

RegisterNumber: Date:

ST. JOSEPH'S UNIVERSITY, BENGALURU-27 M.SC (MATHEMATICS) - I SEMESTER SEMESTER EXAMINATION: OCTOBER, 2022 (Examination conducted in December 2022) <u>MT 7121: ALGEBRA I</u>

Duration: 2 Hours

Max. marks: 50

[4 m]

[2 m]

- 1. The paper contains **TWO** printed pages and ONE part.
- 2. Attempt any **FIVE FULL** questions.
- 3. All multiple choice questions have **one or more** correct option. Write **all** the correct options answer booklet.
- 4. Calculators are allowed.
- 1. a) Write down a representative element of each conjugacy classes of S_5 corresponding to partitions of 5. Also, write down the number of elements in each of the conjugacy classes.
 - [6 m]
 - b) Which of the following are true statements?
 - I) The order of a k-cycle in S_n is k
 - II) Any permutation in S_n can be written as a product of disjoint cycles
 - III) If $\sigma \in S_5$ has order 2 then σ is a 2-cycle
 - IV) If $\sigma \in S_4$ is a 4-cycle then σ^2 is also a 4-cycle.
- 2. a) Show that a group of order p^2 is abelian, where p is some prime. Moreover, show that any such group is either isomorphic to \mathbb{Z}_{p^2} or $\mathbb{Z}_p \times \mathbb{Z}_p$. [6 m]
 - b) Show that if the center of a group G is index n, then every conjugacy class has at most n elements. [3 m]
 - c) Choose all the correct statements.
 - I) Every group of order 51 is cyclic
 - II) Every group of order 151 is cyclic
 - III) Every group of order 505 is cyclic.

3. a) Show that the set $\operatorname{Aut}(\mathbb{Z}_n)$ is isomorphic to the group U(n) of units of \mathbb{Z}_n . [4 m]

b) Let G be a group of order 3825. Prove that if H is a normal subgroup of order 17 in G then $H \leq Z(G)$. [4 m]

- c) Choose all the correct statements.
 - I) Aut $(\mathbb{Z}_2 \times \mathbb{Z}_2) = S_3$ III) $|\operatorname{Aut}(\mathbb{Z}_{12})| = 11$ II) $[\operatorname{Aut}(S_6) : \operatorname{Inn}(S_6)] = 2$ IV) $|\operatorname{Aut}(\mathbb{Z}_{12})| = 4.$
- 4. a) Show that if a group of order 60 has more than one Sylow 5-subgroup, then it is simple.

[7 m]

[2 m]

b) Consider the group $G = GL_2(\mathbb{Z}p)$, where p is a prime number. Choose all the correct statements.

- I) The order of G is $p(p-1)^2(p+1)$
- II) Every element of order p is conjugate to a matrix $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$, where $a \neq 0 \in \mathbb{Z}_p$
- III) G has p + 1 Sylow p-subgroups
- IV) G has exactly one element of order p.

OR

- a) Compute the number of cyclic subgroups of order 10 in $\mathbb{Z}_{100} \oplus \mathbb{Z}_{25}$. [5 m]
- b) Let G be the group $(\{1, 7, 17, 23, 49, 55, 65, 71\}, \otimes_{96})$. Find an explicit description of G as cartesian product of cyclic groups. [5 m]
- 5. a) Show that a polynomial of degree n over a field has at most n roots. [4 m]
 - b) Show that the polynomial $\frac{3}{7}x^4 \frac{2}{7}x^2 + \frac{9}{35}x + \frac{3}{5}$ is irreducible over \mathbb{Q} . [3 m]
 - c) Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree n. Choose all the correct statements.

[3 m]

[3 m]

[4 m]

- I) f(x) is irreducible in $\mathbb{Z}[x]$ implies f(x) is irreducible in $\mathbb{Q}[x]$
- II) f(x) is irreducible in $\mathbb{Q}[x]$ implies f(x) is irreducible in $\mathbb{Z}[x]$
- III) If f(x) is reducible over \mathbb{Z} , then it has a real root
- IV) If f(x) has a real root, then it is reducible over \mathbb{Z} .
- 6. a) Let F be a field. Show that if $p(x) \in F[x]$ is irreducible then $\langle p(x) \rangle$ is a maximal ideal in F[x]. [4 m]
 - b) Construct a field with 25 elements.
 - c) Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree *n*. Pick out the true statements about the roots of f(x). [3 m]
 - I) They can belong to \mathbb{Z}
 - II) They always belong to $(\mathbb{R} \setminus \mathbb{Q}) \cup \mathbb{Z}$
 - III) They always belong to $(\mathbb{C} \setminus \mathbb{Q}) \cup \mathbb{Z}$
 - IV) They can belong to $(\mathbb{Q} \setminus \mathbb{Z})$.

7. a) Show that $\mathbb{Z}[i]$ is an ED.

- b) Show that every prime ideal in a PID is a maximal ideal. [4 m]
- c) Choose all the correct statements. [2 m]
 - I) The polynomial ring $\mathbb{Z}[x]$ is a PID
 - II) The polynomial ring $\mathbb{Z}[x]$ is a UFD
 - III) The polynomial ring $\mathbb{Q}[x]$ is a PID
 - IV) The polynomial ring $\mathbb{Q}[x]$ is a UFD.