Duration: 2 Hours
Max. marks: 50

1. The paper contains TWO printed pages and ONE part.
2. Attempt any FIVE FULL questions.
3. All multiple choice questions have one or more correct option. Write all the correct options answer booklet.
4. Calculators are allowed.
5. a) Write down a representative element of each conjugacy classes of S_{5} corresponding to partitions of 5. Also, write down the number of elements in each of the conjugacy classes.
b) Which of the following are true statements?
I) The order of a k-cycle in S_{n} is k
II) Any permutation in S_{n} can be written as a product of disjoint cycles
III) If $\sigma \in S_{5}$ has order 2 then σ is a 2 -cycle
IV) If $\sigma \in S_{4}$ is a 4 -cycle then σ^{2} is also a 4-cycle.
6. a) Show that a group of order p^{2} is abelian, where p is some prime. Moreover, show that any such group is either isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
[6 m]
b) Show that if the center of a group G is index n, then every conjugacy class has at most n elements. [3 m]
c) Choose all the correct statements.
I) Every group of order 51 is cyclic
II) Every group of order 151 is cyclic
III) Every group of order 505 is cyclic.
7. a) Show that the set $\operatorname{Aut}\left(\mathbb{Z}_{n}\right)$ is isomorphic to the group $U(n)$ of units of \mathbb{Z}_{n}.
b) Let G be a group of order 3825. Prove that if H is a normal subgroup of order 17 in G then $H \leq Z(G)$.
c) Choose all the correct statements.
I) $\operatorname{Aut}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=S_{3}$
III) $\left|\operatorname{Aut}\left(\mathbb{Z}_{12}\right)\right|=11$
II) $\left[\operatorname{Aut}\left(S_{6}\right): \operatorname{Inn}\left(S_{6}\right)\right]=2$
IV) $\left|\operatorname{Aut}\left(\mathbb{Z}_{12}\right)\right|=4$.
8. a) Show that if a group of order 60 has more than one Sylow 5-subgroup, then it is simple.
[7 m]
b) Consider the group $G=G L_{2}(\mathbb{Z} p)$, where p is a prime number. Choose all the correct statements.
I) The order of G is $p(p-1)^{2}(p+1)$
II) Every element of order p is conjugate to a matrix $\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$, where $a(\neq 0) \in \mathbb{Z}_{p}$
III) G has $p+1$ Sylow p-subgroups
IV) G has exactly one element of order p.

OR

a) Compute the number of cyclic subgroups of order 10 in $\mathbb{Z}_{100} \oplus \mathbb{Z}_{25}$.
b) Let G be the group $\left(\{1,7,17,23,49,55,65,71\}, \otimes_{96}\right)$. Find an explicit description of G as cartesian product of cyclic groups.
5. a) Show that a polynomial of degree n over a field has at most n roots.
b) Show that the polynomial $\frac{3}{7} x^{4}-\frac{2}{7} x^{2}+\frac{9}{35} x+\frac{3}{5}$ is irreducible over \mathbb{Q}.
c) Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree n. Choose all the correct statements.
I) $f(x)$ is irreducible in $\mathbb{Z}[x]$ implies $f(x)$ is irreducible in $\mathbb{Q}[x]$
II) $f(x)$ is irreducible in $\mathbb{Q}[x]$ implies $f(x)$ is irreducible in $\mathbb{Z}[x]$
III) If $f(x)$ is reducible over \mathbb{Z}, then it has a real root
IV) If $f(x)$ has a real root, then it is reducible over \mathbb{Z}.
6. a) Let F be a field. Show that if $p(x) \in F[x]$ is irreducible then $\langle p(x)\rangle$ is a maximal ideal in $F[x]$. [4 m]
b) Construct a field with 25 elements.
[3 m]
c) Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree n. Pick out the true statements about the roots of $f(x)$.
I) They can belong to \mathbb{Z}
II) They always belong to $(\mathbb{R} \backslash \mathbb{Q}) \cup \mathbb{Z}$
III) They always belong to $(\mathbb{C} \backslash \mathbb{Q}) \cup \mathbb{Z}$
IV) They can belong to $(\mathbb{Q} \backslash \mathbb{Z})$.
7. a) Show that $\mathbb{Z}[i]$ is an ED.
b) Show that every prime ideal in a PID is a maximal ideal.
c) Choose all the correct statements.
I) The polynomial ring $\mathbb{Z}[x]$ is a PID
II) The polynomial ring $\mathbb{Z}[x]$ is a UFD
III) The polynomial ring $\mathbb{Q}[x]$ is a PID
IV) The polynomial ring $\mathbb{Q}[x]$ is a UFD.

