

ST. JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc. (MATHEMATICS) – I SEMESTER SEMESTER EXAMINATION: NOVEMBER 2022 (Examination conducted in December 2022) <u>MT7221 – MATHEMATICS</u>

Registration Number:

Date & session:

Instructions:

- > All the questions carry equal Marks.
- All correct options for the Multiple-Choice Questions should be written in the answer booklet.

This question paper contains TWO printed pages and ONE part

Time - 2 hrs Answer any 5 questions

Max Marks - 50

1. a) Let a function *f*: [*a*, *b*] → ℝ be continuous on [*a*, *b*]. Show that *f* ∈ 𝔅[*a*, *b*].
b) Find the upper and lower integral for the function *f* defined on [0,2] by

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ x^3 & \text{if } x \text{ irrational} \end{cases}$$
[5+5]

2. a) Let a function $f:[a,b] \to \mathbb{R}$ be bounded on [a,b] and f be continuous on [a,b]except for a finite number of points in [a,b]. Prove that $f \in \mathcal{R}[a,b]$.

b) Using first mean value theorem, show that
$$\frac{1}{3\sqrt{2}} < \int_0^1 \frac{x^2}{\sqrt{1+x}} < \frac{1}{3}$$
. [5+5]

3. a) Show that the sequence $\{f_n\}$ converges uniformly on [0,1] where $f_n(x) = \frac{x}{1+nx^2}$, $x \in [0,1]$. b) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^3+n^4x^2}$ is uniformly convergent for all real x. [6+4]

- 4. a) Show that any subset of a countable set is countable.b) If *A* and *B* are countable sets then show that *A* × *B* is countable. [5+5]
- 5. a) Show that on the Euclidean plane R² the function d: R² × R² → R defined by d(x, y) = √(x₁ y₁)² + (x₂ y₂)², ∀x = (x₁, x₂), y = (y₁, y₂) ∈ R² is metric on R².
 b) Show that (R^m, d) is complete where d denotes the Euclidean metric . [5+5]
- 6. a) Let $f: X \to Y$ be a function where X and Y are metric spaces. Show that f is continuous iff for every subset $B \subseteq Y$ then $f^{-1}(Int(B)) \subseteq Int(f^{-1}(B))$.
 - b) Prove that the function $f: (0,1) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is not uniformly continuous. [6+4]
- 7. a) Let (X, d) be a metric space. Prove the following properties:
 - i) \emptyset and X are open
 - ii) Arbitrary union of open sets is open
 - iii) Finite intersection of open sets is open.
 - b) Let *A* be a non-empty proper closed subset of \mathbb{R} . Then *A* is [5+1+1+1+1] i) the closure of the interior of *A*
 - ii) a countable set
 - iii) a compact set

iv) not open

c) If f(x) is defined on (0,2) by $f(x) = \begin{cases} x + x^2 \text{ when } x \text{ is rational} \\ x^2 + x^3 \text{ when } x \text{ is irrational} \end{cases}$. The value of the upper Riemann integral in (0,2).

i) $\frac{12}{83}$ ii) $\frac{83}{12}$ iii) $\frac{53}{12}$ iv) $\frac{123}{83}$

- c) If a convergent sequence in a metric space has infinitely many distinct terms, then its limit is the set of terms of the sequence of
 - i) Isolated point
 - ii) Limit points
 - iii) Interior points
 - iv) Exterior points

e) For the series $\sum_{n=1}^{\infty} \frac{e^{-nx}}{n}$ on the interval [0,1] which of the following is/are true?

- i) Converges pointwise but not uniformly
- ii) Doesn't converge pointwise
- iii) Converges uniformly
- iv) Converges pointwise to a discontinuous function.

f) Let the function $f_n(x) = x^n$, $\forall x \in [0,1)$. Then the sequence $\{f_n\}$ is,

- i) uniformly convergent
- ii) pointwise convergent but not uniformly convergent
- iii) pointwise and uniformly convergent
- iv) uniform but not pointwise convergent.