

Register Number: \_\_\_\_\_\_ Date: \_\_\_\_\_

## ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.Sc(BIG DATA ANALYTICS) —III SEMESTER SEMESTER EXAMINATION:OCTOBER 2022 (Examination conducted in December 2022) BDA 3321:Machine Learning II

TIME: 2.5 hrs

## MAXIMUM MARKS: 70

This paper has 2 printed pages and 3 parts.

Part A

| Answer ALL questions. More than one options may be correct.                                                                                                                                                                             | ( <b>1</b> imes <b>10</b> = <b>10</b> ) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 1. A perceptron and neuron are different words for the same structure.<br>A. True B. False                                                                                                                                              | (1)                                     |
| <ol> <li>Which of the following is used for language translaation models?</li> <li>A. Single Layer Perceptron B. Recurrent Neural Network C. Convolution Neural single neuron</li> </ol>                                                | Network D. A (1)                        |
| <ul><li>3. n-gram language models can be made using:</li><li>A. Markov Chains(models)</li><li>B. HMMs</li><li>C. Encoders</li><li>D. CNN</li></ul>                                                                                      | (1)                                     |
| <ul><li>4. Genetic algorithms are popular because:</li><li>A. They are computationally inexpensive B. They perform well for biological system easy to build D. Computations can be easily parallelized.</li></ul>                       | ns C. They are $(1)$                    |
| 5. Consider a variable outlook that can take three values $\in$ {Sunny, Overcast, Rainy}. If string to represent a hypotheses, then the hypothesis "Overcast or Rainy" is represent A. $(1,1,1)$ B. $(1,0,1)$ C. $(0,1,1)$ D. $(1,1,0)$ | f we a use a 3 bit<br>ed by: $(1)$      |
| <ul><li>6. A decision tree is a bayesian network.</li><li>A. True B. False</li></ul>                                                                                                                                                    | (1)                                     |
| <ul><li>7. A topological ordering can be found for a decision tree.</li><li>A. True B. False</li></ul>                                                                                                                                  | (1)                                     |
| <ul><li>8. Naive Bayes classifier can be represented using a DAG</li><li>A. True B. False</li></ul>                                                                                                                                     | (1)                                     |
| <ul><li>9. Arrows in DAGs show:</li><li>A. Correlation between variables B. Dependence of variables C. Independence of</li></ul>                                                                                                        | variables (1)                           |
| <ul><li>10. A cyclic graph can have a topological ordering.</li><li>A. True B. False</li></ul>                                                                                                                                          | (1)                                     |

## PART B

| Answer ANY SIX questions.                                                                      |     |
|------------------------------------------------------------------------------------------------|-----|
| 11. Explain the perceptron algorithm along with its time complexity.                           | (5) |
| 12. Explain briefly feed-forward and backpropagation.                                          | (5) |
| 13. Explain briefly the different components of translation of language model.                 | (5) |
| 14. Explain the basic structure of an RNN.                                                     | (5) |
| 15. Explain how a new population is created in the context of genetic algorithms.              | (5) |
| 16. Explain the difference between a directed tree and a bayesian network.                     | (5) |
| 17. Mention any three applications of DAGs and represent tham graphically.                     | (5) |
| 18. What is a topological ordering? How can we use this to define the ordered markov property? | (5) |
| 19. What are Markov random fields? Give some applications of the same.                         | (5) |

## PART C

Answer ANY THREE questions.

 $(3 \times 10 = 30)$ 

| 20. | (a) Explain how a CNN works and represent it diagramatically.                       | (6) |
|-----|-------------------------------------------------------------------------------------|-----|
|     | (b) Explain breifly the concept of computational graphs. Show atleast two examples. | (4) |
| 21. | (a) Explain GABIL                                                                   | (7) |
|     | (b) Explain any one short coming of GAs and how to overcome this.                   | (3) |
| 22. | (a) Explain n-gram model for modelling languages.                                   | (5) |
|     | (b) Highlight the pros and cons of the n-gram models and potential fixes.           | (5) |
| 23. | (a) Explain MCMC.                                                                   | (5) |
|     | (b) Explain the Metropolos-Hastings algorithm.                                      | (5) |