \\
3 x+3 y+8 z=4 \\
x-5 y-3 z=5
\end{array}
$$

(b) Find the eigenvalues of $A^{2}+A+4 I$, where $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$

