RegisterNumber:
Date:

ST. JOSEPH'S COLLEGE, (Autonomous) BENGALURU-27
 M.SC MATHEMATICS - III SEMESTER
 SEMESTER EXAMINATION: OCTOBER, 2022

(Examination conducted in December 2022)

MT 9122: Functional Analysis

Duration: 2.5 Hours
Max. Marks: 70

1. The paper contains TWO printed pages and ONE part.
2. Attempt any SEVEN FULL questions.
3. All multiple choice questions have one or more correct options. Write all the correct options in your answer booklet.
*** BEST WISHES ***
4. a) Show that $L^{\infty}(E) \subset L^{p}(E)$ for all $1 \leq p<\infty$, where $m(E)<\infty$. Show with an example that the inclusion doesn't hold if we drop the finite measure condition on E.
b) Which of the following is a Banach space.
I) $C([0,1])$ the set of all continuous function on $[0,1]$ with $\left\|\|_{\infty}\right.$.
II) $C([0,1])$ the set of all continuous function on $[0,1]$ with $\left\|\|_{p}\right.$.
III) $P([0,1])$ the set of all polynomial function on $[0,1]$ with $\left\|\|_{\infty}\right.$.
IV) $P([0,1])$ the set of all polynomial function on $[0,1]$ with $\left\|\|_{p}\right.$.
5. a) Show that any two norms on a finite dimensional space are equivalent.
b) Choose all the correct statements.
I) The norms $\|x\|=\|x\|_{\infty}+\left\|x^{\prime}\right\|_{\infty}$ and $\|x\|_{0}=|x(a)|+\left\|x^{\prime}\right\|_{\infty}$ on $C^{1}([a, b])$ are equivalent.
II) The norms $\|x\|=\|x\|_{\infty}+\left\|x^{\prime}\right\|_{\infty}$ and $\|x\|_{0}=|x(a)|+\left\|x^{\prime}\right\|_{\infty}$ on $C^{1}([a, b])$ are not equivalent.
III) The norms $\|x\|_{1}=\int_{0}^{1}|x(t)| d t$ and $\|x\|_{\infty}=\sup \{|x(t)|: t \in[a, b]\}$ on $C([a, b])$ are equivalent.
IV) The norm $\|x\|_{\infty}=\sup \{|x(t)|: t \in[a, b]\}$ is stronger than $\|x\|_{1}=\int_{0}^{1}|x(t)| d t$ on $C([a, b])$.
6. a) State and prove Riesz lemma.
b) Choose all the correct statements.
I) The space $C[0,1]$ is a closed subspace of $L^{\infty}(0,1)$ with sup-norm.
II) The space $C[0,1]$ is a closed subspace of $L^{1}(0,1)$ with $\|\cdot\|_{1}$.
III) The space c_{00} is a closed subspace of c_{0} with sup-norm.
IV) The space c_{00} is dense in c_{0} with sup-norm.
7. a) Define Fredholm operator and show that it is continuous.
b) Let (X, S, μ) be a measure space. Choose all the correct statements.
I) Let $g \in L^{\infty}(\mu)$. Let $T(f)=g f$. Then $T \in B\left(L^{1}(\mu), L^{1}(\mu)\right)$.
II) Let $g \in L^{\infty}(\mu)$. Let $T(f)=g f$. Then $T \in B\left(L^{2}(\mu), L^{1}(\mu)\right)$.
III) Let $g \in L^{2}(\mu)$. Let $T(f)=g f$. Then $T \in B\left(L^{2}(\mu), L^{1}(\mu)\right)$.
8. a) Let $X=\left(C^{1}[0,1],\|\cdot\|_{*}\right)$, where $\|x\|_{*}=\|x\|_{\infty}+\left\|x^{\prime}\right\|_{\infty}$ and $Y=\left(C[0,1],\|\cdot\|_{\infty}\right)$. Show that the linear operator $A: X \rightarrow Y$ defined by $A(x)=x^{\prime}$ is continuous and find $\|A\|$.
[6 m]
b) Consider the matrix

$$
A=\left[\begin{array}{ccccc}
1 & -2 & 3 & 4 & 5 \\
-1 & 0 & 2 & -1 & 1 \\
3 & 0 & 0 & 2 & -5 \\
4 & 1 & 1 & 0 & -1 \\
1 & 1 & -1 & -2 & -1
\end{array}\right]
$$

