Registration Number:

Date & Session

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU -27 BCA(DATA ANALYTICS) – V SEMESTER SEMESTER EXAMINATION: OCTOBER 2022 (Examination conducted in December 2022) BCADA5222 : OPERATIONS RESEARCH

Time: 2 ¹/₂ Hours

Max Marks: 70

This paper contains FOUR printed pages and THREE parts

<u> PART - A</u>

Answer ALL the questions

10 x 1 = 10

- 1. Operations Research provides
 - a) Earliest solution
 - b) Feasible solutions
 - c) Scientific approach to solutions
 - d) Statistical approach to solutions
- 2. The distinguishing feature of an LP model is
 - a) Relationship among all variables is linear
 - b) It has single objective function and constraints
 - c) Value of decision variables is non-negative
 - d) All of the above
- 3. A feasible solution to an LP problem
 - a) Must satisfy all of the problem's constraints simultaneously
 - b) Need not satisfy all of the constraints, only some of them
 - c) Must be a corner point of the feasible region
 - d) Must optimize the value of the objective function
- 4. For a maximization problem , the objective function coefficient for an artificial variable is
 - a) +M
 - b) –M
 - c) Zero
 - d) None of the above
- 5. A variable which does not appear in the basic variable column of simplex table is
 - a) Never equal to zero
 - b) Always equal to zero
 - c) Called a basic variable
 - d) None of the above
- 6. The dual of the primal maximization LP problem having m constraints and n non-negative variables should
 - a) Have n constraints and m non- negative variables
 - b) Be a minimization LP problem
 - c) Both (a) and (b)
 - d) None of the above

- 7. The first step in Hungarian method is
 - a) Prepare Column reduced matrix
 - b) Prepare Diagonal matrix
 - c) Prepare Row reduced matrix
 - d) Prepare Inverse matrix
- 8. The initial solution of a transportation problem can be obtained by applying any known method . However, the only condition is that
 - a) The solution be optimal
 - b) The rim conditions are satisfied
 - c) The solution not be degenerate
 - d) All of the above
- 9. The solution to a transportation problem with m rows and n columns is feasible if number of positive allocations are
 - a) m+n
 - b) m*n
 - c) m+n-1
 - d) m+n+1

10. The size of the payoff matrix of a game can be reduced by using the principle of

- a) Game inversion
- b) Rotation reduction
- c) Dominance
- d) Game transpose

PART - B

Answer any SIX questions

 $6 \times 5 = 30$

- 11. Find the maximum value of Z=2x+3y
 - Subject to $2x+y \le 15$ $x+3y \le 20$ $x\ge 0, y\ge 0$

Using graphical method.

12. Consider the following 2x2 game.

$$\mathsf{G} = \begin{pmatrix} 4 & 7 \\ 6 & 5 \end{pmatrix}$$

- a) Does it have a saddle point?
- b) Is it correct to state that the value of the game G will be 5<G<6
- c) Determine the optimum strategies of the players.
- 13. Explain the Minimax Maximin principle.
- 14. What do you mean by critical path method? Define critical path and critical activities.

- 15. Convert the following primal to its dual.
 - Max Z= $2x_1+x_2$ Subject to $-x_1+x_2 \le 4$ $x_1-x_2 \le 2$ $x_1\ge 0$, $x_2\ge 0$
- 16. Write a short note on Monte Carlo Simulation .
- 17. Differentiate between transportation and assignment problem.
- 18. A paper mill produces two grades of paper, X and Y. Because of raw material restrictions, it cannot produce more than 400 tonnes of grade X and 300 tonnes of grade Y in a week. There are 160 production hours in a week. It requires 0.2 and 0.4 hours to produce a tonne of product X and Y respectively with corresponding profits of Rs 200 and Rs 500 per tonne. Formulate this as a LPP to maximize profit and find the optimum profit mix.

<u> PART - C</u>

Answer any THREE questions

3 x 10 = 30

- 19. Solve the following LP problem using Simplex Method Max Z=10 x_1 +6 x_2 Subject to $x_1+x_2 \le 2$ $2x_1+x_2 \le 4$ $3x_1+8x_2 \le 12$ $x_1 \ge 0$, $x_2 \ge 0$
- 20. Find the minimum transportation cost from the given problem .

Factory	D1	D2	D3	D4	Supply
F1	3	3	4	1	100
F2	4	2	2	2	125
F3	1	5	3	2	75
Demand	120	80	75	85	300

21. Solve the following game using graphical method

$$\begin{bmatrix} -5 & 2 & -3 & 5 \\ 8 & 7 & 5 & -4 \end{bmatrix}$$

Activity	Predecessor Activity	Duration (Weeks)
А	-	3
В	А	5
С	А	7
D	В	10
E	С	5
F	D,E	4

22. The following details are available regarding a project:

Determine the critical path, the critical activities and the project completion time.