

Register Number:

Date:

ST. JOSEPH'S COLLEGE, (Autonomous) BENGALURU-27 M.SC MATHEMATICS - III SEMESTER SEMESTER EXAMINATION: OCTOBER, 2022 (Examination conducted in December 2022) MT. 0122; Functional Analysis

MT 9122: Functional Analysis

Duration: 2.5 Hours

Max. Marks: 70

[3 m]

[4 m]

[6 m]

[4 m]

[7 m]

[3 m]

1. The paper contains **TWO** printed pages and ONE part.

2. Attempt any **SEVEN FULL** questions.

3. All multiple choice questions have **one or more** correct options. Write **all** the correct options in your answer booklet.

*** BEST WISHES ***

1. a) Show that $L^{\infty}(E) \subset L^{p}(E)$ for all $1 \leq p < \infty$, where $m(E) < \infty$. Show with an example that the inclusion doesn't hold if we drop the finite measure condition on E. [7 m]

- b) Which of the following is a Banach space.
 - I) C([0,1]) the set of all continuous function on [0,1] with $|| ||_{\infty}$.
 - II) C([0,1]) the set of all continuous function on [0,1] with $|| ||_p$.
 - III) P([0,1]) the set of all polynomial function on [0,1] with $|| \cdot ||_{\infty}$.
 - IV) P([0,1]) the set of all polynomial function on [0,1] with $|| ||_p$.

2. a) Show that any two norms on a finite dimensional space are equivalent. [6 m]

- b) Choose all the correct statements.
 - I) The norms $||x|| = ||x||_{\infty} + ||x'||_{\infty}$ and $||x||_0 = |x(a)| + ||x'||_{\infty}$ on $C^1([a, b])$ are equivalent.
 - II) The norms $||x|| = ||x||_{\infty} + ||x'||_{\infty}$ and $||x||_0 = |x(a)| + ||x'||_{\infty}$ on $C^1([a, b])$ are not equivalent.
 - III) The norms $||x||_1 = \int_0^1 |x(t)| dt$ and $||x||_\infty = \sup\{|x(t)| : t \in [a, b]\}$ on C([a, b]) are equivalent.
 - IV) The norm $||x||_{\infty} = \sup\{|x(t)| : t \in [a, b]\}$ is stronger than $||x||_1 = \int_0^1 |x(t)| dt$ on C([a, b]).

3. a) State and prove Riesz lemma.

- b) Choose all the correct statements.
 - I) The space C[0,1] is a closed subspace of $L^{\infty}(0,1)$ with sup-norm.
 - II) The space C[0,1] is a closed subspace of $L^1(0,1)$ with $\|\cdot\|_1$.
 - III) The space c_{00} is a closed subspace of c_0 with sup-norm.
 - IV) The space c_{00} is dense in c_0 with sup-norm.

4. a) Define Fredholm operator and show that it is continuous.

- b) Let (X, S, μ) be a measure space. Choose all the correct statements.
 - I) Let $g \in L^{\infty}(\mu)$. Let T(f) = gf. Then $T \in B(L^{1}(\mu), L^{1}(\mu))$.
 - II) Let $g \in L^{\infty}(\mu)$. Let T(f) = gf. Then $T \in B(L^{2}(\mu), L^{1}(\mu))$.
 - III) Let $g \in L^2(\mu)$. Let T(f) = gf. Then $T \in B(L^2(\mu), L^1(\mu))$.
- 5. a) Let $X = (C^1[0,1], \|\cdot\|_*)$, where $\|x\|_* = \|x\|_{\infty} + \|x'\|_{\infty}$ and $Y = (C[0,1], \|\cdot\|_{\infty})$. Show that the linear operator $A: X \to Y$ defined by A(x) = x' is continuous and find ||A||. [6 m]
 - b) Consider the matrix

$$A = \begin{bmatrix} 1 & -2 & 3 & 4 & 5 \\ -1 & 0 & 2 & -1 & 1 \\ 3 & 0 & 0 & 2 & -5 \\ 4 & 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -2 & -1 \end{bmatrix}.$$

[4 m]

I)	$(\mathbb{K}^5, \ \cdot\ _1)$ with norm 13.	III) $(\mathbb{K}^5, \ \cdot\ _{\infty})$ with norm 15	•
II)	$(\mathbb{K}^5, \ \cdot\ _1)$ with norm 15.	IV) $(\mathbb{K}^5, \ \cdot\ _{\infty})$ with norm 13	

- 6. a) Prove the projection theorem: "Let H be a Hilbert(complete inner product) space and F be a closed subspace of H. Then, $H = F \oplus F^{\perp}$ and $(F^{\perp})^{\perp} = F$." [5 m]
 - b) Give an example to show that the completeness property is necessary for the conclusion of the Projection theorem. [5 m]
- 7. a) State and prove Riesz Representation Theorem.
 - b) Which of the following represent an orthogonal projection in $L^2(-\pi,\pi)$. [3 m]
 - I) T defined by $Tf(t) = \frac{1}{2}(f(t) + f(-t))$ for all $f \in L^2(-\pi, \pi)$
 - II) T defined by Tf(t) = tf(t) for all $f \in L^2(-\pi, \pi)$
 - III) T defined by $Tf(t) = \chi_{[0,\pi]}(t)f(t)$ for all $f \in L^2(-\pi,\pi)$.
- 8. a) Let V be a normed linear space, W be a subspace of V and X be a finite dimensional normed linear space. Show that any continuous linear functional from $T: W \to X$ can be extended to all of V. [7 m]
 - b) Choose all the correct statements.

I) Let $x \in \ell^5$. There exists $y \in \ell^{\frac{5}{4}}$ such that $\|y\|_{\frac{5}{4}} = 1$ and $\|x\|_{\frac{5}{4}} = \left|\sum_{i=1}^{\infty} x_i y_i\right|$ II) Let $x \in \ell^{\frac{5}{4}}$. There exists $y \in \ell^5$ such that $\|y\|_5 = 1$ and $\|x\|_{\frac{5}{4}} = \left|\sum_{i=1}^{\infty} x_i y_i\right|$ III) Let $x = (x_i) \in \ell_{\infty}$, where $x_i = 1 - \frac{1}{i}$. Then, $\|x\|_{\infty} = \left|\sum_{i=1}^{\infty} x_i y_i\right|$.

- 9. a) State and prove Hahn Banach Separation theorem.
 - b) Choose all the correct statements.

I) Let
$$V = C_c(\mathbb{R})$$
 with the sup-norm. The set $H = \left\{ f \in V \left| \int_{-\infty}^{\infty} f(t) dt = 1 \right\}$ is a closed hyperplane in V

II) Let
$$x \in \ell^4$$
. The set $H = \left\{ y \in \ell_{\frac{4}{3}} \left| \sum_{i=1}^{\infty} x_i y_i = 1 \right\}$ is a closed hyperplane in $\ell^{\frac{4}{3}}$
III) Let $V = C([0,1])$ with the sup-norm. The set $H = \left\{ f \in V \left| \int_0^1 g(t)f(t)dt = 1 \right\}$ is a closed hyperplane in V .

- 10. a) State and prove closed graph theorem.
 - b) Let V be a Banach space and let W be a non-zero, closed and proper subspace. Define $\pi: V \to V/W$ by $\pi(x) = x + W$. Which of the following statements are true? [3 m]
 - I) The map π is injective II) The map π is surjective III) The map π is an open map.

[7 m]

[3 m]

[7 m]

[3 m]

[7 m]