The matrix A defines a linear transformation $T_{A}: \mathbb{K}^{5} \rightarrow \mathbb{K}^{5}$ is a bounded operator on
I) $\left(\mathbb{K}^{5},\|\cdot\|_{1}\right)$ with norm 13 .
III) $\left(\mathbb{K}^{5},\|\cdot\|_{\infty}\right)$ with norm 15.
II) $\left(\mathbb{K}^{5},\|\cdot\|_{1}\right)$ with norm 15 .
IV) $\left(\mathbb{K}^{5},\|\cdot\|_{\infty}\right)$ with norm 13.
6. a) Prove the projection theorem: "Let H be a Hilbert(complete inner product) space and F be a closed subspace of H. Then, $H=F \oplus F^{\perp}$ and $\left(F^{\perp}\right)^{\perp}=F$."
b) Give an example to show that the completeness property is necessary for the conclusion of the Projection theorem. [5 m]
7. a) State and prove Riesz Representation Theorem.
b) Which of the following represent an orthogonal projection in $L^{2}(-\pi, \pi)$.
I) T defined by $T f(t)=\frac{1}{2}(f(t)+f(-t))$ for all $f \in L^{2}(-\pi, \pi)$
II) T defined by $T f(t)=t f(t)$ for all $f \in L^{2}(-\pi, \pi)$
III) T defined by $T f(t)=\chi_{[0, \pi]}(t) f(t)$ for all $f \in L^{2}(-\pi, \pi)$.
8. a) Let V be a normed linear space, W be a subspace of V and X be a finite dimensional normed linear space. Show that any continuous linear functional from $T: W \rightarrow X$ can be extended to all of V.
b) Choose all the correct statements.
I) Let $x \in \ell^{5}$. There exists $y \in \ell^{\frac{5}{4}}$ such that $\|y\|_{\frac{5}{4}}=1$ and $\|x\|_{\frac{5}{4}}=\left|\sum_{i=1}^{\infty} x_{i} y_{i}\right|$
II) Let $x \in \ell^{\frac{5}{4}}$. There exists $y \in \ell^{5}$ such that $\|y\|_{5}=1$ and $\|x\|_{\frac{5}{4}}=\left|\sum_{i=1}^{\infty} x_{i} y_{i}\right|$
III) Let $x=\left(x_{i}\right) \in \ell_{\infty}$, where $x_{i}=1-\frac{1}{i}$. Then, $\|x\|_{\infty}=\left|\sum_{i=1}^{\infty} x_{i} y_{i}\right|$.
9. a) State and prove Hahn Banach Separation theorem.
b) Choose all the correct statements.
I) Let $V=C_{c}(\mathbb{R})$ with the sup-norm. The set $H=\left\{f \in V \mid \int_{-\infty}^{\infty} f(t) d t=1\right\}$ is a closed hyperplane in V
II) Let $x \in \ell^{4}$. The set $H=\left\{\left.y \in \ell_{\frac{4}{3}} \right\rvert\, \sum_{i=1}^{\infty} x_{i} y_{i}=1\right\}$ is a closed hyperplane in $\ell^{\frac{4}{3}}$
III) Let $V=C([0,1])$ with the sup-norm. The set $H=\left\{f \in V \mid \int_{0}^{1} g(t) f(t) d t=1\right\}$ is a closed hyperplane in V.
10. a) State and prove closed graph theorem.
b) Let V be a Banach space and let W be a non-zero,closed and proper subspace. Define $\pi: V \rightarrow V / W$ by $\pi(x)=x+W$. Which of the following statements are true?
I) The map π is injective
II) The map π is surjective
III) The map π is an open map.

