

Register Number:

Date:

ST. JOSEPH'S UNIVERSITY, BENGALURU-27
 M.Sc. (MATHEMATICS) - I SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2022

(Examination conducted in December 2022)

MT7321: LINEAR ALGEBRA
Duration: 2 Hours
Max. Marks: 50

1. The paper contains two printed pages.
2. Attempt any FIVE FULL questions. Each question carries TEN marks.
3. a) Let W_{1} and W_{2} be subspaces of a finite dimensional vector space V over a field \mathbb{F} and $W=W_{1} \oplus W_{2}$. Prove that $\operatorname{dim}(W)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)$.
b) Is there a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $T(1,0,3)=(1,1)$ and $T(-2,0-6)=(2,1)$?
[2m]
4. a) Prove or disprove the following statement:

The union of two subspaces of a vector space V is a subspace of V.
b) Let V and W be vector spaces over a field \mathbb{F} and $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. Suppose $w_{1}, w_{2}, \ldots, w_{n}$ are given vectors in W. Prove that there exists a linear transformation $T: V \rightarrow W$ such that $T\left(v_{i}\right)=w_{i}, 1 \leq i \leq n$.
c) Let $T: V \rightarrow V$ be a linear operator on a vector space V over a field \mathbb{F}. Show that the null space of T is T-invariant.
3. a) Let T be a linear operator on a finite dimensional vector space V over a field \mathbb{F}. Show that c is an eigenvalue of T if and only if $T-c I$ is singular.
b) For a linear operator T on a vector space V, show that an eigenvalue associated with an eigenvector is unique but an eigenvector associated with an eigenvalue is not unique.
c) Find the algebraic multiplicity of the eigenvalues for the following matrix:

$$
A=\left[\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 4 \\
0 & 0 & 4
\end{array}\right]
$$

4. a) Diagonalize the following matrix:

$$
A=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]
$$

b) For the above matrix A, compute A^{21} using its diagonal form.
5. a) State and prove the Cauchy-Schwarz inequality for the vectors in an inner product space.
b) Let V be an inner product space, and let T be a normal operator on V. Then prove the following:
i) $\|T(x)\|=\left\|T^{*}(x)\right\|$ for all $x \in V$.
ii) If λ_{1} and λ_{2} are distinct eigenvalues of T with corresponding eigenvectors x_{1} and x_{2}, then x_{1} and x_{2} are orthogonal.

[2m+3m]

6. a) Use the Gram-Schmidt procedure to convert the following basis vectors of \mathbb{R}^{3} into an orthonormal basis vectors:

$$
x=(1,0,1), y=(1,1,1) \text { and } z=(0,1,2) .
$$

b) Find the singular values of the following matrix:

$$
A=\left[\begin{array}{cc}
1 & -1 \\
-2 & 2 \\
2 & -2
\end{array}\right]
$$

7. a) Define a symmetric bilinear form on a vector space V over a field \mathbb{F}.
b) Is the standard inner product on \mathbb{R}^{n} a symmetric bilinear form?
c) Prove that the bilinear form $f(x, y)=x^{T} A y$ is a symmetric bilinear form on \mathbb{F}^{n} if and only if the matrix A is symmetric.
[6m]
