Register Number:

Date:

ST. JOSEPH'S UNIVERSITY, BENGALURU-27 M.Sc. (MATHEMATICS) - I SEMESTER SEMESTER EXAMINATION: OCTOBER 2022 (Examination conducted in December 2022) MT7321: LINEAR ALGEBRA

Duration: 2 Hours

Max. Marks: 50

- 1. The paper contains two printed pages.
- 2. Attempt any FIVE FULL questions. Each question carries TEN marks.
- 1. a) Let W_1 and W_2 be subspaces of a finite dimensional vector space V over a field \mathbb{F} and $W = W_1 \oplus W_2$. Prove that $\dim(W) = \dim(W_1) + \dim(W_2)$. [8m]
 - b) Is there a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1,0,3) = (1,1) and T(-2,0-6) = (2,1)?
- 2. a) Prove or disprove the following statement:The union of two subspaces of a vector space V is a subspace of V.
 - b) Let V and W be vector spaces over a field \mathbb{F} and $\{v_1, \ldots, v_n\}$ be a basis for V. Suppose w_1, w_2, \ldots, w_n are given vectors in W. Prove that there exists a linear transformation $T : V \to W$ such that $T(v_i) = w_i, 1 \le i \le n$. [5m]
 - c) Let $T: V \to V$ be a linear operator on a vector space V over a field \mathbb{F} . Show that the null space of T is T-invariant. [2m]
- 3. a) Let T be a linear operator on a finite dimensional vector space V over a field \mathbb{F} . Show that c is an eigenvalue of T if and only if T cI is singular. [3m]
 - b) For a linear operator T on a vector space V, show that an eigenvalue associated with an eigenvector is unique but an eigenvector associated with an eigenvalue is not unique. [4m]
 - c) Find the algebraic multiplicity of the eigenvalues for the following matrix:

$$A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 4 \end{bmatrix}$$

[3m]

4. a) Diagonalize the following matrix:

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$$

[7m]

[**3**m]

[2m]

- b) For the above matrix A, compute A^{21} using its diagonal form.
- 5. a) State and prove the Cauchy-Schwarz inequality for the vectors in an inner product space. [5m]
 - b) Let V be an inner product space, and let T be a normal operator on V. Then prove the following:
 - i) $||T(x)|| = ||T^*(x)||$ for all $x \in V$.
 - ii) If λ_1 and λ_2 are distinct eigenvalues of T with corresponding eigenvectors x_1 and x_2 , then x_1 and x_2 are orthogonal.

[2m+3m]

[**3**m]

6. a) Use the Gram-Schmidt procedure to convert the following basis vectors of ℝ³ into an orthonormal basis vectors:

$$x = (1, 0, 1), y = (1, 1, 1)$$
 and $z = (0, 1, 2)$.

[7m]

b) Find the singular values of the following matrix:

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}.$$

[3m]

- 7. a) Define a symmetric bilinear form on a vector space V over a field \mathbb{F} . [3m]
 - b) Is the standard inner product on \mathbb{R}^n a symmetric bilinear form? [1m]
 - c) Prove that the bilinear form $f(x, y) = x^T A y$ is a symmetric bilinear form on \mathbb{F}^n if and only if the matrix A is symmetric. [6m]